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AN IMPROVED SUBGROUP THEOREM FOR HNN 
GROUPS WITH SOME APPLICATIONS 

A. KARRASS, A. PIETROWSKI, AND D. SOLITAR 

1. Introduction. In [41, a subgroup theorem for HNN groups was estab­
lished. The theorem was proved by embedding the given HNN group in a free 
product with amalgamated subgroup and then applying the subgroup theorem 
of [3]. In this paper we obtain a sharper form of the subgroup theorem of [4] 
by applying the Reidemeister-Schreier method directly, using an appropriate 
Schreier system of coset representatives. Specifically, we prove (in Theorem 1) 
that if H is a subgroup of the HNN group 

(1) G = (t,K;tLt~l = Af), 

then H is an HNN group whose base is a tree product of vertices cKc~l C\ H where 
c ranges over a double coset representative system for G mod (H, K); the amalga­
mated and associated subgroups are contained in vertices of this base and are of 
the form dMd~l C\ H where d ranges over a double coset representative system for G 
mod (H, M). 

This improved subgroup theorem for HNN groups was obtained indepen­
dently by D. E. Cohen [1] using Serre's theory of groups acting on trees. 

Using the present version of the subgroup theorem, several proofs in [4] 
can be simplified and results strengthened (see, e.g., [1]). Here we give two 
new applications of the improved subgroup theorem. 

Our first application deals with subgroups with non-trivial center of one-
relator groups. 

Definition. A treed HNN group is an HNN group whose base is a tree product 
and whose associated subgroups are contained in vertices of the tree product 
base. 

Let H be af.g. (finitely generated) subgroup with center Z ( ^ 1) of a torsion-free 
one-relator group G. Then H is a free abelian group of rank two, or H is a treed 
HNN group with infinite cyclic vertices and with center contained in the center of 
the base (see Theorem 2). 

Two corollaries are the following: 

If H is a subgroup with center Z ( ^ 1) of a torsion-free one-relator group, then Z 
is infinite cyclic unless H is free abelian of rank two or H is locally infinite cyclic. 
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If H is a f.g. subgroup of the centralizer C of an element x in a torsion-free 
one-relator group and H C\ gp(x) = 1, then H is a free group. 

The first corollary was obtained independently by Mahimovski [8]. Theorem 
2 generalizes Pietrowski's [12] characterization of one-relator groups having 
non-trivial centers. The centralizer of an element in a one-relator group with 
torsion is always cyclic (see Newman [11] or [4, p. 956]). 

Our second application connects the structure of a subgroup of finite index 
of a certain type of treed HNN group to its index. Classical examples of such 
a connection are given by the Schreier rank formula for free groups, the Euler 
characteristic for fundamental groups of orientable compact surfaces as com­
pared with that of a j-sheeted covering space, and the Riemann-Hurwitz 
formula for Fuchsian groups. Each of these cases may be viewed as associating 
a number x(G) to each group G in the class so that if G'.H = j , then x(H) = 
j ' x(G); indeed, we take this property as the defining property of a character­
istic defined on a class of groups closed under taking subgroups of f.i. (finite 
index). Specifically, for the free group G take x(G) = 1-rank G, for the 
fundamental group G = (ai, blf . . . , a0, bg, I I [a*, bt]) let x(G) = 2 — 2g, 
and for the Fuchsian group 

G = (d, . . . ,ct, au bu . . . , a0, bg\ c{", . . . , ct
yt, cr1 . . . c f V i , &d • • • [a0, bg]) 

let X(G) = 2g - 2 + 2 ( 1 - 7T1) . In all three cases if X(G) j* 0, then 
isomorphic subgroups of f.i. must have the same index; indeed, in the first two 
cases x(^0 determines H (up to isomorphism). In any case, knowing the 
index of the subgroup H determines x(H), and therefore limits the structure 
oîH. 

Wall [15] introduced a "rational Euler characteristic" for finite extensions 
of discrete groups which admit a finite complex as classifying space. For these 
groups, not only does x(H) = j • x(£) when G:H = j , but also the formula 
x(A * B) = xG4) + x ( ^ 0 — 1 holds. The class of groups considered by Wall 
includes finite extensions of f.g. free groups, and for these groups Stallings [14] 
generalized Wall's formula to x(A * B\ U) = x(A) + x (^ ) — I ^ l ~ \ where 
U is a finite group (of order |Z7|), and A, B are finite extensions of f.g. free 
groups. We generalize this further to show that if G is a treed HNN group 
with finitely many vertices Aif . . . , Ar each of which is a finite extension of a 
free group, and there are finite amalgamated subgroups Ui, . . . , Ur-i and finitely 
many pairs of finite associated subgroups Lu Mi, . . . , Lnj Mn, then Wall's 
characteristic x(G) is given by 

(2) x(G) = xG4i) + • . • + x(Ar) - \Ui\~1 - . . . - l ^ - i h 1 - iMih1 -

. . . - \Mn\-> 

(see Theorem 3). 
We then extend the formula (2) using the more general notion of character­

istic (indicated above) to other classes of treed HNN groups (see Theorem 4). 
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T h e generalized formula applies to (Kleinian) function groups (certain dis­
continuous subgroups of L F (2, C ) ) . 

2. T h e s u b g r o u p t h e o r e m for H N N g r o u p s . Let G be as in (1). We may 
suppose t ha t a set of generating symbols is chosen for K which includes a 
subset {mi} which generates M and a corresponding subset {lt} where lt = 
t~xmit, which generates L. A i£-symbol is one of the chosen i^-generators or 
its inverse; an i f - symbol is one of the mt or its inverse. 

Let H be a subgroup of G. In the proof of Theorem 1 below we shall show t h a t 
there exists a Schreier coset representat ive system for G mod H of the form 
{Dk • Em • Q(nii)} where Q(m^) is a word in i f - symbols , Em • Q(nii) is a word 
in i£-symbols, Dk does not end in a i£-symbol, Dk • Em does not end in an 
M-symbol, and in no representat ive does t follow a non-empty i f - symbol . 
Moreover, {Dk} is a representat ive system for G mod (H, K), and \Dk • Em\ 
is a representat ive system for G mod (H, i f ) . 

T H E O R E M 1. Let G be as in (1), let H be a subgroup of G, and let a Schreier 
representative system for G mod H be chosen as described above. Then H is a treed 
H N N group whose vertices are of the form DkKDk~

l C\ H {where Dk ranges 
over the full double coset representative system for G mod (H, K)) and whose 
amalgamated and associated subgroups are of the form DkEmKEm~lDk~

l Pi H 
(where DkEm ranges over the full double coset representative system for G mod 
(H,M)). 

Proof. T h e proof of the theorem is analogous to t ha t of the proof of the 
subgroup theorem (Theorem 5) of [3], and so we merely sketch the argument . 

Firs t wre construct a Schreier representat ive system for G mod H of the type 
described. For this purpose define the length of an (H, K) double coset as the 
shortest length of any word in it. For the (if, K) coset of length 0, we choose 
the empty word 1 as its i^-double coset representat ive. T o obtain the Schreier 
representat ives for the ff-cosets of H in HK, we supplement the double coset 
representat ive 1 with a special Schreier system (defined after Lemma 5, page 
240 of [3]) for K mod K C\ H with respect to M. 

Assume we have defined Schreier representat ives (in this manner ) for all 
cosets of H contained in a double coset of (H, K) of length less than r. Let 
HWK and W have length r > 0. Now W ends in a /-symbol; hence W = Vte, 
e = ± 1 . Moreover, the Schreier representat ive F* of V has already been 
defined and has the form F* = Dk • Em • Q(mt). If e = 1, then DkEmQ(mt)t = 
DkEmtQ(li), and so HDkEmtK = HWK, and we choose DkEmt as the double 
coset representat ive of HWK. If e = — 1 , then choose DkEmQ(mt)t~

l as the 
double coset representat ive D of HWK. In either case we supplement our 
chosen double coset representat ive D of HWK with a special Schreier repre­
sentat ive system for K mod K C\ D~1HD with respect to M. W e have now 
constructed a Schreier coset representat ive system for G mod H as described 
above. 
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Using this Schreier system and the corresponding rewriting process, we may 
apply the Reidemeister-Schreier method (see [7, Section 2.3]) to obtain a 
presentat ion for H from our presentation for G. Now H has generators {sNa\ 
and {sNtt} where N is a Schreier representative and x is a i^-generator. More­
over, {sN,x}, where N has a fixed (H, K) double coset representat ive Dk and x 
ranges over the i£-generators, generates the subgroup DkKDk~

l P H; {sNty}, 
where N has a fixed (H, M) double coset representative DkEm and y ranges 
over the M -genera tors, generates the subgroup DkEmMEm~lDk~

l P H. More­
over, if the relators of K are conjugated by those N with a fixed Dk, and then 
the rewriting process r is applied, the resulting relators together with the 
trivial generators sNtX provide a set of denning relators for DkKDk~

l P H. 
T h e defining relators for H t ha t arise from rewriting {tljr1 = mt) enable 

us to eliminate the generators sN,t where N is not a double coset representa­
tive for G mod (H, M) ; moreover, the remaining relators take the form 

(3) SnkEm,t«DkEmt)*L(DkEmt)*-i P H)sDkEm,rl = DkEmMEm-Wk^ P H. 

Now (3) describes an amalgamation which takes place between vertices 
(DkEj)*K(DkEj)*-i r\ H and (DkEm)K(DkEm)-' H H if sDkEm<t is a trivial 
generator (i.e., (DkEmt)* ~ DkEmt); otherwise, (3) describes a pair of associ­
ated subgroups from these same vertices. 

Specifically, if DkEmQ(mj) is a representative, then sDkEmQyt is freely equal to 

r[(DkEn)*Q(mJ)(DkEnQ(mj))*--1] • sDkEm,t • r[(DkEmt)*Q(lJ)(DkEnQ(lj))*^]t 

and hence if Q(nij) 9e 1, we may eliminate the generators sDkEmQ,t\ the remain­
ing relators become those in (3) together with the trivial generators in {sDkEmtt\. 
T h e amalgamations described in (3) lead to a tree product of vertices 
DkKDk~

l C\ H for the following reason (see [7, Lemma 1]): Assign as level of 
the vertex DkKDk~

l C\ H, the number r of /-symbols in Dk; then the unique 
vertex of level less than r with which DkKDk~

l C\ H has a subgroup amalga­
mated is the subgroup DKD~l Pi H where D is obtained from Dk by deleting the 
last /-symbol and then deleting any X-syllable immediately preceding tha t . 

COROLLARY 1. The rank of the free part of H as described in Theorem 1 is 
[G:{H,M)} - [G:(H,K)] + 1. 

Proof. (DkEmt)* ~ DkEmt if and only if either DkEmt is a Schreier representa­
tive and therefore an (H, K) double coset representative, or Em = 1 and Dk 

ends in t~l. T h u s there exists a one-one correspondence between (H, K) double 
coset representatives ending in / or t~l and the trivial generators in {sDkEmtt}. 
But there are G: (H, K) — 1 double coset representatives for G mod (H, K) 
ending in / or t~l ; hence the assertion follows. 

The following corollary will be used in the proof of Theorem 4: 

COROLLARY 2. Let G be a treed H N N group with finitely many vertices, f.g. free 
part, and finite amalgamated and associated subgroups. Then any subgroup H of 
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f.i. is a treed H N N group with finitely many vertices each ofwhich is a conjugate 
of the intersection of H with some conjugate of a vertex of G; the amalgamated and 
associated subgroups are conjugates of the intersections of H with certain conjugates 
of the amalgamated and associated subgroups of G. 

Proof. T h e proof is by induction on the sum 5 of the rank of the free pa r t of G 
and the number of vertices in G. H s = 2, the result follows from the subgroup 
theorem of [3] or Theorem 1 above. Otherwise, suppose G is as in (1) where K 
is now a treed H N N group with smaller 5 than t ha t of G. Then H is a treed 
H N N group whose vertices are of the form cKc~l C\ H = c(K C\ c~lHc)c~~l

r 

which by inductive hypothesis is a treed H N N group of the desired type . Now 
an amalgamated or associated subgroup of H has the form dMd~l C\ H. T h u s 
H is an H N N group whose base is a tree product with treed H N N groups as 
vertices and finite amalgamated subgroups, and H itself has finite associated 
subgroups. I t follows as in the a rgument for the proof of Theorem 1 of [2] t ha t 
H is a treed H N N group of the asserted form. In a similar way, it follows t ha t 
if G = (A * B; U) where B has smaller 5 than t ha t of G and A is one of the 
original vertices of G, then H will be a treed H N N group of the desired type. 

3. S u b g r o u p s w i t h n o n - t r i v i a l c e n t e r of o n e - r e l a t o r g r o u p s . 

T H E O R E M 2. Let G be a group with one defining relator R where R is not a true 
power, and let H be a f.g. subgroup of G with non-trivial center Z. Then H is free 
abelian of rank two, or H is a treed H N N group with infinite cyclic vertices and Z 
is contained in the center of the base of H. 

Proof. If R has syllable length one, then G is free, H is infinite cyclic, and 
the result holds. Assume R has syllable length greater than one; then G can be 
embedded in an H N N group 

Gi = (t, K; rel K, tLr1 = M) 

where K is a one-relator group whose relator is shorter than R and L, M are 
free (see e.g., [4]). Suppose H is not free abelian of rank two. 

Now by Theorem 1, a f.g. subgroup H of d is a treed H N N group 

H = {tu . . . , tn, S; rel S, hLtr1 = Mu . . .) 

where 5 is a tree product of finitely m a n y vertices Ai, . . . , Ari each A t being 
a subgroup of a conjugate of K; the amalgamated and associated subgroups 
are free. 

If n 9^ 1, then Z is contained in 5 ; for, H = I I * ( g p ( ^ , 5 ) ; S). 
Firs t suppose Z < SH. Then n = 1. Since some element in Z is not in SH, 

and H is f.g., and S/SH is infinite cyclic, it follows t ha t SH is f.g. (see Murasugi 
[10]). Therefore SH = L\ is free and f.g. Consequently, H has the asserted 
form by [2, Theorem 3]. 
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Therefore we may assume Z < SH. We show, in fact, tha t Z < S. If n j* 1, 
Ave are finished. Suppose n = 1. Then SH is an infinite stem product (i.e., a tree 
product in which each vertex has a t most two edges incident with it) of vertices 
t^Stc1. If Mi 9^ S T^ Li, then the stem product is proper (i.e., each amalga­
mated subgroup is a proper subgroup of its containing vertices), and therefore Z 
is contained in 6*. If S equals Lx or Mi, then S is free; SH is an ascending union 
of free groups and has a non-trivial center, so t ha t S mus t be infinite cyclic. 
If S = gp(a) = Li, and Mi = gp(ag), then H = (h, a; hate1 = aq). Since 
Z H S ^ l , harti~l = aqr = ar for some r 9e 0. Hence a = 1, and i 7 would be 
free abelian of rank two. Therefore Z must be contained in 5 . 

Suppose next 5 consists of a single vertex, S = gKg~1 C\ H. If n = 0, then 
i ^ = 5 , is a f.g. subgroup with non-trivial center of the group gKg~l\ therefore 
by the inductive hypothesis, H has the desired form. If n > 0, and some L t or 
Mt equals S, then 5 is free with non-trivial center, and so must be infinite cyclic. 
T h u s again H has the asserted form with base 5 . 

We may therefore assume tha t SH is a proper tree product of the vertices 
tijSt~\ and so Z < Lt C\ Mt. Since Lu Mt are free, Z, Lu Mt mus t each be 
infinite cyclic. Therefore 5* is a f.g. subgroup of gKg~l and the inductive hypo­
thesis applies to S. Since Z is infinite cyclic, it follows tha t S is a treed H N N 
group with infinite cyclic vertices each of which contains Z, and each of the 
associated subgroups contains Z. Therefore S/Z is a treed H N N group with 
finite cyclic vertices; moreover, Lt/Z goes into MJZ under conjugation by tt. 
Hence H/Z is an H N N group with finite cyclic vertices, and the associated 
subgroups of H/Z are finite. Therefore H/Z is a treed H N N group with finite 
cyclic vertices, and so by the proof of [2, Theorem 3] H has the asserted 
form. 

Finally, suppose 5 does not consist of a single vertex. Then 5 is a proper tree 
product and Z is contained in the amalgamated subgroups of S; these are free 
and therefore infinite cyclic. Moreover, since Z < Ltr\ Mu we have t ha t 
Liy Mi are infinite cyclic. Hence each of the vertices Aj of S is f.g. and the 
inductive hypothesis applies to each Aj. Hence AJZ is a treed H N N group 
with finite cyclic vertices, and the amalgamated and associated subgroups 
when reduced mod Z yield finite cyclic groups. Thus H/Z is an H N N group 
whose base is a tree product of treed H N N groups with finite cyclic vert ices; 
the amalgamated and associated subgroups are finite cyclic groups. Hence 
H/Z is a treed H N N group with finite cyclic vertices, and consequently H has 
the asserted form (again by the proof of [2, Theorem 3]). 

COROLLARY 1. Let H be a subgroup with non-trivial center Z of a torsion-free 
one-relator group G, H not free abelian of rank two and not locally infinite cyclic. 
Then Z is infinite cyclic. 

Proof. If H is f.g., then Z is infinite cyclic because Z is in the center of the 
tree product base of H, which has infinite cyclic vertices. 

Suppose H is infinitely generated. Then H is the ascending union of count-
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ably many f.g. subgroups Hf each containing a f.g. subgroup Zt of Z such that 
Z is the ascending union of the Zj. Now by Moldavanski [9] or Newman [11], 
no abelian subgroup of G can be a proper ascending union of free abelian groups 
of rank two. Hence only finitely many Hi can be free abelian of rank two. Thus 
Zi must be infinité cyclic, and so Z is infinite cyclic if Z is f.g. 

Suppose Z is infinitely generated. Then H/Z is periodic. For otherwise, for 
some element h of H, gp(h} Zt) is free abelian of rank two, and gp{h, Z) = 
U gp(hj Zi) which is impossible. Hence, if C\- is the center of Hu then H J Ci 
is on the one hand periodic, and on the other hand a treed HNN group with 
finite cyclic vertices. Therefore, HJCi is finite, and so Ht is infinite cyclic. 
Consequently, H is locally infinite cyclic. 

COROLLARY 2. If H is a f.g. subgroup of the centralizer C of an element x in a 
torsion-free one-relator group and H P\ gp(x) = 1, then H is a free group. 

Proof. Let Hi = gp{H, x), which is the direct product H X gp(x). If H\ is 
free abelian of rank two, then clearly H is infinite cyclic. If Hi is not free 
abelian of rank two, then the center Z of Hi is infinite cyclic and therefore 
equals gp(x). Now since Hi is a treed HNN group with finitely many cyclic 
vertices each of which contains Z and each of whose associated subgroups 
contains Z, it follows that Hi/Z is a treed HNN group with finite cyclic ver­
tices, which is isomorphic to H. Since H is torsion-free, H must be free. 

4. Charac ter i s t ics of groups . 

LEMMA 1. Suppose G is as in (1) and R is a subgroup of K such that R has 
trivial intersection with the conjugates of L and M in K. Let {at} be a common 
double coset representative system for K mod (R, M) and K mod (R, L). Then 
the subgroup 

H = R*U*gP (ct/ar1) 
j 

is of index [K: (R, M)] • \M\. In particular, if K:R and \M\ are both finite, then 
a common double coset representative {a^ exists and H is of finite index in G; 
if R is free (or torsion-free), then so is H. 

Proof. We show H is a subgroup of the asserted form and index by con­
structing H using an appropriate Schreier representative system and a cor­
responding right coset function. For this purpose choose a set of generating 
symbols for K which is the union of the following three subsets: the symbols 
{ai}, the symbols {rq} where rq ranges over the elements of R, and the symbols 
{ntj} where ntj ranges over the elements of M\ the empty symbol 1 is included 
among the symbols {at} as well as {Mj}. We use the symbols lj to denote 
t~lmjt. 

As Schreier representatives take the words {c^ra.,}. A corresponding right 
coset function is determined by the following assignments: (a^jk)* = aumv 

where a^jk = rqaumv, for k any i£-symbol; («jW/)* = aumv where atlj = 
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rQaumv; and (a^ra/"1)* = aumv where â Wy = rqaulv. It is not difficult to show 
that these assignments define a permutation representation of G acting on the 
chosen representatives {a^j}, and hence determine a subgroup H of elements 
of G which leave the representative 1 fixed. 

Clearly, H C\ K = R; for, the first of the three representative assignments 
holds when k is any element of K, and so if (&)* = aumv = 1 then k = rQ. 
This enables us to show that the Schreier system {onmj} has the required 
properties to apply Theorem 1. In particular, 1 is the HK double coset rep­
resentative, and {at} is a set of representatives for G mod (H, M). Therefore 
H is a treed HNN group with a single vertex K C\ H = R, the amalgamated 
and associated subgroups are aiMaf1 C\ H — aiMaf1 C\ R = 1; and its free 
part is generated by saitt

 = ait(ait)*~1 = attaf1. 

Let G contain a free subgroup F of rank r and finite index j . Then Wall's 
rational Euler characteristic x(£) (mentioned in the introduction) is given by 

x(G) = (1 - r)/j 

(this is obtained using Wall's formulas quoted and that the Euler character­
istic of an infinite cyclic group is 0). In particular, if G is finite, then x(G) = 
\G\-\ 

LEMMA 2. Let G be as in (1). Suppose that K contains a free subgroup R of 
finite indexy and that M is finite. Then the Wall characteristic of G is given by 

x(G) = X(K) - x(M) = X(K) - \M\-K 

Proof. Applying Lemma 1, we see that H of that Lemma is free and of finite 
index in G. Moreover, 

x(G) = (1 - rank H)/[K: (R, M)] • \M\, 

and rank H = rank R + [K: (R, M)]. Therefore 

x(G) = {1 - (ranki? + [K: (R, M)])}/[K: (R, M)} • \M\ 

= (1 - rank R)/[K:R] - [M'r1 

= X(G) - x(M). 

THEOREM 3. If G is a treed HNN group with vertices Ai, . . . , A r each of which 
is a finite extension of a free group, finite amalgamated subgroups Ui, . . . , Ur-i, 
and pairs of finite associated subgroups Llf Mi, . . . , Ln, Mn, then Wall's char­
acteristic x(G) is given by 

(4) x(G) = X(A1) + . . . + x(AT) - \Ut\~
l - . . . - lE/r-il"1 ~ 

- lAfih1 - . . . - \Mn\~\ 

Proof. The proof of (4) is clearly obtained by using Lemma 2, and Stalling's 
formula quoted in the introduction. 

We generalize Wall's characteristic as follows: 
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Definition. Let *$ be a class of groups closed under taking subgroups of f.i. 
Then a characteristic % defined on ^ is a real-valued function defined on c~€ 
such t h a t if G is in ^ and G:H = j , then x(H) = i * x(G). 

In addit ion to the il lustrations of characterist ics mentioned in the intro­
duction we give the following: 

1. Let ? i b e a class of groups with a characterist ic xi defined on it. Let *$ 
be the class of all groups which contain a subgroup of f.i. which lies in ^?i. 
If G is in fé7, and G:C = p where C is in ^ i , define x(G) = Xi(C)/p. Clearly 
if G'.D = g where £> is in # \ , and C/C H D = c, D/C C\ D = d, then 

xi(Q/p = Xi(cnD)/cp = Xi(cnD)/dq = XiP)/g, 
so tha t x(G) is well-defined. Moreover, if G : i7 = j , and H:E = r where £ is 
in ^ i , then x ( f f ) = Xi(E)/r = j • xi(E)/jr = j • x (G) . 

2. Let ^ be the class of subgroups of f.i. of a fixed group G. T h e n a necessary 
and sufficient condition for a non-zero characterist ic to be definable on ^f is 
t h a t isomorphic subgroups of f.i. in G have the same index in G. Indeed, if 
ffi~iJ2, G:ff i = j i , G:tf2 = j 2 , and X (G) ^ 0, then x ( i ? i ) = j i • x(G) = 
x( i^ 2 ) = J2 ' x(G), so t h a t j i = j 2 . Conversely, define x(G) = 1, x ( # ) = j 
when G:H = 7; then x(G) is a well-defined characterist ic. 

Our last example of a characterist ic makes use of Theorem 1 and the sub­
group theorem of [3]. 

T H E O R E M 4. Suppose fêi is a class of f.g. groups with a characteristic xi 
defined on *$\ and such that each group in ^ \ contains a torsion-free non-cyclic 
indecomposable (with respect to free product) subgroup of finite index. Let ^€ be 
the class of treed H N N groups with f.g. free part, finitely many vertices each in ^ 1 , 
and finite amalgamated and associated subgroups. Suppose G is in %f, and has a 
presentation as a treed H N N group with vertices A\, . . . , A r in ^ 1, amalgamated 
subgroups U\, . . . , Ur-i, and pairs of associated subgroups Lu M\, . . . , Ln, Mn. 
If we set 

x(G) = X(A1) + . . . + x(Ar) - \U1\-1 - . . . - I t / r - i h 1 

- \M,\-' - . . . - \M„\-K 

then x defines a characteristic on the class ^f. 

Proof. We first observe t h a t the class *$ is closed under forming treed H N N 
groups with vertices from ^ , using finite amalgamated and associated sub­
groups (for an argument , see the proof of Theorem 1 of [2]). 

Next we recall (see [3]) t h a t a subgroup H of (A * B; U) is a treed H N N 
group with vertices cAc~l C\ H, dBd~x P\ H where c} d range over double 
coset representat ive systems for G mod (H, A ) and G mod (H, B), respectively; 
moreover, the amalgamated and associated subgroups are of the form eUe~l P\ 
H where e ranges over a double coset representat ive system for G mod (H} U). 
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It follows from Corollary 2 of Theorem 1 that ^ is closed under taking sub­
groups of f.i. We now show that if G'.H = j , then for each presentation of G 
as a treed HNN group in fé7, H has a presentation as a treed HNN group in ^ 
for which x(H) = j ' x(G). Indeed, suppose that this assertion holds for A, 
B in &, and consider G = (A * B; U), U finite. Now cAc~l'.cAc~x P H = j c 

is the number of H cosets in HcA. Hence cAc~l P H has a treed HNN presen­
tation in ^ such that x(cAc~l C\ H) = j c • x(cAc~l) = j c • x(A). Similarly, if 

j d = dBd~l:dBd~l P H, and j e = eUe-l'.eUe~l P # , then 

o d e 

= j[x(A) + X(B) - \U\~-1] 

= j-x(P). 
Similarly, if the assertion of the preceding paragraph holds for K in c€, and 

G is as in (1) with M finite, and G'.H = j , then H is a treed HNN group with 
vertices fKj~l C\ H where / ranges over a representative system for G mod 
(H, K); moreover the amalgamated and associated subgroups are of the form 
gMg~l Pi H where g ranges over a coset representative system for G mod 
(H, M). If j , = fKf-i:fKf-i P H, and jff = gMg~':gMg^ P H, then 

x(H)= YsJfxiK)- T.J9'\M\~l 

f Q 

= J.[X(K)- iMr1] 

= j-x(G). 
Finally, we show that x is well-defined on the class fë. Clearly, the only 

ambiguity in the definition of x(£) is that G may be presentable in several 
ways as a treed HNN group in ^. Now an element G\ of ^\ cannot be written 
in a non-trivial way as a treed HNN group with finite amalgamated and 
associated subgroups; for otherwise, Gi would have two or infinitely many 
ends (see Stallings [13]), so that any torsion free subgroup of finite index would 
have two or infinitely many ends and would therefore be infinite cyclic or a 
proper free product (see Stallings [13]), contrary to hypothesis. Hence x is 
well-defined on the elements of ^ i . Consider any torsion-free group T in ^ \ 
Now T has a unique representation as a treed HNN group in fé7, namely, as a 
free product of a free group and groups from féY Using the uniqueness of 
representation of a f.g. group as a free product of indecomposable groups, it 
follows that x(T) is well-defined. Lastly, a group G in ^ has a torsion free 
subgroup T of f.i., say p (by Stallings [14] and Lemma 1 above), and so 
x(G) = x(T)/p, so that x(G) is well-defined. 

COROLLARY. Let G be as described in Theorem 4, and G'.H = j . Suppose that 
H has a presentation as a treed HNN group with vertices B1} . . . , Bs, amalga­
mated subgroups Vi, . . . ,Vs-i, and pairs of associated subgroups Px, Qi, . . . , Pm, 
Qm. Then 

xi(Si) + . . • + xi(B.) = j(xMi) + ... + xi(Ar)), 
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and 

I Kih1 + . . . + | V-il-i + IQih1 + . . . + \Qtn\~1 = 

Proof. Since xi can be replaced by %2 = 2xi and the assertion of Theorem 4 
will still hold, the result follows. 

As an illustration of Theorem 4, let *£\ be the class of Fuchsian groups de­
scribed in the introduction, and let xi De the characteristic mentioned there. 
Then it is well-known that each group G in *$ x is a finite extension of a torsion-
free non-cyclic indecomposable subgroup G\ of the form 

Gi = (tti, bu . . . , ag, bg; Tl[au ft J ) , g ^ 0. 

The resulting class & includes Kleinian function groups (see [6]). 
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