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H($) SPACES

BY
W. DEEB AND M. MARZUQ

ABSTRACT. Let ¢ be a non-decreasing continuous subadditive function
defined on [0, %) and satisfy ¥(x) = 0 if and only if x = 0. The space H ()
is defined as the set of analytic functions in the unit disk which satisfy

sup f b (freM]) do < <,

O=r<i

and the space H* () is the space of all f € H () for which

sup f d:(lf(re"')l)deAf ¥ (1£®)]) do

O=r<1 70
where £(8) = lim f(re"") almost everywhere.

rti
In this paper we study the H({s) spaces and characterize the continuous
linear functionals on H™* ().

Introduction. Let ¢ be a real-valued function defined on [0, ) satisfying the
following:

1. ¢ is increasing,

2. &(x + y) = d(x) + d(y) for all x,y in [0, ),

3. &(x) = 0 if and only if x = 0 and

4. ¢ is continuous at zero (from the right).

Such a function is called a modulus function; some examples of modulus functions

¢
1+ ¢

Let H(A) denote the space of analytic functions in the unit disc A = {z € C:
|z] < 1} and let

are x*, 0 < p =1, log (1 + x), in fact if ¢ is modulus then so is

1 2m ,
H) = {r:reHB) and swp 2= [Tl remds < o)
0sr<| 2T 0
where ¢ is a modulus function. We define a distance function on H(¢) by

1 2m ) .
f = glo= sup o~ f b(f(re®) = g(re®)) do.
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If we take d(x) = x, 0 < p = 1, then H(d) = H" and if ¢(x) = log (1 + x), then
H(¢) = N, see [6] for definition. We will use |f|, to denote

Lo .
sup 5= | ol ) do.

0=r<l 2

DEFINITION. A modulus function ¢ is called strongly modulus if it satisfies:
1) j ﬂf—) dx < o,
X

2) lim &

- logx

> 0 and

3) &(|f]) is subharmonic for all f € H(A).

Examples of strongly modulus functions are x”, 0 < p < 1, and log (1 + x). We define

+ 1 o i0 — 1 o i0
@) = (€ H®): sop 5= | adlsre) o = 3= [ Todl e hao

02,21 2m
where
f(ey = lim f(re®).
In this paper we study some basic proI;;rlties of H(¢) spaces and give an example
of a modulus function ¢ such that H((f)) CHforallp,0<p<l1butH'C H($).

We also characterize the continuous linear functionals on H () for ¢ strongﬁy mod-
ulus, a result which could be considered a generalization of the one given in [5] and

[6].
1. Basic properties of H(db):
LEMMA 1. If & is a modulus function, then H' C H().

PROOF. &(x) = &([x] + 1) = ([x] + Dd(1), s0if x > 1, then d(x) = 2xd(1), and
if x = 1, then d(x) = d(1).
Now let f € H', and for any 0 < r < 1, let

A, ={0:|f(re™)| = 1},
B, =1{6: |f(re“’)| > 1},
Then

[Todlsrenydo = [ a(lre o + [ olsren|as
0 A, B,

< 2md(1) + 24(1) L | f(re®) | do

= 2md(1) + 24(1) f:ﬂlf(re"")lde < oo,

since f € H'. Hence f € H(d).
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lim ¢ (x) (x)
X

THEOREM 1. [f —— S

a > 0 then H(d) =

PROOF. The condition implies that there exists M > 0 such that ¢(x) > ax in [M, ).
Let f € H(d) and consider for 0 < r < 1, A, = {0:|f(re®)|< M}, B, =
{0 :]| f(re®)| = M}, then

f:“lf(reie)ld()SL,MdG-l-éL ¢<|f(r€i9)|>d6

r

1
= + =
2nM 0L]f|d,,

hence f € H'. Using Lemma 1 we conclude that H($) = H

REMARK: It is clear that if ¢ is bounded then H () = H(A).

LEMMA 2. Let & be a modulus, then

1 0

0 ZEH((b)ifandonlyiff ———d)(zx)dx<oo
- Iox

PROOF. Suppose 1/(1 —z) € H(¢) and let z = re', then

[1—z|* = (1 = rcos 0)> + r’ sin’0
92
=1- +rr=1- (——+—+ >+2
1 —2rcos® + r? 2r(1 > T r
= - r)?+ 6% 0=6=m.
Let & be a (small) positive number and let r, be such that 0 < 1 — ry < 3, then for
z=re'* withm = 0> 8 and r > r, we have

1= (5
_ 2« 2 | > _
|1 —z|* = 267, hencecb’l_z]_cb 5e)

but

—I—EH(¢),sof¢( )de<M for all & > 0.
1—2 20

|
Set x = 2_6 then

1/25
f ¢(x)d <M foralld>0
I x?

SO

dx < o,

J d)(X)
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Conversely' suppose that [[“d (x)/x? dx < o, as it was shown in [5] |1 — z|* = 0?/4
fors=<r <1and 0 <0 = d (where 3 is sufficiently small). To show that 1/1 — z €
H(d), it is enough to show that [’ |1/(1 —re®)| d6 < M for all r > 1. But for 0 <

0 < & we have
e<f () e<2f 4’(") x <M
2/ x°

o=
0¢ 1 — re®

hence 1/1 — z € H(J).

From Lemmas 1 and 2 we get

THEOREM 2. If & is a modulus and dx < o, then H' C H(d).

j b (x) (X)
REMARK. We believe that [["d (x)/x? dx < « is a necessary and sufficient condition
for H' C H(¢).
*

We now give an example of a modulus function & such that H($) # H' and H (&))
CH forall 0 <p < 1.
“Letp,=n/n+ 1,n=1, 2,.... Define $(x) on [0,) by

\/)_c, 0=x=4
&)(x) = { xPn, 2MtD < x < 20Dt n even
yn(x)’ 2n(n+l) < x = 2(I1+I) (n + 2); n Odd
where y, (x) represents the line segments joining the points (27 * D 20 = D+ Dy

(2 * Dt D gn e+ Dy Using elementary computations one can show that ¢ is a
modulus. To show that H(@)) C H" for all p, 0 < p < 1, choose n such that
*

n
n+1

p< = D, then H”» C H?
*

and since x” < & (x) for all x > 2" "+ one can obtain by an argument similar to
the one given in Lemma 1, that H($) C H” C H”. Consider now [~ d(x)/x? dx, it
is clear that

J ¢(;C) Z J ¢(x)
! X n =20
where [, = [0,27], £, = [27 " " 1, 20" * Do+ 2]y

fcb(x)d <f Sdx=(n+ 1)[ 2"1+2],

hence J d)(;v) dx < , s0 by Theorem 2 we get H' C H().
1 X #
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LEMMA 3. Let & be strictly increasing modulus function such that &(| f|) is sub-
harmonic for all f € H(A), then | f(z)| = &' (4| flo/1 — r) forall z = re® € A.

PrOOF. Since ¢ (| f]) is subharmonic in |z| < p and continuous in |z| = p where 0
< p < 1, and since plurisubharmonic is a subharmonic in one variable, then by Lemma
1 in [3] we get

2w 2 _ lz I

(10D = o [ o oy ao
C 2wy | |? P '

pet — z
Hence if z = re™, at p = (1 + r)/2 we obtain

41 fls

Il —r

(| f)]) =

’

hence

[l = o (Hde),

LEMMA 4. If & is a modulus function which satisfies im,_,. (d(x))/(log x) >
0 and &(| f|) is subharmonic for every f € H(A), then lim, _, | f(re'®) exists almost
everywhere and | f|, = lim, _ - 1/27 [Tb(] f(re))|) db.

PROOF. An argument similar to the one given in Lemma 1 yields that

2m
sup —]—J log" (| f(re™)|) do < =,
0

0=r<1 2T

hence f € N, so f has a radial limit a.e.[2]. Now & (| f|) is subharmonic for each f €
H(A) so

] 2m ;
ZT‘L ([ f(re™]) db

is an increasing function of r, r € [0, 1) so

0=r<1

l 27 X . l 2m i
WP 2w ), d>(|f(re'“)|>de:}’i“,%£ b([f(re™)]) ab,

and that proves the lemma.

If ¢ is modulus such that &(| f|) is subharmonic for all f € H(A) then H* ()
becomes the subspace of H(¢d) which consists of all f such that

1. szn (l ( iﬂ)l)de_il[z" | lel)de

For &(x) = x”, H' (¢) = H" [2] and for &(x) = log (1 + x), H(d) = N and H* ()
= N"*[6].
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THEOREM 3. If & is strictly increasing modulus function which satisfies & (] f|) is
subharmonic for every f € H(A) and lim, .. (¢ (x))/(log x)) > 0, then (H " (d),]]s)
is an F-space over C.

PrOOF. To show that the space is complete. Let {f,} be a Cauchy sequence in H (),
then by Lemma 3 we have for any compact set K

i) = fu @ =& ( ‘f"l fale )
-r
forallz € K C {w € C: |w| < r}, this shows that {,} is a Cauchy sequence in H(A),
hence it converges uniformly on compact subsets of A to a function f € H(A). We need
to show that f € H(), and f, converges to fin H(d). Since f, converges uniformly on
compact sets, then & (| £, |) converges uniformly on compact sets to & (| f|). Since for
all » < 1 we have {z € C:|z| = r} is compact in A so

2m 2m 2
&(| f(re®])do = lim J’ O] fu(re®)])dd = lim f b £, (e™)])do =M,
0 n— xJ0 n— = Jg

the inequality before the last is because of Lemma 4 and the last one is because {f,}
is a Cauchy sequence in H(¢d). Now the rest of the proof is similar to the one given in
[6] for N*, one only needs to use properties of ¢ among which is the fact that d (| ax| )
= ([Ja|] + Dd (x) where [|a]|] is the largest integer in |a|.

2. Continuous linear functions on H* (¢). We now study the space of continuous
linear complex valued functionals on H ' (¢) which we will denote by (H ' (b))*. The
spaces (H")*, 0 < p < | were studied in [1,5] and (N")* in [6].

THEOREM 4. Let & be a strongly modulus function. Then T € (H (b))* if and only
if there exists g € H(A) such that

_.I fzﬂ (f 10) o ,— 0
I(fy= lim 5= f 0 ¢/ (pe™") db
where 0 < r <p < 1.

PrROOF. Let T € (H'(d))* and let b, = T(z*), k = 0,1,2,.... Now {z": k =
0,1,2,...} is a bounded set in H*($) and T is a continuous linear functional on
F-space, so T is bounded [4] and T(z*) (k = 0,1,2,...) is a bounded set, so the
function g(z) = =;_, b,z" is analytic in A. Let f(z) = 2, _, a,z" € H' ($), then for
r € (0, 1) put f,(z) = f(rz), f, converges to f in H' (&), the proof is exactly as in [6].

Now,

n *©

T(f,) = T(lim > akr"z‘) = lim 2 abr* = 2 ab,rt

=% k=0 =% k=0 k=0

1 2m
=5-) firoTleMg (pe ™y db.  0<r<p<L
0
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But f, — fin H"(¢) as r — 1, hence

T(f) = lim —f f(rp~' ey g(pe™™) db.
r—1 2

Conversely, suppose that

T(f) = lim 2— f(rp 'e")g(pe') db
r—1
exists for all f € H* ().
For each r € (0, 1) let

l 2m
T.(f) =5 ) frp~'e)g(pe') db.

Clearly T, € (H " (&))* for T, is linear and if f, converges to fin H  (¢), then by Lemma
3 f.converges to funiformly on compact subsets of A, hence T, (f,) converges to T,(f).
But lim,_, | T,(f) exists for all f € H " (), hence by the uniform boundedness principle
[4] it follows that T(f) = lim,_,, T,(f) is continuous.

REMARK. Although the topologies on H*(¢) and N are different in general we do
have the following:

COROLLARY. IfT € (N*)*, then T € (H'(d))*.
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