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Introduction

Trevor Evans in (8) introduced postulates for a non-associative number
theory similar to, but less general than, those of A. Robinson (9). Evans'
number theory is also non-commutative under addition and multiplication,
but an alternative equality axiom also suggested by Robinson leads to a number
theory which is commutative under addition and still non-associative except in
the special case:

a+ib+a) = (a+b)+a. (1)
In this paper we prove that the theorems in Evans' paper hold for the

commutative system and provide some interpretations based mainly on work
of Etherington (1-7).

Evans' and Robinson's systems
Evans' primitive terms are the set of non-associative numbers (" numbers "

in the axioms below) and the binary operation of addition. His axioms are
as follows:

(i) 1 is a number,

(ii) to every pair of numbers a, b there corresponds a third called the sum
of a and b and written a+b,

(iii) there are no numbers a, b such that a+b = 1,
(iv) if the numbers a, b and c, d are such that a+b = c+d, then a = c

and b = d,

(v) if a set of numbers contains 1, and if whenever it contains numbers
a, b then it contains a+b, then the set contains all numbers.

Robinson's axioms are equivalent except that he allows for a number of
elements that are (like 1) irreducible in the sense of (iii). Any realisation of
his axioms he calls a forest. (This suggests one of the interpretations to be
given later.) The set of irreducible elements is called the base of the forest
and the cardinal number of this set the order of the forest.

Evans' system is a forest of order 1 (which Robinson calls a simple forest),
the restriction to one irreducible element is also included in the induction
axiom (v).
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Robinson is able to prove a much more general induction axiom:

If the base of a forest F belongs to a subset F' of F, and if a e F', b e F'
implies {a+b) e F' then F' = F, as well as the theorem that forests of equal
order are isomorphic.

The altered system
We now look at Evans' theorems within what Robinson calls a simple

commutative forest. Axioms for this can be Evans' with (iv) replaced by:

(iv)' if a, b and c, d are numbers, then a+b = c+d if and only if a = c
and b = d or a = d and b = c.

This immediately leads to the commutative law.

Theorem A. a+b = b+afor all numbers a, b.

Also we obtain the cancellation laws for addition, which in Evans' system
were encompassed in postulate (iv).

Theorem B. If a+b = a+c then b = c.

If a + b = c+b then a = c.

Taking Evans' definition of multiplication f:

(i) a.\ = a, (ii) a.(b+c) = a.b + a.c,

a number of his theorems can be rewritten with only minor alterations to the
proofs. Using the first of these as well as Theorem A it can be shown that
(1) is the only form of the associative law that holds.

The numbering of the following theorems is exactly as in (8).

Theorem 1. For all numbers a, b, a + a+b.

Theorem 2. 1 .a = a for all numbers a.

Theorem 3. (ab)c = a(bc)for all numbers a, b, c.

The proofs of our counterparts of Evans' Theorems 4 and 5 rely on the
notion of length, as does the proof of Theorem 5 in (8).

The length of a number n is the positive integer obtained from n by regarding
+ in the expression for n as the addition of ordinary arithmetic. We denote
the length of n by | n \.

Theorem 4. If xa = ya then x = y.

Proof. If xa = ya clearly | x | = \y\.
If a = 1 the result holds; if a is not 1, a = aj+6, for some numbers at

and bt and so xa j+xi j = yai+ybi and either xat — yax and xb± = ybx

or xa-L = ybt and xbi = yay.

t Robinson also uses this definition and has identical Theorems 2 and 3.
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In the second case, since | x | = | y | we must have \ax\ = | bx | < | a \
and in either case we have, for some a2, b2, xa2 = yb2 with | a2 | = | b2 \ < | a |.

If a2 = 1 the theorem holds, if not let a2 = c2 + d2 and b2 — e2 +f2 so
that xc2+xd2 = ye2+yf2 and so either xc2 = ye2 and xd2 = yf2 or xc2 = j / 2

and x</2 = yfz-
Clearly in either case we have for some numbers a3 and b3, xa3 = yb3, with

\a3\ = \b3\<\a2\ = \b2\<\a\.
The number a must consist of a finite summation of l's so continuation

of this process must lead to x. 1 = y. 1, i.e. to x = y.
Theorem 5. If ax = ay then x = y.

Proof. This is similar to that of Theorem 4, this time x and y are broken
up into components when x 4= 1.

The number theory results in (8) such as the fundamental theorem of
arithmetic and Fermat's last theorem can now be reproduced using identical
definitions and only minor alterations in the proofs.

Also the results proved by Mine in (10) which extend those of Evans go
through. In particular:

Mine's Theorem 1. ab = ba if and only if a and b are powers of the same
number.

Thus this number theory which is commutative and generally not associative
under addition is associative and generally not commutative under multiplication.

Interpretations
In (2) Etherington allows a+b (ab in his notation) to stand for the offspring

of two individuals or populations. He states that this operation is in general
not associative, but can always be taken to be non-commutative. There is
more on the arithmetic of such systems in (4) and (6).

A well-known interpretation of non-commutative non-associative number
theory, the arithmetic of bifurcating root trees (Etherington (1), (3) and (5) and
Robinson (9)) represents Evans' system. The arithmetic becomes commutative
if we consider " trees in a breeze " (roughly, trees with all branches pointing
in the same direction).

A directly arithmetical example can be made up as follows: Define
aoJj = 2min(°'6> ynzx(a,b)

Clearly the operator ° is commutative but not associative and the set of numbers
generated by the definition from 1 satisfies rules (i), (ii), (iii), (iv)' and (v) (where
in each expression o replaces +).
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