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Chern Characters of Fourier Modules
Samuel G. Walters

Abstract. Let Aθ denote the rotation algebra—the universal C∗-algebra generated by unitaries U ,V satisfying
VU = e2πiθUV , where θ is a fixed real number. Let σ denote the Fourier automorphism of Aθ defined by
U �→ V , V �→ U−1, and let Bθ = Aθ �σ Z/4Z denote the associated C∗-crossed product. It is shown that
there is a canonical inclusion Z9 ↪→ K0(Bθ) for each θ given by nine canonical modules. The unbounded trace
functionals of Bθ (yielding the Chern characters here) are calculated to obtain the cyclic cohomology group
of order zero HC0(Bθ) when θ is irrational. The Chern characters of the nine modules—and more impor-
tantly, the Fourier module—are computed and shown to involve techniques from the theory of Jacobi’s theta
functions. Also derived are explicit equations connecting unbounded traces across strong Morita equivalence,
which turn out to be non-commutative extensions of certain theta function equations. These results provide
the basis for showing that for a dense Gδ set of values of θ one has K0(Bθ) ∼= Z9 and is generated by the nine
classes constructed here.

1 Introduction

Let θ be a real number and let Aθ denote the rotation C∗-algebra generated (universally)
by unitaries U and V such that VU = λUV , where λ = e2πiθ . Throughout, we shall write
A := Aθ and identify it with its canonical smooth dense ∗-subalgebra A∞θ coming from the
canonical action of the 2-torus. It is closed under the holomorphic functional calculus so
that modules over A are in one-to-one correspondence with those over A∞θ [6].

The objective of this paper is to study the Fourier automorphism σ of Aθ characterized
by the conditions

σ(U ) = V, σ(V ) = U−1

and its associated crossed product C∗-algebra B = A �σ Z4 (where Z4 = Z/4Z). When θ
is irrational, it is a simple C∗-algebra with a unique normalized trace and can be character-
ized as the unique C∗-algebra generated by unitaries U , V , W satisfying the commutation
relations

(1.1) VU = λUV, WUW−1 = V, WVW−1 = U−1, W 4 = I.

In fact, B has the cancellation property (θ irrational), which follows from [10, Proposi-
tion 6.2]. When θ is rational, B is the universal C∗-algebra generated by unitaries satisfying
(1.1). In this case, B has a canonical trace τι defined (relative to the generators U ,V ) by the
conditions

τι(1) = 1, τι(U mV n) = 0,

for (m, n) �= (0, 0).
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The Fourier automorphism is next in order of difficulty to the flip automorphism (U �→
U−1, V �→ V−1), which is the square of σ. The flip was the object of serious study in [1],
[3], [4], [5], [14], and [15]. As was demonstrated in [3, Section 4], [4, Section 5], [14], and
[15], techniques using unbounded traces of modules proved to be useful in studying the
structure of automorphisms and their associated crossed products.

In Section 2 the unbounded traces on B (the Chern characters) are computed and it is
shown that they form a 7-dimensional vector space. Together with the (unique) bounded
trace, one obtains, when θ is irrational, the zeroth cyclic cohomology group (defined in [7,
Chapter 3]):

HC0(Aθ �σ Z4) ∼= C8.

(See Theorem 2.3.) Six basic projections and three modules are constructed and their
Chern characters computed, via the natural pairing

K0(B)×HC0(B)→ C.

The three modules arise from the Fourier module F constructed in Section 3. (The author
is indebted to George Elliott for suggesting the use of the Fourier transform to construct
this module from the Heisenberg modules of Connes [6] and Rieffel [12].) The computa-
tion of the Chern characters for the Fourier module is long and takes up most of the paper
(see Sections 4 and 5). One of the goals of this paper lies in showing that this can be done
in the module picture by classical means as well as showing how Jacobi’s theta functions
emerge naturally in such a connection and help in the computation of these characters.
The results of this computation are summarized in the Chern character table at the end
of Section 2 (see Theorem 2.4). Further, obtained are explicit equations linking the un-
bounded traces themselves across strong Morita equivalence (see Theorems 4.2 and 5.2);
such equations generalize some of the many classical Jacobi equations relating theta func-
tions. More specifically, one uses Rieffel’s equation relating traces across strong Morita
equivalence given by

(1.2) T ′(〈 f , g〉
B ′

) = T(〈g, f 〉B ),

(see [11, Proposition 2.2]) where T and T ′ are traces on the strongly Morita equivalent
algebras B and B ′ = EndB(F), respectively, given by the equivalence B ′-B-bimodule struc-
ture of the Fourier module F. The equation (1.2) is worked out explicitly in our case and, in
fact, when looked at under a microscope (using probability density functions), it becomes
one of the many Jacobi identities relating theta functions. For instance, one such equation
is

1

4

(
ϑ3(s, u) + ϑ4(s, u)

)
·
(
ϑ3(t, u) + ϑ4(t, u)

)
= ϑ3(2t − 2s, 8u) · ϑ3(2t + 2s, 8u) + ϑ2(2t − 2s, 8u) · ϑ2(2t + 2s, 8u)

(see the equation (5.6) of Section 5), where the theta functions ϑ2, ϑ3, ϑ4 are recalled briefly
in the Appendix (Section 7) ∗. Incidently, Boca [2] has recently been able to use theta

∗For a good classic treatment of theta functions see [18, Chapter XXI].
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functions to construct projections of trace θ in the fixed point subalgebra of Aθ under the
Fourier automorphism.

The Chern character table (Section 2) shows that for any θ the nine classes constructed
here are independent in K0(B) and so yield an injection

Z9 ↪→ K0(Bθ).

The Fourier automorphism was studied by Farsi and Watling in [9] in the rational case
θ = p/q and its associated crossed product Bp/q = Ap/q � Z4 (as well as the fixed point
algebra) explicitly described as an algebra of continuous matrix-valued functions on the 2-
sphere with 3 singular points. (That is, at such points the functions commute with certain
projections.) In the same paper they showed that K0(Bp/q) ∼= Z9 and K1(Bp/q) = 0. Using
this it will also follow that the (numerical) Connes Chern character

T : K0(Bp/q)→ R × Z× C2 × R3,

which essentially consists of all the traces put together, is injective. (See Theorem 2.4.)
Using the results of the current paper, together with [16], it will turn out that the above
nine modules form a concrete basis for K0(Bp/q), and in fact one which is continuously
dependent on θ (from the point of view of the continuous field of C∗-algebras {Bθ}). In
[16], the author uses the results of the current paper and [9] to show that for a dense Gδ

set of the parameter θ (containing the rationals) one has K0(Bθ) ∼= Z9, and is generated by
the nine canonical modules given here (so, in particular, it holds for many irrationals). It is
also shown in [16] that one has K1(Bθ) = 0 for a dense Gδ .

2 Chern Characters and HC0

In this section we shall determine a basis for the vector space of all unbounded traces on
the crossed product B = Aθ �σ Z4, and show that it is 7-dimensional. The domains of
these traces will be the dense ∗-subalgebra A∞θ �σ Z4. (Throughout, B will be identified
with this smooth subalgebra.) We shall also summarize one of the main results of the paper
(Theorem 2.4), the proofs of which are given in later sections.

Definition If α is an automorphism of a C∗-algebra A, then a (not necessarily continuous)
linear functional φ defined on a dense α-invariant *-subalgebra A ′ of A is said to be α-
tracial (or is an α-trace) iff

φ(xy) = φ
(
α(y)x

)
,

∀x, y ∈ A ′. We will simply refer to φ as α∗-tracial if it is αk-tracial for some integer k.
Clearly, an α-tracial map is α-invariant (when A is unital). Therefore, this relation is

equivalent to φ(xy) = φ
(

yα−1(x)
)

. (In our case, A ′ will be the canonical smooth dense
subalgebra of the irrational rotation algebra with respect to the canonical generators U , V .)

Given a C∗-dynamical system (A,Γ, α), where Γ is a discrete commutative group (writ-
ten additively) acting on A, the crossed product A �α Γ contains canonical unitaries Wg

(for g ∈ Γ) defined by Wg(h) = δg,h and satisfy

αg(a) =WgaW ∗
g , WgWh =Wg+h, W ∗

g =W−g .
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In the present paper Γ = Z4.

Proposition 2.1 Let T be a trace functional defined on �1(Γ,A). For each t ∈ Γ define the
map ϕt on A by

ϕt (a) = T(aW−t ).

Then each ϕt is α-invariant and satisfies the equation

(∗) ϕt (ab) = ϕt

(
αt (b)a

)
∀a, b ∈ A. (That is, ϕt is αt -tracial).

Conversely, if {ϕt : t ∈ Γ} is a family of α-invariant maps on A such that ϕt satisfies (*),
then the functional T defined on �1(Γ,A) by

T
(∑

t∈Γ

atWt

)
=
∑
t∈Γ

ϕt (a−t )

is a trace.

Proof (⇒) If T is tracial, then T(aW−gbW−h) = T(bW−haW−g) becomes

ϕg+h

(
aα−g(b)

)
= ϕg+h

(
bα−h(a)

)
since Γ is commutative. Taking a = 1 and h = t − g in this equation shows that ϕt is
α-invariant for all t . So this equation can be written as

ϕg+h

(
αg(a)b

)
= ϕg+h

(
αh(b)a

)
,

and taking g = 0 shows that ϕh is an αh-trace.
(⇐) Conversely, suppose {ϕt : t ∈ Γ} are given with the desired property. From the

definition of T, one has T(aW−g) = ϕg(a). Thus,

T(aW−gbW−h) = T(aα−g(b)W−g−h)

= ϕg+h

(
aα−g(b)

)
= ϕg+h

(
α−h(a)α−g−h(b)

)
= ϕg+h

(
bα−h(a)

)
= T(bW−haW−g)

which completes the proof.
Consequently, if t0 ∈ Γ is fixed and φ is αt0 -tracial on A, then by letting

ϕt =

{
φ if t = −t0

0 otherwise
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then the family {ϕt : t ∈ Γ} satisfies the conditions of Proposition 2.1 so that φ induces
the trace functional T on �1(Γ,A) defined by

T
(∑

t∈Γ

atWt

)
= φ(a−t0 ).

For convenience, write Λ(n) = λn.
Now fix a matrix α =

[
a b
c d

]
∈ SL(2,Z) which implements a natural automorphism of

A = A
∞

θ . Thus, α(U ) = U aV b, α(V ) = U cV d. Let φ be α-tracial on A. Then

(2.1) φ(U mV nU pV q) = φ
(
α(U pV q)U mV n

)
,

and using

α(U pV q) = Λ
(

abp(p − 1)/2 + cdq(q− 1)/2 + bcpq
)
U ap+cqV bp+dq

equation (2.1) becomes

Λ(np)φ(U m+pV n+q) = Λ
(

abp(p − 1)/2 + cdq(q− 1)/2 + bcpq
)
· φ(U ap+cqV bp+dqU mV n)

= Λ
(

abp(p − 1)/2 + cdq(q− 1)/2 + bcpq + mbp + mdq
)

· φ(U ap+cq+mV bp+dq+n)

and so we have

φ(U m+pV n+q) = Λ
(

abp(p − 1)/2 + cdq(q− 1)/2 + bcpq + mbp + mdq− np
)

(2.2)

· φ(U ap+cq+mV bp+dq+n).

Upon replacing p by p −m and q by q− n equation (2.2) becomes

φ(U pV q) = Λ
(
ab(p −m)(p −m− 1)/2 + cd(q− n)(q− n− 1)/2(2.3)

+ bc(p −m)(q− n) + mb(p −m) + md(q− n)− n(p −m)
)

· φ(U a(p−m)+c(q−n)+mV b(p−m)+d(q−n)+n).

Now using the notation
G(m, n) = U mV n

which satisfy the relations

G(m, n)G(p, q) = Λ(np)G(m + p, n + q),

equation (2.3) can be re-written as

φ
(
G(p, q)

)
= Λ
(
ab(p −m)(p −m− 1)/2 + cd(q− n)(q− n− 1)/2 + bc(p −m)(q− n)

(2.4)

+ mb(p −m) + md(q− n)− n(p −m)
)
· φ
(

G
(
(p, q)α + (m, n)(I − α)

))
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Hence for a given pair (p, q) ∈ Z2, the other pairs that depend on it are exactly (p, q)α +
(m, n)(I−α) for variable integers m, n. In fact, the following defines an equivalence relation
on Z2: (p, q) ∼ (p ′, q ′) iff

(p ′, q ′) = (p, q)α + (m, n)(I − α),

for some (m, n) ∈ Z2. In fact, this is equivalent to saying that (p ′, q ′) − (p, q) ∈
Range(I − α).

The σ-Traces

Now let us apply this to the Fourier automorphism α = σ =
[

0 1
−1 0

]
so that I − σ =[

1 −1
1 1

]
. Thus a given (p, q) is equivalent to (p, q)σ + (m, n)(I − σ) = (−q + m + n,

p − m + n). Now we take n = q − m and m = [(p + q)/2] (the greatest integer function)
so that p + q − 2m = m ′ = 0, 1. Hence (p, q) is equivalent to (0, 0) or (0, 1), depending
on whether the parity of p + q is even or odd, respectively. This implies that a φ

(
G(p, q)

)
depends on φ

(
G(0,m ′)

)
= φ(V m ′) and that equation (2.4) becomes

φ(U pV q) = Λ
(
−(p −m)(q− n) + m(p −m)− n(p −m)

)
· φ(V m ′)(2.5)

= Λ
(
−(p −m)m + (m− n)(p −m)

)
· φ(V m ′)

= Λ
(
−(q−m)(p −m)

)
· φ
(
V p+q−2[(p+q)/2]

)
where m = [(p + q)/2]. Thus we have two independent σ-trace functionals, ψ10 and ψ11,
normalized as follows

ψ10(1) = 1, ψ10(V ) = 0, ψ11(1) = 0, ψ11(V ) = 1.

Using equation (2.5) one can obtain full equations for these functionals. So if x =∑
xpqU pV q is a smooth vector, then

ψ10(x) =
∑
p,q

xpqΛ
(
−(q−m)(p −m)

)
· ψ10

(
V p+q−2[(p+q)/2]

)

(here, m = [(p + q)/2]), which becomes

ψ10(x) =
∑
p,q

λ(p−q)2

(x2p,2q + x2p−1,2q−1).(2.6)

Proof Since ψ10(V ) = 0, (2.5) will be non-zero only when p + q is even, in which case
m = [(p + q)/2] = (p + q)/2 so (2.5) becomes

ψ10(U pV q) = Λ
(
−(q−m)(p −m)

)
= λ(p−q)2/4.

Thus if x =
∑

xpqU pV q is a smooth vector, then

ψ10(x) =
∑

p+q even

xpqλ
(p−q)2/4
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and since p + q is even we split the sum according to when p, q are both even or both odd

=
∑
p,q

x2p,2qλ
(2q−2p)2/4 +

∑
p,q

x2p−1,2q−1λ
(2q−2p)2/4

=
∑
p,q

λ(q−p)2

(x2p,2q + x2p−1,2q−1)

which gives (2.6).
Similarly, for ψ11 one gets

ψ11(x) =
∑
p,q

λ(q−p)(q−p+1)(x2p−1,2q + x2p−2,2q−1).(2.7)

At this point observe the following connection between ψ10 and ψ11. Let γ denote the
automorphism of A given by

γ(U ) = λ1/2U , γ(V ) = λ−1/2V.

One can easily check the following equation

ψ11(x) = ψ10

(
γ(xV )

)
,

using the relations

ψ10(U mV n) = λ(m−n)2/4δm,n, ψ11(U mV n) = λ[(m−n)2−1]/4δm,n+1,

where k is k reduced modulo 2 (so k = 0, 1). One also has

γ ◦ σ = Ad(U ) ◦ σ ◦ γ.

The σ2-Traces

Since σ2 is the flip automorphism, the σ2-traces are four in number and have already been
found in [3] and [14]. However, two of them are σ-invariant and the other two can be
added together to get one σ-invariant trace. So we shall end up with three σ-invariant
σ2-traces. From [14], they are given by

φi j(x) =
∑
m,n

λ−(2m−i)(2n− j)/2x2m−i,2n− j ,

where x =
∑

xpqU pV q and i, j = 0, 1. Or, for the generic vectors U mV n, one has

φi j(U
mV n) = λ−mn/2δi,mδ j,n.

It is easy to verify that φ00, φ11, and φ01 + φ10 are σ-invariant σ2-traces on A. So, adopt the
following notation for consistency:

ψ20 = φ00, ψ21 = φ11, ψ22 = φ01 + φ10.
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The σ3-Traces

The σ3-traces turn out not to yield new K-theoretical data which the σ-traces don’t already
provide. This is because there is a one-to-one correspondence between the two given as
follows. Given a σ-trace φ, the map

φ̃(x) = φ(x∗)

defines a σ3-trace. (And conversely.) To see this,

φ̃(xy) = φ(y∗x∗) = φ
(
σ(x∗)y∗

)
= φ
(
x∗σ3(y∗)

)
= φ
((
σ3(y)x

)∗)
= φ̃
(
σ3(y)x

)
.

Therefore, using the equations for the σ-traces, one easily obtains equations for the σ3-
traces and can summarize the results as follows. In fact, using the definitions of ψ30 and ψ31

given in the following proposition, one easily verifies that ψ30(x) = ψ10(x∗) and ψ31(x) =
ψ11(x∗).

Proposition 2.2 One has the following 7-dimensional basis of the vector space of all un-
bounded traces on the fixed point subalgebra Aσ . More specifically, {ψ10, ψ11} is a basis of
σ-traces on A, {ψ20, ψ21, ψ22} a basis of σ2-traces, and {ψ30, ψ31} a basis of σ3-traces, and
are given by




ψ10(x) =
∑
p,q

λ(p−q)2

(x2p,2q + x2p−1,2q−1)

ψ11(x) =
∑
p,q

λ(q−p)(q−p+1)(x2p−1,2q + x2p−2,2q−1)

ψ20(x) =
∑
m,n

λ−2mnx2m,2n

ψ21(x) =
∑
m,n

λ−(2m−1)(2n−1)/2x2m−1,2n−1

ψ22(x) =
∑
m,n

λ−m(2n−1)x2m,2n−1 + λ−(2m−1)nx2m−1,2n

ψ30(x) =
∑
p,q

λ−(p+q)2

(x2p,2q + x2p+1,2q−1)

ψ31(x) =
∑
p,q

λ−(p+q)(p+q−1)(x2p−1,2q + x2p,2q−1)

where x =
∑

xpqU pV q is in A.

One also has the relations

ψ10(U mV n) = λ(m−n)2/4δm,n ψ11(U mV n) = λ[(m−n)2−1]/4δm,n+1

ψ20(U mV n) = λ−mn/2δm,0δn,0 ψ21(U mV n) = λ−mn/2δm,1δn,1(2.8)

ψ22(U mV n) = λ−mn/2δm,n+1

ψ30(U mV n) = λ−(m+n)2/4δm,n ψ31(U mV n) = λ−[(m+n)2−1]/4δm,n+1.
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The unbounded traces Ti j on B = A �σ Z4 are now given by

Ti j(a0 + a1W + a2W 2 + a3W 3) = ψi j(a4−i),(2.9)

for i = 1, 2, 3 and j goes from 0 to ni , where n1 = 1, n2 = 2, n3 = 1. Therefore, using
Proposition 2.2, one obtains all the traces on B giving its cyclic cohomology group of order
zero.

Theorem 2.3 For any irrational θ, one has the cyclic cohomology group of order zero

HC0(Aθ �σ Z4) ∼= HC0(Aσ
θ ) ∼= C8.

The group on the left is generated by τι and Ti j , while the middle group is generated by τι and
ψi j (restricted to Aσ

θ ), where τι is the canonical bounded trace in each case.

Bracket Notation

It will ease notation and computation to write the ψ jk’s in terms of what we shall call
“bracket” functionals defined as follows. For fixed arbitrary integers ν, r, t , and real a,
c, let [ν, a, c; r, t] denote the linear functional defined by

[ν, a, c; r, t](x) =
∑
p,q

λν(p2+q2)−2pq+ap+cqx2p−r,2q−t

where x =
∑

p,q xp,qU pV q is a smooth vector. Here we adopt the convention that for real s

λs := e2πiθs.

The seven σ∗-traces in Proposition 2.2 can be written in terms of these functionals as fol-
lows:

ψ10 = [1, 0, 0; 0, 0] + [1, 0, 0; 1, 1]

ψ11 = [1,−1, 1; 1, 0] + [1,−1, 1; 2, 1]

ψ20 = [0, 0, 0; 0, 0]

ψ21 = λ
−1/2[0, 1, 1; 1, 1]

ψ22 = [0, 1, 0; 0, 1] + [0, 0, 1; 1, 0]

ψ30 = [−1, 0, 0; 0, 0] + [−1, 0, 0;−1, 1]

ψ31 = [−1, 1, 1; 1, 0] + [−1, 1, 1; 0, 1].

https://doi.org/10.4153/CJM-2000-028-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-028-9


642 Samuel G. Walters

Basic Projections

If S is any unitary of order four, consider its associated projections

p1(S) =
1

2
(1 + S2)

p2(S) =
1

2
+
(1 + i

4

)
S +
(1− i

4

)
S3

p3(S) =
1

4
(1 + S + S2 + S3).

In our case, it is easy to see that we have the order four unitaries

Smn = λ
(m+n)2/4U mV nW.

However, most of these are unitarily equivalent to each other (by a unitary of the form
U pV qW r). In fact one can show that Smn is unitarily equivalent to either S00 = W or to
S10 = λ

1/4UW . Thus, one gets the following six basic projections

p1(W ) =
1

2
(1 + W 2)

p2(W ) =
1

2
+
(1 + i

4

)
W +

(1− i

4

)
W 3

p3(W ) =
1

4
(1 + W + W 2 + W 3)

p1(λ1/4UW ) =
1

2
(1 + λ1/2UVW 2)

p2(λ1/4UW ) =
1

2
+
(1 + i

4

)
λ1/4UW +

(1− i

4

)
λ−1/4VW 3

p3(λ1/4UW ) =
1

4
(1 + λ1/4UW + λ1/2UVW 2 + λ−1/4VW 3).

By computing their Chern characters it will follow (see table below) that these projections
yield six independent classes in K0(B).

Second Order Chern Character

Now consider the unital *-embedding

Ψ : Bθ → M4(Aθ)

given by

Ψ(a0 + a1W + a2W 2 + a3W 3) = [σ−i(ai− j)]3
i, j=0 =




a0 a3 a2 a1

σ3(a1) σ3(a0) σ3(a3) σ3(a2)
σ2(a2) σ2(a1) σ2(a0) σ2(a3)
σ(a3) σ(a2) σ(a1) σ(a0)



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where i− j is reduced mod 4 and where a j ∈ Aθ. This shows that the range of the canonical
(normalized) trace on K0(Bθ) is contained in 1

4 (Z + Zθ). The Fourier module Fθ has trace
θ
4 , by Proposition 3.3 below, and since p3(W ) has trace 1

4 one obtains the equality

τι∗
(
K0(Bθ)

)
= 1

4 (Z + Zθ).

The embeddingΨ induces the map

Ψ∗ : K0(Bθ)→ K0(Aθ)

such that if e is a projection in a matrix algebra over Bθ, then one takes the class of Ψ(e) in
K0(Aθ). So, for example, the identity 1 of Bθ goes to the 4 × 4 identity matrix in M4(Aθ),
so that Ψ∗[1] = 4[1]′ in K0(Aθ). (For the sake of clarity, we shall write [e] ′ for classes in
K0(Aθ) and unprimed brackets [e] for classes in K0(Bθ).) Thus, it is not hard to obtain

Ψ∗[p1(W )] = Ψ∗[p1(λ1/4UW )] = 2[1]′

(†) Ψ∗[p2(W )] = Ψ∗[p2(λ1/4UW )] = 2[1]′

Ψ∗[p3(W )] = Ψ∗[p3(λ1/4UW )] = [1] ′.

(These are clear forΨ
(

p j(W )
)

since it is a scalar 4×4 matrix and one just looks at its rank;

for the three other projections one observes that the order four unitary W ′ = λ1/4UW
together with U ′ = λ1/2U , V ′ = λ−1/2V satisfy the same commutation relations (1.1) so,
under a suitable automorphism of Bθ, one gets the same result.)

Now recall Connes’ canonical cyclic 2-cocycle ϕwhich gives a non zero class in the cyclic
cohomology group HC2(Aθ) (for the smooth rotation algebra)

ϕ(x0, x1, x2) =
1

2πi
τι
(

x0
(
δ1(x1)δ2(x2)− δ2(x1)δ1(x2)

))

(see [7, III.2.β]) where δi are the canonical derivations of Aθ under the canonical action of
T2. It induces the canonical (second order) Chern character map

c1 : K0(Aθ)→ Z

given, using the cup product, as follows: if E is a projection in Mn(Aθ) then

c1(E) = (ϕ�Tr)(E, E, E)

where Tr is the usual (nonnormalized) trace on Mn(C) andϕ�Tr is the unique cyclic cocycle
such that

(ϕ�Tr)(x0 ⊗ a0, x1 ⊗ a1, x2 ⊗ a2) = ϕ(x0, x1, x2) · Tr(a0a1a2)
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where a j ∈ Mn(C) and x j ∈ Aθ. If e is a projection in Aθ, then

c1[e] = ϕ(e, e, e) = τι
(
e[δ1(e), δ2(e)]

)
.

As Connes showed in [6, p. 601], c1 has the property that if [e] ′ = m[1] ′+n[eθ] ′ (in K0(Aθ))
for some integers m, n, then c1[e] = −n. (The power of this group homomorphism is that
it picks out the “label” of a projection in an invariant way.) Although Connes assumed that
θ ∈ (0, 1) is irrational, this is not necessary so long as one uses the canonical trace on Aθ.
(Note that the computation in [6, p. 601] for c1(eθ) is off by a negative sign, a fact pointed
out by Elliott and which is used here.) The invariant that is of interest for our purposes is
the composition

C1 := c1 ◦Ψ∗ : K0(Bθ)→ Z.

For θ in (0, 1), the map C1 has the property that if [e] ∈ K0(Bθ) is such that Ψ∗[e] =
m[1] ′ + n[eθ] ′ (in K0(Aθ)), so that its trace in Bθ is 1

4 (m + nθ), then C1[e] = −n. This
follows immediately from the above since

C1[e] = c1(Ψ∗[e]) = c1(m[1] ′ + n[eθ]
′) = −n.

(In other words, one can write the trace of a projection as τι(e) = 1
4 (m−C1[e]θ).)

Therefore, the values of C1 on the nine classes are as follows. For j = 1, 2, 3 and S =W ,
λ1/4UW one has

C1[p j(S)] = 0,

which follows from (†). For the Fourier module Fθ constructed in section 3 (and whose
trace is θ

4 by Proposition 3.3 below) one has

C1[Fθ] = −1.

This clearly follows for θ irrational by the above property. For the rational case it can be
shown to follow from the construction of the Fourier module Fθ since, considered as an
Aθ-module, it is a Heisenberg module whose c1-character value is −1, as can be seen from
Connes’ computation [6; Theorem 7 and the following sentence].

All the traces and Chern character invariants can be put together to form the Connes
Chern character

T = (τι ,C1; T10,T11; T20,T21,T22)

where τι is the canonical (bounded) trace, C1 the canonical second order Chern character,
and T jk the unbounded traces. It defines a group homomorphism K0(B)→ R×Z×C2×R3.
(Note that unlike T1k, the traces T2k are real on self-adjoint elements.)
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The results for the Chern character values are as follows:
Chern Character Table

Projection τι C1 T10 λ1/4T11 T20 T21 T22

p1(W ) 1
2 0 0 0 1

2 0 0

p2(W ) 1
2 0 1−i

4 0 0 0 0

p3(W ) 1
4 0 1

4 0 1
4 0 0

p1(λ1/4UW ) 1
2 0 0 0 0 1

2 0

p2(λ1/4UW ) 1
2 0 0 1−i

4 0 0 0

p3(λ1/4UW ) 1
4 0 0 1

4 0 1
4 0

F θ
4 −1 1+i

8
1+i

8
1
8

1
8

1
4

F(i) θ
4 −1 i−1

8
i−1

8 − 1
8 − 1

8 − 1
4

F(−1) θ
4 −1 − 1+i

8 − 1+i
8

1
8

1
8

1
4

The values in this table for the first six projections are easily verified using (2.8) and (2.9).
(Their C1 values having just been found above.) The last three rows give the values for the
Fourier module F := Fθ and its transforms, F(i) and F(−1), under the dual automor-
phism σ̂ (which fixes U and V and sends W to iW ); its unbounded traces are computed
in Sections 4 and 5. The fact that C1 of F,F(i), and F(−1) are all equal holds since they
are all related by the automorphism σ̂ which is the identity on Aθ and hence induces the
identity on K0(Aθ).

Remark 1 Given a B-module E, the dual automorphism σ̂ induces another B-module
structure on E where the new action of W on a vector ξ is given by iξW . This new module
is here denoted by E(i) (as in the above table). It is not hard to see that

T1k

(
[E(i)]

)
= iT1k([E]), and T2k

(
[E(i)]

)
= −T2k([E])

which explains how the Ti j values of the modules F(i) and F(−1) in the table were obtained
from those of F.

It will be shown in this paper that this table is valid for all real θ ∈ (0, 1]. It is now
straightforward to check that the above nine vectors are independent over the integers (for
any θ), thus showing that there is an injection

Z9 → K0(Bθ).

In [16] it will be shown that the nine modules form a basis for K0(Bθ) in the rational case,
an important fact used in showing that they form a basis for K0(Bθ) for a dense Gδ set of the
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parameter θ. Therefore, it will follow that the above injection is actually an isomorphism

K0(Bθ) ∼= Z9

for at least many irrationals.
The main result can now be stated as follows.

Theorem 2.4 For any θ in (0, 1], there exists an injection

Z9 → K0(Aθ �σ Z4)

implemented by the nine classes given in the table. When θ = p/q is rational the Connes
Chern character

T : K0(Bp/q)→ R × Z× C2 × R3

is injective.

The injectivity in the rational case follows from the fact that the nine classes (and their
T-images) are independent and K0(Bp/q) ∼= Z9 (see [9]).

Remark 2 The first six projections in the table are clearly given by continuous projection-
valued sections of the field of C∗-algebras {Bθ : θ ∈ [0, 1]}. The Fourier modules Fθ
(and the other two), as a function of the parameter θ, can also be shown to be part of a
continuous section of the field (or of a matrix algebra over the field) and this is shown in
[16]. More specifically, if Γ is the C∗-algebra of continuous sections of the field, then there
is positive class ξ ∈ K0(Γ) such that Fθ is its image under the evaluation map

evθ∗ : K0(Γ)→ K0(Bθ).

3 The Fourier Module

The Heisenberg Module

Let S(R) denote the Schwartz space of rapidly decreasing smooth functions on the reals.
The Fourier transform of a function ξ ∈ S(R) is defined by

ξ̂(t) =

∫ ∞
−∞

ξ(s)e(−st) ds

where for convenience we shall write e(t) := e2πit . It maps S(R) bijectively onto itself [13,
Theorem 7.7] and defines a unitary operator on L2(R). We will use the Fourier transform
to turn the Heisenberg right Aθ-module S(R) (constructed by Connes [6] and Rieffel [12])
into a right B-module, where B = Aθ �σ Z4. The Heisenberg module is defined for any θ ∈
(0, 1] and is in fact an equivalence bimodule under suitable inner products [12, Section 1].
This will be recalled below in detail.

First, recall that the right actions of the unitaries U ,V (generating Aθ) can be repre-
sented by

(ξV )(t) = e(t)ξ(t), (ξU )(t) = ξ(t + θ),
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where ξ ∈ S(R). They satisfy VU = λUV , where λ = e(θ). From [12, p. 289], recall that
CA := EndA

(
S(R)
)
∼= Aβ , where β = θ−1. The algebra Aβ is generated by unitaries U1,V1

such that V1U1 = µU1V1 where µ = e(β), and can be realized as operators on S(R) by the
left actions

V1(ξ)(t) = e(−t/θ)ξ(t), U1(ξ)(t) = ξ(t + 1).

The module S(R) becomes an equivalence CA-A bimodule [12, Theorem 1.1] with CA-
valued and A-valued inner products given by

〈ξ, η〉A =
∑
m,n

〈ξ, η〉A (m, n) ·U mV n,

where

〈ξ, η〉A (m, n) = θ

∫ ∞
−∞

ξ(t + mθ)η(t)e(−nt) dt,

and
〈ξ, η〉CA

=
∑
m,n

〈ξ, η〉CA
(m, n) ·U m

1 V n
1 ,

where

〈ξ, η〉CA
(m, n) =

∫ ∞
−∞

ξ(t −m)η(t)e(nt/θ) dt.

The last of these follows from the equation τι(〈ξ, η〉CA
) = 〈ξ, η〉

L2(R)
[12, Lemma 1.6] where

τι is the normalized trace on CA = Aβ , and the first inner product follows from Lemma 1.5
of [12]. Below, this bimodule is extended to an equivalence Aσ

β-B bimodule.

The Fourier Module

To extend the Heisenberg bimodule, define the right action of W on S(R) by

(ξW )(t) =
1
√
θ
ξ̂(−t/θ),

where ξ̂ is the Fourier transform of ξ. It is straightforward to verify that the relations in
(1.1) are satisfied. It is easily checked that (ξW 2)(t) = ξ(−t), which corresponds to the
flip automorphism, and that (ξW ∗)(t) = 1√

θ
ξ̂(t/θ). We shall denote this right B-module

by F = Fθ. In Proposition 3.2 it is verified that it is projective and yields an equivalence
bimodule.

Let CB = EndB

(
S(R)
)

. One clearly has an injection CB ↪→ CA
∼= Aβ . It is natural to

expect that CB turns out to be the fixed point subalgebra of Aβ under the Fourier automor-
phism on it. In fact, this can be realized as follows.

Let us also denote by σ the Fourier automorphism of Aβ , so that

σ(U1) = V1, σ(V1) = U−1
1 .

Proposition 3.1 We have a C∗-isomorphism CB
∼= Aσ

β .
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Proof A simple computation shows that if L ∈ CB, say

L =
∑
m,n

cm,nU m
1 V n

1 ,

where {cm,n} is rapidly decreasing, then the condition L(ξW ) = L(ξ)W implies that the
coefficients cm,n satisfy cm,n = cn,−mµ

mn, which exactly says that L is in the fixed point
subalgebra of Aβ under the Fourier automorphism σ. By symmetry, the converse follows.

Next, define a B-valued inner product 〈 , 〉B by symmetrization with respect to W ,

〈ξ, η〉B =
3∑

i=0

〈ξ, ηW−i〉AW i.

Also, define the CB-valued inner product as follows. For ξ, η ∈ S(R), let 〈ξ, η〉CB
denote the

operator on S(R) given by
〈ξ, η〉CB

(ζ) = ξ〈η, ζ〉B .

It can be easily expressed in terms of the CA-valued inner product by

〈ξ, η〉CB
=

3∑
i=0

σi(〈ξ, η〉CA
).

Proposition 3.2 The space S(R) is a projective right Hilbert B-module under the B-valued
inner product 〈 , 〉B and a left Hilbert CB-module under 〈 , 〉CB

. This turns the Fourier module
F into an equivalence CB-B bimodule.

Proof Given the exact diagram of B-modules

N�ϕ
M

π
−−−−→ S(R) −−−−→ 0

then, considered as an A-module diagram, the map ϕ lifts to an A-linear map ϕ ′ : N → M
such that πϕ ′ = ϕ. Then the map

ϕ ′′(x) =
1

4

∑
i

ϕ ′(xW−i)W i,

is B-linear and satisfies πϕ ′′ = ϕ, as required. The rest is straightforward.
As in [12, p. 291] choose vectors f1, . . . , fn ∈ S(R) (as a CA-A-bimodule, where CA

∼=
Aβ) such that

n∑
k=1

〈 fk, fk〉CA
= 1CA .
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Letting gk =
1
2 fk, one gets

n∑
k=1

〈gk, gk〉CB
= 1CB .

To see this, apply the sum to any vector ξ ∈ S(R):

∑
k

〈gk, gk〉CB
(ξ) =

∑
k

gk〈gk, ξ〉B

=
∑

k

gk

(∑
j

〈gk, ξW
− j〉AW j

)

=
∑

j,k

gk〈gk, ξW
− j〉AW j

=
∑

j,k

〈gk, gk〉CA
(ξW− j)W j

=
1

4

∑
j

(∑
k

〈 fk, fk〉CA

)
(ξW− j)W j

=
1

4

∑
j

(ξW− j)W j

= ξ.

This shows that the B-module F is represented by the n× n matrix projection

e = [〈g j , gk〉B ] ∈ Mn(B).

Proposition 3.3 For the Fourier module F one has

(τιB)∗[F] =
1

4
θ,

where [F] ∈ K0(B) and τιB is the canonical trace of B.

Proof Follows easily as in the proof in [12, p. 291].
As this takes care of the (bounded) trace of the Fourier module, we now turn our atten-

tion to finding its unbounded traces and prepare a program for doing so. This is done in
the remainder of this section.

Remark A close examination of the proofs of Propositions 2.1 and 2.2 of [11] shows that
they still hold if the C∗-algebras there are replaced by dense *-subalgebras closed under the
holomorphic functional calculus (and containing the identities of the C∗-algebras). (All the
unbounded traces here are finite on these dense subalgebras.) Modules over such smooth
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subalgebras are in one-to-one correspondence with the modules over the underlying C∗-
algebra (in view of Lemma 1 of [6]). This smooth version of Rieffel’s result (particularly his
Proposition 2.2) will be used freely below. For convenience, we quote his result as follows.

Proposition 3.4 ([11, Proposition 2.2]) Let C and D be C∗-algebras with identity ele-
ments, and let X be a C-D-equivalence bimodule. Then there is a bijection between the (non-
normalized) finite traces on C and those on D, under which to a trace τι on C there is associated
a trace τι ′ on D such that

τι ′(〈x, y〉D ) = τι(〈y, x〉C )

for all x, y ∈ X.

In the next result we show that σ∗-traces on A are related to those on Aβ in essentially
the same way as ordinary traces are related by Proposition 3.4.

Proposition 3.5 Fix r. For each σr-trace φ on A (= Aθ), there is a uniquely associated σ4−r-
trace φ ′ on CA (∼= Aβ) such that

φ ′(〈 f , g〉CA
) = φ(〈g, fW r〉A ).

Proof The map φ naturally defines a trace map φ̃ on B by setting

φ̃
(∑

a jW
j
)
= φ(a4−r).

By Proposition 3.4 there is a unique trace φ̃ ′ on CB such that

φ̃ ′(〈 f , g〉CB
) = φ̃(〈g, f 〉B ) = φ(〈g, fW−(4−r)〉A ).

Now we can extend φ̃ ′ to a map φ ′ on Aβ simply by symmetrizing,

φ ′(x) = φ̃ ′
( 3∑

j=0

σ j(x)
)
,

where here “σ” is the Fourier automorphism of Aβ . It is clear that φ ′ is σ-invariant and

φ ′(〈 f , g〉CA
) = φ(〈g, fW−(4−r)〉A ) = φ(〈g, fW r〉A ).

To see this, one has

φ ′(〈 f , g〉CA
) = φ̃ ′

( 3∑
j=0

σ j(〈 f , g〉CA
)
)
= φ̃ ′(〈 f , g〉CB

) = φ̃(〈g, f 〉B ) = φ(〈g, fW−(4−r)〉A ).

To show that φ ′ is σ4−r-tracial, i.e.

φ ′(ab) = φ ′
(
σ4−r(b)a

)
,
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it suffices to assume that a and b have the form a = 〈 f , g〉CA
and b = 〈h, k〉CA

, since these
elements span CA. We have

φ ′(〈 f , g〉CA
· 〈h, k〉CA

) = φ ′
(
〈〈 f , g〉CA (h), k〉CA

)
= φ ′
(
〈 f 〈g, h〉A, k〉CA

)
= φ
(
〈k, f 〈g, h〉AW r〉A

)
= φ
(
〈k, f W rσ−r(〈g, h〉A)〉A

)
= φ
(
〈k, f W r〉A · σ

−r(〈g, h〉A )
)

= φ
(
σr(〈k, f W r〉A ) · 〈g, h〉A

)
= φ(〈g, h〉A · 〈k, fW r〉A )

= φ
(
〈g, h〈k, fW r〉A〉A

)
= φ ′
(
〈h〈k, f W r〉AW−r, g〉CA

)
= φ ′
(
〈hW−rσr(〈k, f W r〉A), g〉CA

)
= φ ′
(
〈hW−r〈kW−r, f 〉A, g〉CA

)
= φ ′
(
〈〈hW−r, kW−r〉CA ( f ), g〉CA

)
= φ ′(〈hW−r, kW−r〉CA

· 〈 f , g〉CA
)

= φ ′
(
σ4−r(〈h, k〉CA

) · 〈 f , g〉CA

)

Our next objective is to compute the unbounded trace functionals Ti j on F. Recall that
these functionals are defined on B by (2.9). Proposition 3.5 implements a unique σ4−i-trace
ψ ′i j on Aβ such that

ψi j(〈g, fW i〉A ) = ψ ′i j(〈 f , g〉CA
).

This gives

(Ti j)∗[F] = (Ti j )∗[e] =
∑

k

Ti j(〈gk, gk〉B )

=
∑

k

ψi j(〈gk, gkW
i〉A )

=
∑

k

ψ ′i j(〈gk, gk〉CA
)

=
1

4

∑
k

ψ ′i j(〈 fk, fk〉CA
)

=
1

4
ψ ′i j(1),
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where 1 = 1CB . We thus obtain the result:

Proposition 3.6 The unbounded traces of the Fourier module are given by

(Ti j )∗[F] =
1

4
ψ ′i j(1),

where ψ ′i j is the unique σ4−i-trace on Aβ associated with the σi -trace ψi j on A (according to
Proposition 3.5).

Clearly, our next goal is to findψ ′i j(1). To do this, we shall find explicit equations linking
the ψ ′i j with the analogues of ψi j on Aβ . Such a result will contain the values of ψ ′i j(1). (See
Theorems 4.2 and 5.2 below.) First, we need some notation.

Notation

Let ψ jk denote the σ j-traces on Aβ (relative to its generators U1 and V1 given in Section 3).
They are given by the same formulas as in Proposition 2.2, except where λ is to be replaced
by µ = e(β). Similarly, denote the bracket functionals on Aβ by [ν, a, c; r, t], so that one
can use these same formulas given for them in Section 2 (but with λ replaced by µ). Thus,

[ν, a, c; r, t] (x) =
∑
p,q

µν(p2+q2)−2pq+ap+cqx2p−r,2q−t ,

where x =
∑

p,q xp,qU p
1 V q

1 is a smooth vector in Aβ .

4 Computation of T2k([F])

In this section and the next we shall consider the Schwartz functions

fb,d(x) = e(bx) exp
(
−
π

θ
(x − d)2

)

of the real variable x, where b, d ∈ C. Its Fourier transform is easily checked to be

f̂b,d =
√
θe(bd) · e(−dx)e−πθ(x−b)2

where e(t) := e2πit . Hence

fb,dW = e(bd) f d
θ ,−bθ and fb,dW 2 = f−b,−d.(4.1)

Notation Henceforth we shall write f = fb,d.
The objective of this section will be to calculate ψ ′2k(1) by explicitly working out the

equation

ψ ′2k(〈 f , f 〉Aβ ) = ψ2k(〈 f , f W 2〉A )(4.2)
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for k = 0, 1, 2. In doing so, observe that all the bracket functionals [ν, a, c; k, t] involved in
ψ2k (and their counterparts ψ2k on Aβ defined at the end of Section 3) are such that ν = 0,
c = k, a = t . Thus one need only find [0, t, k; k, t] on the inner product 〈 f , f W 2〉A . This
will facilitate the computation of both sides of (4.2).

Proposition 4.1 With f = fb,d and letting

v =
πd

θ
, w = πb, u =

i

2θ

one has

ψ20(〈 f , f W 2〉A ) =
1

2

√
θ

2
ϑ3(w, u) · ϑ3(v, u)

ψ21(〈 f , f W 2〉A ) =
1

2

√
θ

2
ϑ4(w, u) · ϑ4(v, u)

ψ22(〈 f , f W 2〉A ) =
1

2

√
θ

2

(
ϑ4(w, u) · ϑ3(v, u) + ϑ3(w, u) · ϑ4(v, u)

)
and

ψ20(〈 f , f 〉Aβ ) =

√
θ

2
ϑ3(2w, 4u) · ϑ3(2v, 4u)

ψ21(〈 f , f 〉Aβ ) =

√
θ

2
ϑ2(2w, 4u) · ϑ2(2v, 4u)

ψ22(〈 f , f 〉Aβ ) =

√
θ

2

(
ϑ3(2w, 4u) · ϑ2(2v, 4u) + ϑ2(2w, 4u) · ϑ3(2v, 4u)

)
Proof The result basically follows from Lemma 6.2 (of Section 6). Applying this lemma
with b ′ = −b, d ′ = −d, and with ν = 0, a = t , c = k, one has (as in the notation of
Lemma 6.2) E = F = 0, K = 2bθ, L = −2d. Thus, since f W 2 = f−b,−d one gets

[0, t, k; k, t](〈 f , f W 2〉A ) =
θ3/2

√
2
λtk/2e−π(4d2+4b2θ2)/(2θ)e−πθ(k2+t2)/2eπ(−2dk+2bθt)

· ϑ3(−πiθk− 2πid, 2iθ)ϑ3(−πiθt + 2πibθ, 2iθ)

=
θ3/2

√
2
λtk/2e−π(4d2+4b2θ2)/(2θ)e−πθ(k2+t2)/2eπ(−2dk+2bθt)

·
1

2θ
exp

(
−

(−πiθk− 2πid)2 + (−πiθt + 2πibθ)2

2πθ

)

· ϑ3

(
v +

π

2
k, u
)
ϑ3

(
w−

π

2
t, u
)

=
1

2

√
θ

2
λtk/2ϑ3

(
v +

π

2
k, u
)
· ϑ3

(
w −

π

2
t, u
)
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where in the second equality we have used the double inversion formula (A7) (of the Ap-
pendix) for a product of two ϑ3’s, used that ϑ3 is even in the first variable, and in the third
equality noted that all the exponential factors cancel out. Now since

ϑ3

(
x ±

π

2
t, u
)
= ϑ3+t (x, u)

by (A12), where t = 0, 1, one gets

[0, t, k; k, t](〈 f , f W 2〉A ) =
1

2

√
θ

2
λtk/2ϑ3+t (w, u)ϑ3+k(v, u)

where k, t = 0, 1. This gives the first three equations of the proposition in view of the
bracket notation of Section 2. The last three follow in a similar but simpler way from
Lemma 6.2 which gives

[0, t, k; k, t] (〈 f , f 〉Aβ ) =

√
θ

2
µkt/2e(bk− dt/θ)e−π(k2+t2)/2θ

· ϑ3

(
2πb + i

πk

θ
,

2

θ
i
)
ϑ3

(
2π

d

θ
− i

πt

θ
,

2

θ
i
)

=

√
θ

2
µkt/2ϑ3−k

(
2πb,

2

θ
i
)
ϑ3−t

(
2π

d

θ
,

2

θ
i
)

=

√
θ

2
µkt/2ϑ3−k(2w, 4u)ϑ3−t (2v, 4u)

where the second equality follows from (A8) and (A9).

Derivation of ψ ′20(1) = 1
2

Since ψ ′2k must be a linear combination of the ψ2s’s (by Proposition 2.2), say

ψ ′2k = Cψ20 + Dψ21 + Eψ22(4.3)

for some constants C , D, E, we need to calculate C = ψ ′20(1). So, equation (4.2) becomes,
by Proposition 4.1 in the case k = 0,

1

2
ϑ3(w, u)ϑ3(v, u) = Cϑ3(2w, 4u)ϑ3(2v, 4u) + Dϑ2(2w, 4u)ϑ2(2v, 4u)

+ E{ϑ3(2w, 4u)ϑ2(2v, 4u) + ϑ2(2w, 4u)ϑ3(2v, 4u)}

where the constants C , D, E are independent of v,w. It is not hard to see that this equation
holds for C = D = E = 1

2 . This is because in this case it factors out as a product of two
equations of the form

ϑ3(w, u) = ϑ3(2w, 4u) + ϑ2(2w, 4u)(4.4)
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which is known to hold (and not hard to verify). To see that C = D = E = 1
2 is necessary,

put w = v so that

1

2
ϑ3(v, u)2 = Cϑ3(2v, 4u)2 + Dϑ2(2v, 4u)2 + 2Eϑ3(2v, 4u)ϑ2(2v, 4u).(4.5)

Now take 2v to be a zero of ϑ2(2v, 4u). (One such zero can be obtained from any of the zeros
of ϑ3—given by (A5)—and using equation (A8) of the Appendix. For example, 2v = π

2 .)
Thus (4.5) becomes

1

2
ϑ3(v, u)2 = Cϑ3(2v, 4u)2

and since (4.4) implies that ϑ3(v, u) = ϑ3(2v, 4u), one gets

ψ ′20(1) = C =
1

2
.

(Noting that ϑ3(2v, 4u) �= 0.) Similarly, one obtains D = E = 1
2 .

Derivation of ψ ′21(1) = 1
2

In a similar fashion, for the case k = 1 equation (4.2) becomes

1

2
ϑ4(w, u)ϑ4(v, u) = Cϑ3(2w, 4u)ϑ3(2v, 4u) + Dϑ2(2w, 4u)ϑ2(2v, 4u)

+ E{ϑ3(2w, 4u)ϑ2(2v, 4u) + ϑ2(2w, 4u)ϑ3(2v, 4u)}

where the constants C,D, E are independent of v,w. Taking w = v it becomes

1

2
ϑ4(v, u)2 = Cϑ3(2v, 4u)2 + Dϑ2(2v, 4u)2 + 2Eϑ3(2v, 4u)ϑ2(2v, 4u).(4.6)

This holds for C = D = 1
2 and E = − 1

2 since it just becomes a product of two equations of
the form

ϑ4(v, u) = ϑ3(2v, 4u)− ϑ2(2v, 4u).(4.7)

To see that C = 1
2 , choose v so that, as before, ϑ2(2v, 4u) = 0. Then (4.7) gives ϑ4(v, u) =

ϑ3(2v, 4u) and hence (4.6) yields

ψ ′21(1) = C =
1

2
.

Similarly, one obtains D = 1
2 , E = − 1

2 .
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Derivation of ψ ′22(1) = 1

Here, k = 2 so equation (4.2) yields

1

2
{ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)}

= Cϑ3(2w, 4u)ϑ3(2v, 4u)

+ Dϑ2(2w, 4u)ϑ2(2v, 4u) + E{ϑ3(2w, 4u)ϑ2(2v, 4u) + ϑ2(2w, 4u)ϑ3(2v, 4u)}

which with w = v becomes

ϑ4(v, u) · ϑ3(v, u) = Cϑ3(2v, 4u)2 + Dϑ2(2v, 4u)2 + 2Eϑ3(2v, 4u)ϑ2(2v, 4u).(4.8)

This equation holds with C = 1, D = −1, E = 0 since then it is just the product of
equations (4.4) and (4.7). To check that C = 1 is necessary, once again choose v such that
ϑ2(2v, 4u) = 0. Then, for such v, (4.4) and (4.7) give

ϑ4(v, u) = ϑ3(v, u) = ϑ3(2v, 4u) �= 0

so that (4.8) entails
ψ ′22(1) = C = 1,

as required. Similarly, one gets D = −1, E = 0.
One can now deduce explicit equations that connect the ψ2k’s with the ψ2s’s, and which

generalize some of the Jacobi equations relating theta functions and which arose above.

Theorem 4.2 The Chern characters of the Fourier module F which arise from σ2-traces have
the values

T20[F] = T21[F] =
1

8
, T22[F] =

1

4
.

Furthermore, we have, for all f , g ∈ S(R), the equations relating the σ2-traces on A with those
on Aβ :

ψ20(〈g, fW 2〉A ) =
1

2
ψ20(〈 f , g〉Aβ ) +

1

2
ψ21(〈 f , g〉Aβ ) +

1

2
ψ22(〈 f , g〉Aβ )

ψ21(〈g, f W 2〉A ) =
1

2
ψ20(〈 f , g〉Aβ ) +

1

2
ψ21(〈 f , g〉Aβ )−

1

2
ψ22(〈 f , g〉Aβ )

ψ22(〈g, fW 2〉A ) = ψ20(〈 f , g〉Aβ )− ψ21(〈 f , g〉Aβ ).

5 Computation of T1k([F])

In this section we compute the traces T10[F] and T11[F] of the Fourier module F. (The
computation here is longer than those of the previous section.) To do this, we shall calculate
ψ ′1r(1), for r = 0, 1. Our goal will also be to find other related constants that would give
explicit equations connecting the σ-traces on A = Aθ with the σ3-traces on CA = Aβ

(Theorem 5.2).
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Since ψ1r is σ-tracial on Aθ, Proposition 3.5 yields a unique σ3-trace ψ ′1r on Aβ such that

ψ ′1r(〈g, h〉Aβ ) = ψ1r(〈h, gW 〉A ).

Taking g = h = f (where f = fb,d is as defined in Section 4), this becomes

ψ ′1r(〈 f , f 〉Aβ ) = ψ1r(〈 f , f W 〉A ).(5.1)

Now ψ ′1r , being a σ3-trace on Aβ , is a linear combination of the two basic σ3-trace func-
tionals on Aβ , namely ψ30 and ψ31 (given by Proposition 2.2 but with µ = e(β) in place of
λ):

ψ ′1r = Cψ30 + Dψ31,

where C and D are constants (depending only on r and θ) to be determined. Clearly, C =
ψ ′1r(1), which we need to find. So equation (5.1) becomes

Cψ30(〈 f , f 〉Aβ ) + Dψ31(〈 f , f 〉Aβ ) = ψ1r(〈 f , f W 〉A ).(5.2)

We shall compute both sides of this equation quite explicitly using Lemma 6.2.

The Right Side of (5.2)

Using fb,dW = e(bd) f d
θ ,−bθ one gets

ψ1r(〈 f , f W 〉A ) = [1,−r, r; r, 0](〈 f , fW 〉A ) + [1,−r, r; r + 1, 1](〈 f , f W 〉A )

= e(bd)[1,−r, r; r, 0](〈 f , f d
θ ,−bθ〉A ) + e(bd)[1,−r, r; r + 1, 1](〈 f , f d

θ ,−bθ〉A )

and now we shall compute each of these bracket expressions separately. Let us denote them
by B1 and B2, respectively. For the first, using the notation of Lemma 6.2, with b ′ = d

θ
and

d ′ = −bθ, one has

K = bθ − d, L = −d− bθ, E =
1

2
L, F =

1

2
K,

and

B1 = [1,−r, r; r, 0](〈 f , fW 〉A )

= e(bd)
θ3/2

√
2

e(K2/2θ)e(−rL/2) exp
(
−π(L2 + K2)/2θ

)
exp(πLr) exp(−πθr/2)

· ϑ3

(
−πrθ + π(−d− bθ) + iπ(−d− bθ − rθ), 2θ(i + 1)

)
· ϑ3

(
π(−d + bθ) + iπ(−d + bθ), 2θ(i + 1)

)
Now let us consider the first of these ϑ3 expressions and call it Θ11 (and the second call
Θ12). One has

Θ11 = ϑ3

(
−πrθ + π(−d− bθ) + iπ(−d− bθ − rθ), 2θ(i + 1)

)
= ϑ3

(
−πd(i + 1)− πbθ(i + 1)− rπθ(i + 1), 2θ(i + 1)

)
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and now let

v = −
1

2
πd(i + 1), w =

1

2
πbθ(i + 1), u =

1

4
θ(i + 1)

so that by (A8)

Θ11 = ϑ3(2v − 2w− 4rπu, 8u)

= e2πirueir(2v−2w−rπθ(i+1))ϑ3−r(2v − 2w, 8u)

= e−2πirueir(2v−2w)ϑ3−r(2v − 2w, 8u).

(Note that this is trivial when r = 0, and when r = 1 it holds by (A8).) Similarly,

Θ12 = ϑ3

(
π(−d + bθ) + iπ(−d + bθ), 2θ(i + 1)

)
= ϑ3(2v + 2w, 8u).

Thus,

B1 = e(bd)
θ3/2

√
2

e(K2/2θ)e(−rL/2) exp
(
−π(L2 + K2)/2θ

)
exp(πLr) exp(−πθr/2)

· e−2πirueir(2v−2w)ϑ3−r(2v − 2w, 8u) · ϑ3(2v + 2w, 8u)

which we shall write as

B1 =
θ3/2

√
2

Mϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u)

where

M := e(bd)e(K2/2θ)e(−rL/2) exp
(
−π(L2 + K2)/2θ

)
exp(πLr) exp(−πθr/2)

· exp
(
−2πiru + ir(2v − 2w)

)
.

Now let us look at B2, using Lemma 6.2 again

B2 = [1,−r, r; r + 1, 1](〈 f , f W 〉A )

= e(bd)
θ3/2

√
2
λ(r+1)/2e(K2/2θ)e

(
−
(
K + (r + 1)L

)
/2
)

· exp
(
−π(L2 + K2)/2θ

)
exp
(
πL(r + 1) + πK

)
exp
(
−πθ
(
(r + 1)2 + 1

)
/2
)

· ϑ3

(
−πrθ − πθ + πL + iπ

(
L− (r + 1)θ

)
, 8u
)

· ϑ3

(
rπθ − πθ(r + 1) + πK + iπ(K − θ), 8u

)
.
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Again, letΘ21 andΘ22 denote the last two theta function expressions, respectively. The first
becomes

Θ21 = ϑ3

(
−πrθ − πθ + π(−d− bθ) + iπ

(
−d − bθ − (r + 1)θ

)
, 8u
)

= ϑ3(−πrθ − πθ − πd− πbθ − iπd− iπbθ − iπrθ − iπθ, 8u)

= ϑ3

(
−πd(i + 1)− πbθ(i + 1)− (r + 1)πθ(i + 1), 8u

)
= ϑ3

(
2v− 2w − 4π(r + 1)u, 8u

)
= e−2πiu(1+3r)ei(2v−2w)(1+r) · ϑ2+r(2v − 2w, 8u)

where the last equality holds by (A8) when r = 0 or by (A10) when r = 1. Similarly,

Θ22 = ϑ3

(
rπθ − πθ(r + 1) + π(−d + bθ) + iπ(−d + bθ − θ), 8u

)
= ϑ3

(
−πd− iπd + πbθ + iπbθ + rπθ − πθ(r + 1)− iπθ, 8u

)
= ϑ3(2v + 2w − 4πu, 8u)

= e2πiuei(2v+2w)e−4πiu · ϑ2(2v + 2w, 8u)

= e−2πiuei(2v+2w) · ϑ2(2v + 2w, 8u).

Hence B2 becomes

B2 = e(bd)
θ3/2

√
2
λ(r+1)/2e(K2/2θ)e

(
−
(
K + (r + 1)L

)
/2
)

exp
(
−π(L2 + K2)/2θ

)
· exp
(
πL(r + 1) + πK

)
exp
(
−πθ
(
(r + 1)2 + 1

)
/2
)

· exp
(
−2πiu(1 + 3r) + i(2v − 2w)(1 + r)

)
· exp
(
−2πiu + i(2v + 2w)

)
· ϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

which we shall write as

B2 =
θ3/2

√
2

Nϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

where

N := e(bd)λ(r+1)/2e(K2/2θ)e
(
−
(
K + (r + 1)L

)
/2
)

exp
(
−π(L2 + K2)/2θ

)
· exp
(
πL(r + 1) + πK

)
exp
(
−πθ
(
(r + 1)2 + 1

)
/2
)

· exp
(
−2πiu(1 + 3r) + i(2v − 2w)(1 + r)

)
· exp
(
−2πiu + i(2v + 2w)

)
.
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Therefore, we obtain

ψ1r(〈 f , f W 〉A ) = B1 + B2

=
θ3/2

√
2

Mϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u)(5.3)

+
θ3/2

√
2

Nϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

It is in fact not hard (but a little tedious) to verify that

M = N = exp
(
−
π

2
irθ +

π

θ
(b2θ2 + d2)(i − 1)

)
.

The Left Side of Equation (5.2)

Next, let us work out the left side of (5.2) by first computing the term ψ30(〈 f , f 〉Aβ ). In

terms of the bracket notation of Section 2, we have

ψ30 = [−1, 0, 0; 0, 0] + [−1, 0, 0;−1, 1],

ψ31 = [−1, 1, 1; 1, 0] + [−1, 1, 1; 0, 1].

Computation of ψ30(〈 f , f 〉Aβ )

We have

ψ30(〈 f , f 〉Aβ ) = [−1, 0, 0; 0, 0] (〈 f , f 〉Aβ ) + [−1, 0, 0;−1, 1] (〈 f , f 〉Aβ ).

Let us call the latter two terms A01 and A02, respectively. By Lemma 6.2 we have

A01 = [−1, 0, 0; 0, 0] (〈 f , f 〉Aβ )

=

√
θ

2
· ϑ3

(
−2πb,

2

θ
(i − 1)

)
ϑ3

(
2π

d

θ
,

2

θ
(i − 1)

)
.

Here, one applies (A7) to this product of thetas. But first put

t =
2

θ
(i − 1) so that t−1 = −

θ

4
(i + 1) = −u.

Then it is easy to verify the following simple relations (which will be used freely below):

2π
b

t
= −w, 2π

d

θt
= v,

π

θt
= −

π

4
(i + 1),

π

θt
(i − 1) =

π

2
.
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In terms of these, one gets

ϑ3

(
−2πb,

2

θ
(i − 1)

)
ϑ3

(
2π

d

θ
,

2

θ
(i − 1)

)

= −
iθ

4
(i + 1) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)
· ϑ3

(
πb
θ

2
(i + 1),

θ

4
(i + 1)

)
· ϑ3

(
−π

d

2
(i + 1),

θ

4
(i + 1)

)

=
θ

4
(1− i) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)
· ϑ3(w, u) · ϑ3(v, u)

so that

A01 =
θ3/2

4
√

2
(1− i) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)
· ϑ3(w, u) · ϑ3(v, u).

In the same way we find A02

A02 = [−1, 0, 0;−1, 1] (〈 f , f 〉Aβ )

=

√
θ

2
µ−1/2e(−b)e(−d/θ) exp(−π/θ)

· ϑ3

(
−
π

θ
− 2πb + i

π

θ
,

2

θ
(i − 1)

)
ϑ3

(π
θ

+ 2π
d

θ
− i

π

θ
,

2

θ
(i − 1)

)

=

√
θ

2
µ−1/2e(−b)e(−d/θ) exp(−π/θ) · ϑ3

(
−2πb +

π

2
t, t
)
ϑ3

(
2π

d

θ
−
π

2
t, t
)

=

√
θ

2
µ−1/2e(−b)e(−d/θ) exp(−π/θ)

·
i

t
exp
(
[(−2πb + πt/2)2 + (2πd/θ − πt/2)2]/(πit)

)
· ϑ3

(
−2π

b

t
+
π

2
,−t−1

)
ϑ3

(
2π

d

θt
−
π

2
,−t−1

)

=

√
θ

2
µ−1/2e(−b)e(−d/θ) exp(−π/θ)

·
i

t
exp
(
[(−2πb + πt/2)2 + (2πd/θ − πt/2)2]/(πit)

)
· ϑ3

(
w +

π

2
, u
)
ϑ3

(
v −

π

2
, u
)

=
i

t

√
θ

2
µ−1/2e(−b)e(−d/θ) exp(−π/θ)

exp
(
−4πi

b2

t
+ 2πib +

πt

4i
− 4πi

d2

θ2t
+ 2πi

d

θ
− i

πt

4

)
· ϑ4(w, u) · ϑ4(v, u)
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where use was made of (A7) in the fourth equality and (A12) in the last equality to go from
ϑ3 to ϑ4. It is not hard to check that several of the exponential constants appearing in this
last expression cancel out and so reducing to

A02 =
θ3/2

4
√

2
(1− i) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)
· ϑ4(w, u)ϑ4(v, u).

Putting together A01 and A02 yields

ψ30(〈 f , f 〉Aβ ) = A01 + A02(5.4)

=
θ3/2

4
√

2
(1− i)eiπ(b2θ2+d2)(i+1)/θ

(
ϑ3(w, u)ϑ3(v, u) + ϑ4(w, u)ϑ4(v, u)

)

Computation of ψ31(〈 f , f 〉Aβ )

Here, we have

ψ31(〈 f , f 〉Aβ ) = [−1, 1, 1; 1, 0] (〈 f , f 〉Aβ ) + [−1, 1, 1; 0, 1] (〈 f , f 〉Aβ )

and call these two bracket terms A11 and A12, respectively. For the first (by Lemma 6.2)

A11 = [−1, 1, 1; 1, 0] (〈 f , f 〉Aβ )

=

√
θ

2
e(b) exp(−π/2θ) · ϑ3

(π
θ
− 2πb− i

π

θ
,

2

θ
(i − 1)

)
ϑ3

(
2π

d

θ
,

2

θ
(i − 1)

)

=

√
θ

2
e(b) exp(−π/2θ) · ϑ3

(
2πb +

π

2
t, t
)
ϑ3

(
2π

d

θ
, t
)

=

√
θ

2
e(b) exp(−π/2θ) ·

i

t
· exp

([(
2πb +

π

2
t
)2

+
(

2π
d

θ

)2] /
(πit)

)

· ϑ3

(
2π

b

t
+
π

2
,−

1

t

)
ϑ3

(
2π

d

θt
,−

1

t

)

=

√
θ

2
e(b) exp(−π/2θ) ·

i

t
· exp

([(
2πb +

π

2
t
)2

+
(

2π
d

θ

)2] /
(πit)

)

· ϑ4(w, u)ϑ3(v, u).

After expanding and simplifying the exponentials this becomes

A11 =
θ3/2

4
√

2
(1− i) exp

( π
2θ

i +
π

θ
(b2θ2 + d2)(i − 1)

)
· ϑ4(w, u)ϑ3(v, u).
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Similarly, for A12 one has

A12 = [−1, 1, 1; 0, 1] (〈 f , f 〉Aβ )

=

√
θ

2
e(−d/θ) exp(−π/2θ) · ϑ3

(
−2πb,

2

θ
(i − 1)

)
ϑ3

(π
θ

+ 2π
d

θ
− i

π

θ
,

2

θ
(i − 1)

)

=

√
θ

2
e(−d/θ) exp(−π/2θ) · ϑ3(−2πb, t)ϑ3

(
2π

d

θ
−
π

2
t, t
)

=

√
θ

2
e(−d/θ) exp(−π/2θ) ·

i

t
· exp

([
4π2b2 +

(
2π

d

θ
−
π

2
t
)2] /

(πit)

)

· ϑ3

(
−2π

b

t
,−t−1

)
ϑ3

(
2π

d

θt
−
π

2
,−t−1

)

=

√
θ

2
e(−d/θ) exp(−π/2θ) ·

i

t
· exp

([
4π2b2 +

(
2π

d

θ
−
π

2
t
)2] /

(πit)

)

· ϑ3(w, u)ϑ4(v, u)

which when simplified as before becomes

A12 =
θ3/2

4
√

2
(1− i) exp

( π
2θ

i +
π

θ
(b2θ2 + d2)(i − 1)

)
ϑ3(w, u)ϑ4(v, u).

Putting together A11 and A12 one has

ψ31(〈 f , f 〉Aβ ) =
θ3/2

4
√

2
(1− i)P

(
ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)

)
(5.5)

where
P = exp

( π
2θ

i +
π

θ
(b2θ2 + d2)(i − 1)

)
.

Therefore, equation (5.2) becomes, after inserting the expressions in (5.3), (5.4), and (5.5),

θ3/2

√
2

M · ϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u) +
θ3/2

√
2

M · ϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

= C
θ3/2

4
√

2
(1− i) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)(
ϑ3(w, u)ϑ3(v, u) + ϑ4(w, u)ϑ4(v, u)

)

+ D
θ3/2

4
√

2
(1− i)P

(
ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)

)
or

M
(
ϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u) + ϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

)
=

C

4
(1− i) exp

(
iπ(b2θ2 + d2)(i + 1)/θ

)(
ϑ3(w, u)ϑ3(v, u) + ϑ4(w, u)ϑ4(v, u)

)
+

D

4
(1− i)P

(
ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)

)

https://doi.org/10.4153/CJM-2000-028-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-028-9


664 Samuel G. Walters

where
M = exp

(
−
π

2
irθ +

π

θ
(b2θ2 + d2)(i − 1)

)
.

Noting the cancellations, one has

e−πirθ/2·
(
ϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u) + ϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

)
=

C

4
(1− i)

(
ϑ3(w, u)ϑ3(v, u) + ϑ4(w, u)ϑ4(v, u)

)
+

D

4
(1− i)eπi/2θ

(
ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)

)
or

ϑ3−r(2v − 2w, 8u)ϑ3(2v + 2w, 8u) + ϑ2+r(2v − 2w, 8u)ϑ2(2v + 2w, 8u)

(5.6)

= A
(
ϑ3(w, u)ϑ3(v, u) + ϑ4(w, u)ϑ4(v, u)

)
+ B
(
ϑ4(w, u)ϑ3(v, u) + ϑ3(w, u)ϑ4(v, u)

)
where

A =
C

4
(1− i)eπirθ/2, and B =

D

4
(1− i)eπi/2θeπirθ/2

are constants depending only on r and θ, but not on v nor w. In the following lemma we
take w = v in (5.6) in order to find the constants A and B.

Lemma 5.1 If θ is fixed (and hence u) and if A and B are constants depending only on r and
θ such that

ϑ3−r(0, 8u)ϑ3(4v, 8u) + ϑ2+r(0, 8u)ϑ2(4v, 8u)

= A
(
ϑ3(v, u)2 + ϑ4(v, u)2

)
+ 2Bϑ3(v, u)ϑ4(v, u)(5.7)

for all complex v, then A = 1
4 and B = (−1)r

4 . In fact, this equation holds, a priori, for these
values of A and B.

Proof It is not hard to see that (5.7) holds a priori with A = 1
4 and B = (−1)r

4 . To see that
these values are necessary choose v such that ϑ3(v, u) = 0. Then (5.7) becomes

ϑ3−r(0, 8u)ϑ3(4v, 8u) + ϑ2+r(0, 8u)ϑ2(4v, 8u) = Aϑ4(v, u)2.

But we also know (from the a priori equation (5.7)) that

ϑ3−r(0, 8u)ϑ3(4v, 8u) + ϑ2+r(0, 8u)ϑ2(4v, 8u) =
1

4
ϑ4(v, u)2

so by comparison, and since ϑ4(v, u)2 �= 0 (by our choice of v), it follows that A = 1
4 . In a

similar fashion one obtains B = (−1)r

4 .
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From this lemma it follows that

C(1− i)eπirθ/2 = 1, D(1− i)eπi/2θeπirθ/2 = (−1)r

hence

C =
1

2
(1 + i)e−πirθ/2, D =

1

2
(−1)r(1 + i)e−πi/2θe−πirθ/2.

In particular,

ψ ′1r(1) = C =
1

2
(1 + i)e−πirθ/2 =

1

2
(1 + i)λ−r/4

from which one obtains the Chern character values

(T1r)∗([F]) =
1

4
ψ ′1r(1) =

1

8
(1 + i)λ−r/4.

Also note that after the constants A and B are substituted back into (5.6) one actually gets
some of Jacobi’s identities relating theta functions. For example taking r = 0 in (5.6) it
becomes †

1

4
{ϑ3(s, u) + ϑ4(s, u)}{ϑ3(t, u) + ϑ4(t, u)}

= ϑ3(2t − 2s, 8u) · ϑ3(2t + 2s, 8u) + ϑ2(2t − 2s, 8u) · ϑ2(2t + 2s, 8u).

We can now substitute the values for C and D found above into (5.2) to obtain the explicit
relations connecting the unbounded traces across Morita equivalence (which was promised
in the Introduction). All these results can now be summarized follows.

Theorem 5.2 The Chern characters of the Fourier module F which arise from the σ-traces
have the values

T10[F] =
1

8
(1 + i), T11[F] =

1

8
(1 + i)λ−1/4.

Furthermore, we have, for all f , g ∈ S(R), the following equations relating the σ-traces on A
and the σ3-traces on Aβ :

ψ10(〈g, f W 〉A ) =
1

2
(i + 1)ψ30(〈 f , g〉Aβ ) +

1

2
(i + 1)e−πi/2θψ31(〈 f , g〉Aβ )

ψ11(〈g, fW 〉A ) =
1

2
(1 + i)e−πiθ/2ψ30(〈 f , g〉Aβ )−

1

2
(1 + i)e−πi/2θ−πiθ/2ψ31(〈 f , g〉Aβ )

ψ30(〈g, f W ∗〉A ) =
1

2
(1− i)ψ10(〈 f , g〉Aβ ) +

1

2
(1− i)eπi/2θψ11(〈 f , g〉Aβ )

ψ31(〈g, fW ∗〉A ) =
1

2
(1− i)eπiθ/2ψ10(〈 f , g〉Aβ )−

1

2
(1− i)eπi/2θ+πiθ/2ψ11(〈 f , g〉Aβ )

for all f , g ∈ S(R). These are non-commutative generalizations of some of Jacobi’s theta
function equations.

†The author wishes to thank Jonathan Borwein for pointing out to him that this equation actually follows
from Example 1 on page 464 of [18] combined with Exercise 2 on page 488.
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6 Proofs of Lemmas

The proof of the following lemma is straightforward, but we have included it for the sake
of clarity. The function ϑ3 appearing in Lemma 6.2 is the third theta function recalled in
the Appendix (Section 7)—the notation there is being used here. In both lemmas we have
used the function fb,d defined at the beginning of Section 4.

6.1 Lemma We have

〈 fb,d, fb ′,d ′〉A (m, n) =
θ3/2

√
2
λmn/2e(−bmθ)e

(1

2
m(b− b ′)θ

)
e
(
−

1

2
(b− b ′)(d + d ′)

)

· e
(
−

1

2
n(d + d ′)

)
exp
(
−
π

2θ
(mθ − d + d ′)2

)

· exp
(
−
πθ

2
(b− b ′ + n)2

)
and

〈 fb,d, fb,d〉CA (m, n) =

√
θ

2
µmn/2e

(
−bm +

nd

θ

)
exp
(
−
π

2θ
m2
)

exp
(
−
π

2θ
n2
)
.

Proof We will use the Fourier transform of the function

g(t) = exp
(
−

2π

θ
t2
)

which is easily checked to be

ĝ(s) =

√
θ

2
exp
(
−
πθ

2
s2
)
.

To establish the first equality, one has

〈 fb,d, fb ′,d ′〉A (m, n)

= θ

∫
fb,d(t + mθ) fb ′,d ′(t)e(−nt) dt

= θ

∫
e
(
−b(t + mθ)

)
exp
(
−
π

θ
(t + mθ − d)2

)

· e(b ′t) exp
(
−
π

θ
(t − d ′)2

)
· e(−nt) dt

= θe(−bmθ)

∫
exp
(
−
π

θ
[(t + mθ − d)2 + (t − d ′)2]

)
· e
(
(−b + b ′ − n)t

)
dt

and after completing the square becomes

= θe(−bmθ) · exp
(
−
π

2θ
(mθ − d + d ′)2

)

·

∫
exp

(
−

2π

θ

(
t +

mθ − d − d ′

2

)2
)
· e
(
(−b + b ′ − n)t

)
dt
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which, after translation and using g above, becomes

= θe(−bmθ) · exp
(
−
π

2θ
(mθ − d + d ′)2

)
e
(1

2
(b− b ′ + n)(mθ − d− d ′)

)

·

∫
exp
(
−

2π

θ
t2
)

e
(
(−b + b ′ − n)t

)
dt

= θe(−bmθ) · exp
(
−
π

2θ
(mθ − d + d ′)2

)
e
(1

2
(b− b ′ + n)(mθ − d− d ′)

)
· ĝ(b− b ′ + n)

= θe(−bmθ) · exp
(
−
π

2θ
(mθ − d + d ′)2

)
e
(1

2
(b− b ′ + n)(mθ − d− d ′)

)

·

√
θ

2
exp
(
−
πθ

2
(b− b ′ + n)2

)
,

giving the first equality. For the second equality,

〈 fb,d, fb,d〉CA
(m, n) =

∫
fb,d(t −m) fb,d(t) e(nt/θ) dt

=

∫
e
(
b(t −m)

)
exp
(
−
π

θ
(t −m− d)2

)

· e(−bt) exp
(
−
π

θ
(t − d)2

)
e(nt/θ) dt

= e(−bm)

∫
exp
(
−
π

θ
(t −m− d)2 −

π

θ
(t − d)2

)
· e(nt/θ) dt

= e(−bm)e(nd/θ)

∫
exp
(
−
π

θ
[t2 + (t −m)2]

)
e(nt/θ) dt

= e(−bm + nd/θ) exp
(
−
π

2θ
m2
)∫

exp

(
−

2π

θ

(
t −

m

2

)2
)

e(nt/θ) dt

= µmn/2e(−bm + nd/θ) exp
(
−
π

2θ
m2
)
·

∫
exp
(
−

2π

θ
t2
)

e(nt/θ) dt

= µmn/2e(−bm + nd/θ) exp
(
−
π

2θ
m2
)
· ĝ(−n/θ)

= µmn/2e(−bm + nd/θ) exp
(
−
π

2θ
m2
)
·

√
θ

2
exp
(
−
π

2θ
n2
)
,

as required.

Lemma 6.2 Letting

E = −
1

2
(b + b ′)θ, F = −

1

2
(d + d ′)

K = (b− b ′)θ, L = −d + d ′
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one has

[ν, a, c; k, t](〈 fb,d, fb ′,d ′〉A ) =
θ3/2

√
2

e(FK/θ)λkt/2e(−Ek− Ft) exp
(
−π(L2 + K2)/2θ

)
· exp(πLk + πKt) exp

(
−πθ(k2 + t2)/2

)
· ϑ3(2πE + πθa− πθt − πiθk + πiL, 2θν + 2iθ)

· ϑ3(2πF + πθc − πθk− πiθt + πiK, 2θν + 2iθ)

and

[ν, a, c; k, t] (〈 fb,d, fb,d〉Aβ )

=

√
θ

2
µkt/2e(bk− dt/θ) exp

(
−π(k2 + t2)/2θ

)
· ϑ3

(πa

θ
−
πt

θ
− 2πb− i

πk

θ
,

2ν

θ
+ i

2

θ

)
ϑ3

(πc

θ
−
πk

θ
+ 2π

d

θ
− i

πt

θ
,

2ν

θ
+ i

2

θ

)

where ϑ3 is the third theta function described in the Appendix.

Proof Consider the first of these. One has

[ν, a, c; k, t](〈 fb,d, fb ′,d ′〉A ) =
∑
p,q

λν(p2+q2)−2pq+ap+cq J(2p − k, 2q− t)

where J = 〈 fb,d, fb ′,d ′〉A . Lemma 6.1 gives

J(m, n) =
θ3/2

√
2
λmn/2e(−bmθ)e

(1

2
m(b− b ′)θ

)
e
(
−

1

2
(b− b ′)(d + d ′)

)

· e
(
−

1

2
n(d + d ′)

)
exp
(
−
π

2θ
(mθ − d + d ′)2

)
exp
(
−
πθ

2
(b− b ′ + n)2

)

and, with E, F, K, and L as given in the statement of the lemma, this becomes

J(m, n) =
θ3/2

√
2
λmn/2e(FK/θ)e(Em)e(Fn) · exp

(
−
π

2θ
(mθ + L)2

)
exp
(
−
π

2θ
(nθ + K)2

)
.

So

J(2p − k, 2q− t) =
θ3/2

√
2
λ2pq−pt−qk+kt/2e(FK/θ)e

(
E(2p − k)

)
e
(
F(2q− t)

)
· exp
(
−
π

2θ

(
(2p − k)θ + L

)2
)

exp
(
−
π

2θ

(
(2q− t)θ + K

)2
)
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which when simplified, and after collecting the p and p2 factors and q and q2 factors sepa-
rately, becomes

λν(p2+q2)−2pq+ap+cq J(2p − k, 2q− t)

=
θ3/2

√
2

e(FK/θ)λkt/2e(−Ek− Ft) exp
(
−π(L2 + K2)/2θ

)
· exp(πLk + πKt) exp

(
−πθ(k2 + t2)/2

)
· eπi(2θν+2iθ)p2

exp
(
2i p(2πE− πθt − πiθk + πiL + πθa)

)
· eπi(2θν+2iθ)q2

exp
(
2iq(2πF − πθk− πiθt + πiK + πθc)

)
.

Hence, using the definition of ϑ3 given in the Appendix one has

[ν, a, c; k, t](〈 fb,d, fb ′,d ′〉A )

=
θ3/2

√
2

e(FK/θ)λkt/2e(−Ek− Ft) exp
(
−π(L2 + K2)/2θ

)
· exp(πLk + πKt) exp

(
−πθ(k2 + t2)/2

)
·
∑

p

eπi(2θν+2iθ)p2

exp
(
2i p(2πE− πθt − πiθk + πiL + πθa)

)

·
∑

q

eπi(2θν+2iθ)q2

exp
(
2iq(2πF − πθk− πiθt + πiK + πθc)

)

=
θ3/2

√
2

e(FK/θ)λkt/2e(−Ek− Ft) exp
(
−π(L2 + K2)/2θ

)
· exp(πLk + πKt) exp

(
−πθ(k2 + t2)/2

)
· ϑ3(2πE − πθt − πiθk + πiL + πθa, 2θν + 2iθ)

· ϑ3(2πF − πθk− πiθt + πiK + πθc, 2θν + 2iθ)

which establishes the first equation of the Lemma. To establish the second relation, from
Lemma 6.1 one has

[ν, a, c; k, t] (〈 fb,d, fb,d〉CA
)

=
∑
p,q

µν(p2+q2)−2pq+ap+cq〈 fb,d, fb,d〉CA
(2p − k, 2q− t)

=

√
θ

2

∑
p,q

µν(p2+q2)−2pq+ap+cqµ(2p−k)(2q−t)/2e
(
−b(2p − k) +

d

θ
(2q− t)

)

· exp
(
−
π

2θ
(2p − k)2

)
exp
(
−
π

2θ
(2q− t)2

)
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and expanding all the exponentials, including those of µ = e(1/θ), we can collect those
factors containing p and p2 and separating them from those containing q and q2 as follows

=

√
θ

2
µkt/2e

(
bk−

dt

θ

)
exp
(
−
π

2θ
(k2 + t2)

)

·
∑

p

exp
(

2πi
ν

θ
p2 −

2π

θ
p2
)

exp
(

2πi
a

θ
p − 2πi

t

θ
p − 4πibp + 2π

k

θ
p
)

·
∑

q

exp
(

2πi
ν

θ
q2 −

2π

θ
q2
)

exp
(

2πi
c

θ
q− 2πi

k

θ
q + 4πi

d

θ
q + 2π

t

θ
q
)

=

√
θ

2
µkt/2e

(
bk−

dt

θ

)
exp
(
−
π

2θ
(k2 + t2)

)

·
∑

p

exp
(
πi p2(2ν + 2i)/θ)

)
exp
(

i2p
{πa

θ
−
πt

θ
− 2πb− iπ

k

θ

})

·
∑

q

exp
(
πiq2(2ν + 2i)/θ

))
exp
(

i2q
{πc

θ
−
πk

θ
+ 2π

d

θ
− iπ

t

θ

})

=

√
θ

2
µkt/2e

(
bk−

dt

θ

)
exp
(
−
π

2θ
(k2 + t2)

)

· ϑ3

(πa

θ
−
πt

θ
− 2πb− iπ

k

θ
,

2ν + 2i

θ

)
· ϑ3

(πc

θ
−
πk

θ
+ 2π

d

θ
− iπ

t

θ
,

2ν + 2i

θ

)
as required.

7 Appendix: Theta Functions

For z, t ∈ C where Im(t) > 0, the theta functions are given by (see for example [18,
Chapter XXI])

ϑ1(z, t) = −i
∑

n

(−1)neπit(n+ 1
2 )2

ei(2n+1)z(A1)

ϑ2(z, t) =
∑

n

eπit(n+ 1
2 )2

ei(2n+1)z(A2)

ϑ3(z, t) =
∑

n

eπitn2

ei2nz(A3)

ϑ4(z, t) =
∑

n

(−1)neπitn2

ei2nz,(A4)

where all summations are over the integers. It is easy to see that ϑ2, ϑ3, and ϑ4 are even
functions in the variable z. It is known that all the zeros of ϑ3 are given by(

π

2
+ mπ +

(π
2

+ nπ
)

t, t

)
,(A5)
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where m, n ∈ Z and Im(t) > 0 are arbitrary. We also have the following transformation
formula of Jacobi for ϑ3 [18, Section 21.51]

ϑ3(z, t) = (−it)−1/2ez2/(πit)ϑ3

( z

t
,−

1

t

)
,(A6)

which holds for arbitrary complex z and for Im(t) > 0. (Here, one takes the principal
square root.) The exact same transformation formula holds for ϑ2 and ϑ4. We shall call
this the “inversion” formula for theta functions. It will be found useful to write down a
similar formula for products of two theta functions:

ϑ3(x, t)ϑ3(y, t) = (−it)−1/2ex2/(πit)ϑ3

(x

t
,−

1

t

)
(−it)−1/2ey2/(πit)ϑ3

( y

t
,−

1

t

)

=
i

t
e(x2+y2)/(πit)ϑ3

(x

t
,−

1

t

)
ϑ3

( y

t
,−

1

t

)
(A7)

which we shall call the “double inversion” formula. We also have need for the (simple)
relations

ϑ3(z, t) = eπit/4eizϑ2

(
z +

π

2
t, t
)
,(A8)

ϑ3(z, t) = eπit/4e−izϑ2

(
z −

π

2
t, t
)
.(A9)

ϑ3(z, t) = eπit e2izϑ3(z + πt, t)(A10)

ϑ3(z ± π, t) = ϑ3(z, t)(A11)

ϑ3

(
z ±

π

2
, t
)
= ϑ4(z, t)(A12)

ϑ2(z + π, t) = −ϑ2(z, t).(A13)
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