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SOME CLASSES OF 6-COMPACTNESS 

BY 

S. BROVERMAN 

ABSTRACT. Let A and A denote the classes of ordinal spaces with the 
order topology and 2-product spaces of the two point discrete space re­
spectively. Characterizations are given in terms of ultrafiIters of clopen sets 
of those O-dimensional Hausdorff topological spaces that can be embedded 
homeomorphically as a closed subspace of a topological product of either 
spaces from the class A or the class A. Both classes consist of spaces that 
are co0-bounded. An example is given of a O-dimensional Hausdorff 
coo-bounded space that cannot be homeomorphically embedded as a closed 
subset of a product of spaces from either A or A, answering a question of 
R. G. Woods. 

1. Introduction. The notion of E-compactness was introduced by R. Engelking and 
S. Mrowka in [4]. More recently this notion has been considered in a more general 
context in the book by J. Porter and R. G. Woods, [7]. Given a topological space E, 
another space X is said to be E-compact if it can be embedded as a closed subset of 
the product space Em for some cardinal number m. H. Herrlich in [5] introduces a 
natural generalization of the notion of E-compactness. If 9 is a class of topological 
spaces, then a space X is said to be 0-compact if X can be embedded as a closed subset 
of some topological product of spaces from the class 0 . Given a class of spaces, it is 
clear that this class is equal to the class of all 0-compact spaces for some class 0 if 
and only if the given class is closed under the formation of topological products and 
closed subspaces. If 0 is a given class of spaces, let KG denote the class of all 
0-compact spaces. 

If m is an infinite cardinal number, then a topological space X is said to be in-
bounded if every subset of X of cardinality at most m has compact closure in X. For 
a given cardinal m, it has been shown by R. G. Woods in [9] that the class of 
m-bounded spaces is a class of 0-compactness (also referred to in [9] as an extension 
property) but is not equal to the class of E-compact spaces for any space E. The question 
has been raised in [9] of whether or not the class of Hausdorff, O-dimensional (i.e., has 
a base of clopen sets), a>0-bounded spaces is equal to AT, where T denotes the class 
of ordinals of uncountable cofinality (in their order topologies). In this paper that 
question is answered in the negative. We also give characterizations by means of 
ultrafilters of those spaces in AT where T is as above, and also where T is the class of 
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2-spaces. Some of the results in this paper formed part of the author's doctoral thesis. 
We shall confine our attention to completely regular, Hausdorff spaces (all 

O-dimensional, Hausdorff spaces are easily seen to be completely regular). 

2. a>„-bounded spaces and KT. It is well known (see [1]) that every O-dimensional 
space X has a O-dimensional compactification (30X, maximal in the following sense: If 
Y is O-dimensional and/ :X -» Y is continuous then there is a continuous map 
0o(/)-Po^ -* Po^ such that 0o(/)|x = f- The space $0X can be viewed as the 
O-dimensional analogue of the Stone-Cech compactification. It is constructed as the 
maximal filter (i.e., Stone) space of the Boolean algebra of clopen subsets of X. Thus 
the points of $0X

 — X correspond to free ultrafilters of clopen sets in X in such a way 
that if p E $0X - X and Up is the corresponding ultrafilter and A is a clopen subset 
of X, then p E cl$0x(A) if and only if A E Up. The following slight modification of 
Theorem 4.1 of [6] will be needed. 

2.1. THEOREM. Let F be a class of O-dimensional spaces and let Xbea O-dimensional 
space. Then X E KT if and only if given any point p E $0X — X, there is a space 
Y E T and a continuous map fp :X —» Y such that (fto(fp))(p) E (30K — Y. 

We recall some facts concerning ordinal numbers. An ordinal number K with the 
topology induced by its total order is O-dimensional, locally compact and normal. The 
cofinality of an ordinal K is denoted cf( K) and is defined to be the least cardinal number 
of a cofinal (unbounded) subset of K. Given an ordinal a, the a-th uncountable cardinal 
number is denoted a)a. An ordinal with its induced order topology will be referred to 
as an ordinal space. Since closed and bounded initial segments in ordinal spaces are 
compact, if m is a cardinal number then the ordinal space K is m-bounded if and only 
if C / ( K ) > m. Furthermore, just as for the ordinal space o>i of the first uncountable 
cardinal we have 0(o)j) = p0(^i + 1) = a>i (the one point compactification of (Oj), 
it is also true that (3(K) = PO(K) = K + 1 for any ordinal space K for which C/(K) > co0. 

Let T denote the class of all ordinal spaces of cardinal numbers of uncountable 
cofinality, i.e., T = {o)a:c/(a)a) > ca0, a is an ordinal}. A slight modification of 
Theorem 4 of [2] shows that if K is an ordinal with C/(K) = coa then as ordinal spaces, 
K is avcompact. Recall that a regular cardinal number m is defined to satisfy cf(m) = 
m. Thus, since C/(K) is a regular cardinal for any ordinal K, it follows that KT = 
KTi = KA where T\ is the class of all ordinal spaces of uncountable cofinality and A 
is the class of all ordinal spaces of regular uncountable cardinal numbers. We now offer 
a characterization in terms of clopen ultrafilters of those spaces in KA. Open and closed 
interval notation will be used for a totally ordered space, and should be clear from the 
context. Also, a point p E $0X — X will be identified with its corresponding ultrafilter 
of clopen sets. 

2.2. PROPOSITION: Let X be a O-dimensional space, and let coa be a regular un­
countable cardinal viewed as an ordinal space with its induced order topology. The 
following statements are equivalent. 
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(i) X is (oa-compact (in the sense of E-compact). 
(ii) For any free ultrafilter of elopen subsets of X, say p, there is a family U = 

{Uj : / < coa} Ç p such that H [/ = <J) and for all j < a, Uj Ç C\{Ui : / < j}. 

PROOF: i) -> ii). Suppose that X is avcompact. By Theorem 2.1 there is a continuous 
map/:X—> (ùa such that (p0(/))(/?) = ooa (where wa also denotes the point at infinity 
in ooa + 1, the one-point and Stone-Cech compactification of coa). Let U{ = /*"((/, oO) 
for all / < coa. Then [/, E /?, for clearly £/, is clopen, and if (X - Ut) E p then p E 
c/p0x(* - UJ, and hence (Po(/))(/>) ^ ^ ^ [ / ( X - £/,-)] E [0, / ] , which is contrary 
to hypothesis. Let U — {Ut\i < a)a}. If x E X then/(x) E coa and hence there is an 
/ < coa such that/(x) < /. Thus, x E [/, and hence, Pi U = ((). It is clear that U satisfies 
the other condition of (ii). 

(ii) => (i). Let p be a free ultrafilter of clopen subsets of X, and let U be the subfamily 
of p guaranteed by the hypothesis. Let / :X —> coa be defined as follows: f(x) = min 
{/ < o)a \x E Ui). Then/*~((/J)) = Utr - D {Ut :t<j} if/ <j < coa. Since U( is clopen 
for all / < coa, this set is open and hence f is continuous. Also, since/^((/,coa)) = 
Ui E p for every / < coa, and/7 E c/PoX(6r

/) we must have (Po(/))(/?) €E c/PoCOa[(/, a)a)] 
= (/,a>J for every / < coa. Thus, (p0(/))(p) = wa E (30a)a - (oa = (coa + 1) - coa, 
and it follows from Theorem 2.1 that X is coa-compact. • 

Note that the family U in the statement of Proposition 2.2 need not be a base for the 
ultrafilter p. For example, if DWl denotes the discrete space of cardinality coj and if 
X = U {c/pDw (A):A C DWl, |A| < coj, then X is corcompact (in the sense of 
E-compact) but no free ultrafilter of clopen subsets of X has a well-ordered base 
(ordered by reverse inclusion). 

The following theorem combines the result of Proposition 2.2 for all regular un­
countable cardinals. 

2.3. THEOREM: Let X be a 0-dimensional space. The following statements are 
equivalent. 

(i) X E kA. 
(ii) Every free ultrafilter of clopen subsets of X has a non-empty well-ordered 

subfamily with empty intersection and with the order type of a regular uncountable 
cardinal (where the ordering is by reverse inclusion). 

Question 5.5 of [9] asks whether or not A'A as defined above is equal to the class of 
all 0-dimensional co0-bounded spaces. We show that the answer is no. The space that 
provides the answer happens to be a 2-product of the two point discrete space {0,1} 
(henceforth denoted 2). 2-products were introduced by H. Corson in [3] and have been 
studied extensively, with particular interest in Corson compact and Eberlein compact 
spaces. 

2.4. DEFINITION: Let K be an infinite cardinal number. The ^-product space SK is 
defined as follows: SK = {/ E 2K:|{/ < K : / ( I ) - 1}| < K}. 
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It is shown in [8] that p02K = p2K = 2K for any uncountable cardinal K. The 
following lemma gives conditions on cardinals m and K equivalent to SK being ni-
bounded. 

2.5. LEMMA: Let m and K be infinite cardinal numbers. Then 2K is m-bounded if and 
only ifm< C / (K) . 

FROOF: Necessity. Suppose 2K is m-bounded and C/(K) < m. Let {A, : / < C/(K)} 

be a family of subsets of K such that for all i, |A,| < K and A,- C Aj if / < j and 
U/A/ = K. For each / < C/(K) define the point /?, in 2K as follows: for t < K let 
P/(0 = 1 if t E Ai9pi(t) = 0 otherwise. Then for each i, /?, E SK. Let/? E 2K be such 
that for all r < K, p(t) = 1. Clearly p is in the closure in 2K of the set {pt : i < C / (K)} . 

Since p is not in %K, it follows that XK is not c/(K)-bounded, and hence it is not 
m-bounded. This contradiction shows that m < C / (K) . 

Sufficiency. Suppose m < C/(K) and P = {/?, : i <m) Q XK. For each / < m, define 
Ai to be Ai = /?r({l}). Then each A,- has cardinality less than K and hence A = 
Ui<m Ai has cardinality less than K since m < C / (K) . Thus, cl^KP C 2^ X 
[ri({0}r : r E K - A)] C SK. As the set in the middle is compact, it follows that 2K is 
m-bounded. 

As we shall see, the 2-product spaces provide the answer to question 5.5 of [9]. 

2.6. DEFINITION: If m is an infinite cardinal number, then a space X is called 
strongly-m-bounded if every union of at most m compact subsets of X has compact 
closure in X. 

A straightforward argument shows that for a given cardinal number m, the class of 
strongly-m-bounded spaces is a class of 6-compactness. It is also clear that every 
member of the class A defined above is strongly-(o0-bounded (in fact, wa is strongly-
m-bounded if and only if cf{iùa) > m). Thus, every member of ATA is strongly-
coo-bounded. However, 2a>, has the following dense, a-compact subset A : A = U/<ÛJo 

Ai where A, = {p E 2"1 : \{t:p(t) = 1}| < /}. Since 2Wl is not compact, it cannot be 
strongly-co0-bounded as it has a dense a-compact subset. Thus, £Wl is co0-bounded (by 
Lemma 2.5) but is not in the class KA as it is not strongly-co0-bounded. 

We now provide a characterization of those spaces that are 2K-compact (in the sense 
of E-compact) that is analagous to Proposition 2.2. This characterization will show that 
the S-product spaces considered here "generate" a larger compactness class of 
co0-bounded spaces than the ordinal spaces. 

2.7. PROPOSITION: Let K be an infinite cardinal of uncountable cofinality, and let X 
be a O-dimensional space. The following are equivalent. 

(i) X is XK-compact (in the sense of E-compact). 
(ii) If p is a free ultrafliter of clopen subsets of X, there is a subfamily U = 

{Ui : i < K} C p such that for every x E X, \{i:x E £/,}| < K. 

PROOF: (i) —» (ii). Suppose that X is 2K-compact and p is a free ultrafilter of 
clopen subsets of X. By Theorem 2.1 there is a continuous map/:X —» 2K such that 
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Oo(/))(p) E P0SK - SK. Thus ifq = (Po(/))(p) then the set A = ^({1}) C K has 
cardinality K. For each / E A let £/,• = /*~(IT/^({1})) (where TT, denotes the projection 
map to the i-th factor of 2K). Since {1} is a clopen subset of {0, 1}, Ul is a clopen subset 
of X. Furthermore, £/,- E /?, for if (X — £/,-) E /?, then /? E c7Pox(X — (/,-) and hence 
(Po(/))0>) E C/2K(/(X - [/,-)) C irr({0}). It would follow that q(i) = 0 which is false 
if / E A. Thus, Ui E p. Ler U = {Ut : / E A}, and let JC E X. It is clear that x E Ut if 
and only if (/(*)) (i) = 1. Since/(JC) E 2K, it follows that |{/ E A :x E £/,-}| = |{/ E 
A:7T/(/(JC)) = 1}| < K. Hence, U satisfies condition (ii). 

(ii) —» (i). Suppose that X satisfies condition (ii). Let p be a free ultrafilter of clopen 
subsets of X. Let U be the subfamily of p guaranteed by hypothesis. Define a function 
/ : X - > 2K as follows: if i < K, let TT,(/(JC)) - 1 if JC E £/,- and TT, (/(*)) = 0 if JC E Ut. 

Clearly fis continuous. Also, for each / < K, IT/(PO(/))(P))
 = 1- Thus, (Po(/))(p) E 

PoSK — SK and it then follows from Theorem 2.1 that X is XK-compact. 
It may seem reasonable to consider a slightly more general approach to 2-product 

spaces. If (o0 < X ̂  K then we define the space X2K = {/G2K : |{/ : / ( / ) = 1}| < X}. 
It follows from Proposition 2.7 that XSK is Sx-compact, (in fact is a closed subspace of 
(£\)K. Thus, such a generalization does not enlarge the class of compactness generated 
by ^-product spaces. 

We combine the result of Proposition 2.7 for all cardinals of uncountable cofinality 
to obtain the following theorem. We will denote by A the class of the spaces SK for 

which K has uncountable cofinality. 

2.8. THEOREM: Let X be a 0-dimensional space. The following are equivalent. 
(i) X E KA. 
(ii) If p is a free ultrafilter of clopen subsets of X, then there is a cardinal K of 

uncountable cofinality and a subfamily U C p such that \U\ = K and for each i G X , 

\{i:xE U^ < K . 

If a)a E A, and we let U be the family of all cofinal clopen intervals in coa, then U 
satisfies condition (ii) of Theorem 2.8, and it follows that ATA C Kb. This containment 
is strict since members of Kk are strongly-(o0-bounded whereas members of Kb may 
not be (for instance no SK E A is strongly-to0-bounded). Even though Kb strictly 
contains Kb, Kb still does not contain all (strongly-) 0-dimensional o)0-bounded 

spaces. 

2.9. EXAMPLE: Let X be the subspace of the product of ordinal spaces (co, + 1) x 
(OD2 + 1) formed by removing the point at infinity (i.e., the point at the "upper right 
hand corner", (a>i, co2)). The point at infinity completes the Stone-Cech comactification 
of X. It is also clear that X is 0-dimensional and given any clopen subset of X, either 
it or its complement is compact. X is strongly-co0-bounded, and has a base of clopen 
sets of size o)2. If the ultrafilter of clopen sets that corresponds to the point at infinity 
of X is denoted by p, then any member of p contains an "upper right rectangle" in X 
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(i.e., a set of the form (A x B) D X, where A and B are cofinal intervals in 
o>i + 1 and (o2 + 1 respectively). 

If U is subfamily of p of cardinality coi, then there will be a point on the "right edge" 
of X that will be in all members of U (since coj many cofinal intervals on the right edge 
of X have non-empty intersection in X). Furthermore, if |U| has cofinality (J){ (with sets 
of U possibly repeated) a similar argument shows that some point (in fact some cofinal 
interval) on the right hand edge is in |U|-many members of U. Thus, |U| cannot serve 
as K in condition (ii) of Theorem 2.8. 

If |U| = ca2, then some cofinal interval on the "top edge" of X must be contained in 
o)2-many members of U (the top edge of X is a copy of the ordinal space (Oj and each 
member of U meets the top edge of X in a cofinal interval). Thus, co2 cannot serve as 
K in condition (ii) of Theorem 2.8. A similar argument shows that since the weight of 
X is o>2, if |U| has cofinality o)2 then |U| cannot serve as K in condition (ii) of Theorem 
2.8. 

Finally, if the cofinality of |U| is greater than oo2, then since the weight of X is co2, 
some member of U must be repeated |U|-many times (assuming that members of p are 
"upper-right rectangles" in X). Thus, |U| cannot serve as K in condition (ii) of Theorem 
2.8. This completes the example. 
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