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TWO MORE HEREDITARILY SEPARABLE 
NON-LINDELÔF SPACES 

I. JUHÂSZ, K. KUNEN AND M. E. RUDIN 

0. Introduction. Our method using CH is a blend of two earlier construc­
tions (Hajnal-Juhâsz [2] and Ostaszewski [4]) of hereditarily separable {HS), 
regular, non-Lindelôf, first countable spaces. [4] produces a much better space 
than ours in § 1 ; it has all of our properties except that it is not realcompact 
(which is probably more interesting), and it is countably compact as well; 
however, the construction works only under O, which implies the continuum 
hypothesis (CH) but is not equivalent to it. The argument of [2], like ours, just 
needs CH, but it is much more complicated, and it is not immediate that the 
space produced is locally compact or perfectly normal (although, in fact, it is; 
see the remark at the end of § 1). 

In § 2, we use a more complicated version of the technique in § 1 to construct 
a first countable, cardinality coi, HS, Dowker space. A Dowker space is a normal, 
Hausdorff space which is not countably paracompact. There is a known "real" 
Dowker space but all of its cardinal functions are large [7]. There is a known 
HS Dowker space but its construction depends on the existence of a Souslin 
line [6]. It was an old conjecture that the existence of a small cardinality (or 
small cardinal function) Dowker space depended on the existence of a Souslin 
line, and this conjecture is disproved by our construction. Using our technique 
and O (which implies both CH and the existence of a Souslin line) we can 
construct a first countable, cardinality coi, HS, Dowker space which is also 
locally compact and c-countably compact; but we choose the weaker hypoth­
esis over the stronger conclusion. 

In § 2 we use Lusin sets in our construction. A subset L of the line is Lusin if L 
is uncountable and every nowhere dense subset of L is countable. If we assume 
CH, then there are Lusin sets in the line. However if we assume Martin's axiom 
and the negation of CH, then there are no Lusin sets in the line. If we assume 
Martin's axiom and the negation of CH, then there is no non-Lindelôf, first 
countable, regular topology on a subset of the line which refines the usual 
topology and has the property that the closure of a set in the two topologies 
differs by an at most countable set. Since our construction in § 1 yields just such a 
topology, both constructions are independent of the usual axioms for set theory. 

1. The basic idea for obtaining this space is to start with the usual topology of 
the real numbers (R), which has many of the properties we want; in particular 
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it is HS. I t is also hereditarily Lindelôf (HL), which we don ' t want, so we use a 
somewhat finer topology (i.e., add more open sets) wrhich keeps the good 
properties and gets rid of the bad ones. 

We shall in fact describe, under CH, a general machine for refining topologies. 
If one inputs a first countable T2 space of cardinality a>i, it outputs a finer 
topology on the same set which is first countable, I\, locally compact, locally 
countable, and not Lindelôf. Additional properties of the input topology imply 
more about the ou tpu t topology; in particular, s tart ing with R yields the space 
described in the abstract . 

Our machine is a modification of the following very simple procedure (see [1]) 
for constructing HS non-Lindelôf spaces. Let X be any topological space of 
cardinali ty coi. Say (x% : £ < coi) is a 1 — 1 enumeration of X. For a ^ coi, let 
Xa = {x% : £ < a} (so X = Xul). If each Xa were open (so X would be right 
separated) , then the Xa would form an open cover with no countable subcover. 
I t is also easy to check tha t the topology on X generated by the original open 
sets plus the Xa is HS if the original topology is. Unfortunately, this new 
topology is not usually 7Y Our procedure does yield a 7"3 topology, but it works 
only under CH and when X is T2 and first countable, all of which we now assume. 

T o avoid confusion between the various topologies, we use p for the original 
topology on X and pa for the subspace topology on Xa inherited from p, whereas 
ra and r denote the topologies we are about to construct on Xa and X. We 
adopt the convention tha t a topology is the set of open sets in a space, so, for 
example, when £ < t),"r$ — TVC\ 3P(X$y means tha t X^ is open in TV and r^ is 
the induced subspace topology. 

By CH, ûx an enumeration (5M : M < toi) of all countable subsets of X so t ha t 
each ^ Ç 1 ^ . 

We construct rv by induction on rj so as to make the following hold for all 

£ < v = wi: 

l )r € = r , n W € ) . 
2) Each rv is first countable, locally compact, and T2. 

3) Tv 2 Prj-
4) For each pt < £, if %$ G clp(5M) then x% G clTlïGSM). 

For jS ^ co, let 7-/3 be discrete. For co < (3 ^ coi, we assume tha t we have done 
the construction below /3 so tha t ( l ) - ( 4 ) hold for all £ < r\ < /3, and we show how 
to define Tfi so tha t ( l ) - ( 4 ) hold for all J < v ^ P-

If /3 is a limit, condition (1) forces us to take T# = {U Q X$ : Vrj < (3(U C\ 
Xv £ r , ) } , and it is easy to check tha t this definition preserves 1-4. 

Before proceeding with the successor stage, observe tha t our conditions 
imply tha t each ra is also Tz and zero-dimensional, and for a < coi, also 
metrizable. 

Now, if jS = a + 1, then we have r« and we must define r^ on Xa \J {xa\. 
Our main problem is to handle (4) for £ = a. If there are no /z < a such tha t 
xa Ç clp (5M), let T/3 be the topology whose base is ra W {{xa}}, so tha t the point xa 
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becomes isolated. Otherwise, let (iin : n G co) enumera te {M < a : xa (z clp(5M)} 
with each such /x being listed co times. Let { Un : n £ co} be a nested open base a t 
Xa in the topology p, and pick £>n Ç 5Mn H [7W. { n̂ : n £ co} is a discrete subset 
of X a in pa (since it converges in p to xa (? X a ) , and thus also in r„, so we may 
find disjoint ra-clopen compact sets Kn (n Ç co) with each pn Ç Kn Ç [/n 

(since ra is metrizable, zero-dimensional, and locally compact ) . Define T$ to 
have as a base the sets of the form {xa} ^J Um>n Km for n = 0, 1, . . . , along 
with all the sets in ra. I t is then easy to check ( l ) - ( 4 ) for all £ < rj ^ f3. Note 
t ha t Un^n is closed in (Xa , Ta) since i£n Ç [/w and p is 7 V 

Let r = TU1. Then r is first countable, locally compact (and thus J\), 
locally countable, and not Lindelôf. Fur ther properties of r may be deduced 
from further properties of p; all require a t least t ha t p is HS. 

T H E O R E M . If p is HS, then 

a) r is IIS. 
b) If all closed sets are Gh in p, the same is true of r. 
c) If p is Tz and HL, r is normal. 
d) If p is r 3 and Lindelôf, r is realcompaci. 

The main tool in the proof of the theorem is a lemma stat ing t ha t r is not 
too much finer than p, namely: 

LEMMA. If p is HS and A Ç X, then |clPG4) — cl r(^4)| ^ co. 

Proof. Let B ÇL A be countable and p-dense in A, so c\p(B) = clp(^4). 
B = S^ for some JLI. By Condition (4), whenever £ > JU, if #£ Ç clp(23) then 
*e Ç clrCB); so c l p ( ^ ) - c l T (^ ) Ç {^ : J g /*}. 

For par t (a) of the theorem, if C ÇI X , there is a countable A Ç C which is 
p-dense in C, so i U (C - clT(^4)) is r-dense in C and countable. Similarly, 
for (b) , if A is r — closed, clp(^4) — A is countable and clp(A) is a p — Gs 
and hence a r — GO, so i is a T - L75. 

For (c), we follow the usual proof t ha t T3 Lindelôf spaces are normal (even 
though r isn ' t Lindelôf). Let H, K be r-closed disjoint subsets of X. T o show 
t h a t they can be separated, it is sufficient to produce a countable cover of X 
by r-open sets Z7such tha t clT(f/) intersects a t most one of i 7 a n d K\ call such U 
"nice ." By the lemma, clp(H) H clp(K) is countable, and around each of its 
points we may pu t a nice U. Since X — (c\p(H) C\ c\p(K)) is p-Lindelof, we 
may cover it with a countable collection of nice U (which are in fact p-open and 
whose p-closures intersect a t most one of H and K). These two collections 
together produce the desired cover. 

(d) jus t uses the well-known fact [8] t ha t any refinement of a first countable 
2"3 Lindelôf topology is realcompact. For a direct proof, let °U be a countably 
complete r-Z-ultrafilter. Then i^ = {H £ °tt : H is p-closed} has non-empty 
intersection since p is Lindelôf. Fix p £ CYf. Let / : X —> [0, 1] be p-con-
t inuous with f-^O] = {p\. For each n, f~l[l/n, 1] (? Y, so f~l[l/n, 1] (? %, 
s o / - 1 ^ , 1/n] e ^ , s o / ^ j O , 1/n] £ ^ . Thus , {£} £ ^ Ç ^ , so <% is fixed. 
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We conclude this section with three remarks: 
1) Our space answers a question of Model [3] ; namely, it is an example of a 

£>-space with no uncountable discrete subsets and countable pseudoweight, bu t 
uncountable weight. 

2) In retrospect, the construction of Hajnal-Juhasz [2] may be viewed as 
running the Sorgenfrey line through our machine. 

3) Our construction answers a question of Pfeffer ([5, p. 137]), namely, 
assuming CH, there is a first countable compact T2 space which admits a non-
regular Borel measure. 

T o see this, we first generalize the Alexandrov duplicate construction. If p is a 
compact T2 topology on X and r is a locally compact refinement of p, we may 
define a compact T2 topology on X X 2 as follows: X X {0} is open and has the 
r-topology, and neighborhoods of a point (x, 1) i n l X ( l ) are in the form 
U X {1} ^J [(U - K) X {0}], where x G U and K is r-compact (and hence 
p-compact) . Then X X {1} is closed and has the p-topology. If (X, p) is first 
countable, so is X X 2, since it obviously has countable pseudocharacter. T h e 
Alexandrov duplicate is the special case where r is discrete. 

Now, if X is [0, 1], p is the usual topology, and r is locally countable, then in 
X X 2, every Gô containing X X {1} is co-countable. If there is a non-atomic 
Borel measure /x on (X, r), one may extend ix to X X 2 by identifying (X, r) 
with X X {0} and declaring X X {1} to have measure 0. Every G& containing 
X X {1} will have measure 1, so the measure on X X 2 will not be regular. 

The existence of such a /x is trivial if there is a real-valued measurable 
cardinal :g c, since we may then take r to be discrete. But also, under CH, we 
may let r be as constructed by our machine. Then by our lemma above, the 
r-Borel sets are jus t the p-Borel sets, so n may be taken to be Lebesgue measure. 

2. We again assume CH and let p be the usual topology on R. Let J* be a 
countable basis for (R, p) made up of open intervals. 

Fact 1. Using CH, there is a family {Lt\i G co} of disjoint Lusin sets in R such 
tha t each Lt meets every member of Se in an uncountable set. 

Define X — [J ieu Lt. Let A be the set of all limit ordinals in coi. We can index 
X = {xa\a G coi} in a one-to-one way such tha t for each X G A and i G co, 
{xa G Li\\ S CL < X + co} is dense in (R, p). 

Fact 2. Using CH, for each i G co, we can index the set of all countable subsets 
of L^ as {Sa>i\a G coi} in such a way that , for X G A, S\+C0,i = {xa 6 Lt\\ S a < 
X + co}. 

For each a G coi, define Xa = {xp G X\@ < a] and let pa be the subspace 
topology of Xa in (R, p). 

Fact 3. Using CH, we can index the set of all countable subsets of X as 
{A\\\ G A} in such a way tha t , if X G A, there is X* < X such tha t A\ C ^x*. 

Our aim is to define a new topology T on X and we do this by induction as 

i n § l . 
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Our induction hypothesis for 0 G coi is t ha t for all X G A with X < /3, a 
subset Z\ of X\* has been defined and, for each a < /3 in coi and w G co, a subset 
Ua,n of i + i containing xa has been defined in such a way tha t , if rp is the 
topology on Xp induced by using { Ua>n\a < fi and n G co} as a subbasis, then: 

(1) (Xp, Tjs) is metric, and r^ C P/3-
(2) For all a < 0, J7a,0 D C/«,i D 
(3) For all a < 0, { Uaj7l\n G co} is a clopen basis for xa in (Xp, rp). 
(4) For X Ç A and X < /3, Zx is clopen in (Xp, rp). 
(5) For a < fi, xa d LiC\ B for some 5 G ^ , and n G co, there is a finite 

subset G of { Uyj\y < a,j G co} and a fe G co such t ha t Ua>n — B = U ^ ~ ^ 
and £/«,* C ^ H ( U ^ i i y ) . 

(6) For X G A and X < 0, if A\ is closed in (X\, T\), then ^4X C Zx. 
(7) For i G co, a G co, Xr G A, X = X' + to, /3 = a + 1, a = X + a, xa G £<, and 

j ^ i, then x« G clTfiS\tj. 
(8) If 7i < 72 < . . . have X as a limit in coi, i G co, a G co, a = X + a, 

j8 = a + l , x Ç L ï , j ^ i , and, for each w, xa G cl pS 7 w J , then x« G clT/3 \Jn S7nJ. 
We use (6), (7), and (8) later and they are trivial to check inductively, bu t 

the fact t ha t they hold inductively is not used in the construct ion; we also 
make no use a t this t ime of the fact t ha t each Lt is a Lusin set. Later we use 
this fact to insure t ha t whenever we have disjoint closed sets to separate , one of 
them is countable; then we use (6) to guarantee the existence of a clopen set Z\ 
which separates our countable closed set A\ from a tail of the space. Observe 
t ha t both A\ and Zx are only defined for X G A. We use (7) and (8) to achieve 
hereditary separabili ty. 

If a G co, define Ua,n = {xa} for all n G co; the induction hypothesis is then 
satisfied for all /3 G co. 

So assume tha t co S P G coi and tha t the induction hypothesis is satisfied for 
all jS' < (3. Then if fi G A one can easily check t ha t the induction hypothesis 
holds for p. 

Now assume tha t /3 = a + 1 for some a G «i , and a = X + a for some X G A 
and a G co. If a = X consider A\. If A\ is not closed in (X\, r \ ) , define Zx = 0. If 4̂x 
is closed in the zero-dimensional metric countable space (X\, r \ ) , since 
X\ — X\* is closed and disjoint from A\, we can find a clopen set Zx in (Xx, r \ ) 
such tha t A\ (Z Z\ and Zx C ^x*-

Choose Bao D Bati D . . . from «^ such t h a t xa = DnecoBa>n. Choose 
Xo < Xi < . . . having X as a limit in coi. Let {\n\n G co} be an indexing of 
{X' G A|X' ^ X}. D e f i n e d = {SyJ\y Û <x, j £ co} and ^ = {BaJn G co}. 

Since S^a and ^ a are countable, there is a function / a : Sea —» X a such t h a t 
/ „ ( £ ) G 5 for all B G ^ « and, if 5 G ^ « and S C\ B H X a ^ 0 for infinitely 
many B G «^«, t h e n / a ( 5 ) G S for infinitely many B G «^«. 

For « G co, let T 7 ^) = {B G &a\fa(B) = x7 G L ; for some7 ^ i, Xn < 7 < X, 
and J3 C £«,»}. H £ G F(0), then there is an n such t h a t 5 G F(w) - F (n + 1). 
If B G ^(w) — Fin + 1 ) a n d / a ( B ) = xy, then there is an integer m such tha t : 

(a) Uy,m C Baj7ir\ (\JjuiFj), and 
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(b) if k < n and Ve* < Xn, then Uy<m P\ Z\k = 0. 
(b) is possible since Z\k is closed in (Xa, r a) and Z\k C ^x** C X\n if \k* < Xw. 
Define C7B = Uy,m for 5 G F(0) , and define E/a,n ={xa} U U{ # B | 5 G F(w)}. 

Since a regular, Hausdorff, countable space is metrizable, the whole induction 
hypothesis will clearly hold for /3 if we can show tha t each Uy<j for y < a and 
each Z\> for X' g a is still closed in (Xp, rp). 

If V Ç A and V g a, then X' = X* for some k G co. Since X** < X* g a = 
X + a for some a G co, there is an w Ç co such tha t k < n and \h* < Xn. For all 
m ^ n, Ua,m r\ Z\> = 0, so xa $ clr/3(ZxO- Thus Z\/ is closed in {Xp, rp) since 
Z\ ' is closed in {Xp, rp). 

Similarly, if y < a and j £ co, the only possible boundary point of UyJ in 
(Xp, rp) is xa. Suppose tha t y is the smallest ordinal such tha t xa G c\T^{UyJ) 
for some j £ co. Choose B £ & such tha t xT G £ bu t xa (? clp{B). By (5) of the 
induction hypothesis, there is a finite G C { Use A^ < 7Î& £ co} such tha t 
Uyj — B = U G - 5 . Thus , if xa G cUptUyj), then xa G C1T / 3(U G). Hence 
x £ clr/3(/7y)A;) for some S^ < y and fe £ co. But this contradicts the minimality 
of 7. 

Having defined rp for all /3 £ coi inductively, let r be the topology on X 
induced by using { Ua,n\

a £ coi, w £ co} as a subbasis. Clearly \X\ — coi, (X, r ) is 
Hausdorff, 0-dimensional, locally countable, and first countable. 

We want to prove tha t (X, T) is hereditarily separable, normal, and not 
countably paracompact . T o this end we prove: 

(a) If W is open in (R, p), F C Ljfor some j £ co, and \ Y C\ B\ = uifor all 
WDB £ 3?, then there is a y £ co, such that dT{Y H Xy) D {[W C\ (Uj£<L<)] 
- X 7 ) . 

Proof. Since | F H B\ = coi for all VF 3 5 G ^ , we can choose co < 7 ( 0 ) < 
y(0) < T ( 1 ) < S^(I) < • • • in co! such tha t S ^ , , C Xy(n+1) - X7 ( n ) , 
Sy(n)j C F, and c l p ^ ^ ^ . j ) 3 W. Let 7 = sup{y {n)\n £ co} and suppose tha t , 
contrary to (a), there is a smallest a ^ 7 such tha t xa £ W7 H L* for some 
i è j and xa g c l r ( F P \ Xy). Since a ^ 7 > co, there is a X £ A such t ha t 
a = X + a for some a £ co. 

We first show tha t 7 ^ Â. Since xa £ clpSsu)^ f ° r each w £ co, by (8), 
X « É C l r a + 1 U n (58(n) , i ) C Cl r \Jn {SHn) , , ) C c l r ( F n X y ) . S o 7 < X. 

Next we suppose tha t X = X' + co for some X' G A. By (7) xa £ clTa+1(5\f</) C 
clT{S\tj). Since xa £ W and r Z) p, x<* £ cl r(Sx,; H IV7). 
But by the minimality of a, (SX),- H I f ) C c l r ( F H X 7 ) so xa £ c l T ( F H X 7 ) . 

Similarly, if X is a limit of 7 = X(0) < X(l) < . . . in A, then by the mini­
mali ty of a, (5x ( n ) , ; n W) C c\r(Y r\ Xy) for all X(w). But by (8), since 
xa £ IF and r D p, xa G clT Uw (^Mn)j ^ W). So xa G c l T (F P\ X 7 ) in all cases. 

We next prove: 

(b) If S C X , //^re w a <r(S) £ coi, and for each i G co, a W^^ which is open in 

https://doi.org/10.4153/CJM-1976-098-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-098-8


1004 I. JUHASZ, K. KUNEN AND M. E. RUDIN 

(R,p) such that clT(SnX,w) D ([WStin (UiZjL,)] -X^andKSnLi) 
- Ws,i] C I ^ ) . 

Proof. Fix i G co and let 5 , = 5 H L , L e t / = {B G ^ | 5 H S,| ^ coj and let 
J = clp ( U / ) . Since L , is Lusin and | U {B HS^B g / ) | ^ co, (jr\St) C X g 

for some <5 G coi. Define W^,* = X — J. 
By (a) there is a 7 G co, such t h a t clr(S< H X 7 ) C ([W^s,* H ( U < ^ £ * ) ] -

X 7 ) . Define <,* = 7 + y . 
Finally, define o-(5) = sup{a*|i G co} ; since all of the desired properties hold, 

(b) is proved. 

Let us now prove t h a t (X, r ) is hereditarily separable. If S C X , then 
choose a(S) and Ws,i as in (b). T h u s clT(5 P\ X ^ ) D 5 and 5 is separable. 

I t is somewhat more difficult to prove t ha t (X, r ) is normal, bu t assume tha t 
i f and K are closed and disjoint in (X, r ) . Choose <r(H), cr(K), WHtU and WK<i 

for all i as in (b). Let cr = <r(H) + cr(i£). Observe t ha t WH = U ^ W#,* and 
^ K = U*<EO> W^,* are disjoint. T o see this suppose t h a t i ^ j . By (b), 
clrff D (W^.i H L ; ) - Xa and clTi£ D ( ^ , , C\ L,) - XG. Thus , since Lj 

intersects every nonempty open subset of (R, p) in an uncountable set, 

wHtir\ wKJ = 0. 
Define H' = {x G H\x G clpWK] and X ' = {x G X |x G cl pW^}. Since 

H' C\ WH = 0, # ' C X a ( i 7 ) by (b). Since i i ' is countable, # ' = Ax for some 
X G A. So H' C Zx C X \ and Z\ is clopen in (X, r ) . Similarly there is a 
X' G A with K' C Z\ ' C X\> and Z\> is clopen in (X, r ) . Define o' = 0- + X + X'. 
Since ( Z ^ , 7v) is metric, there are disjoint open U and F in Xa> such t ha t 
(if H X..) C î / a n d (2£ H X9.) C F . Let E/* = (WH - Z v ) U (Î7 - c l c ^ ) 
U ( Z x n U) and F* = (W* - Zx) U ( 7 - c l p ^ ) U (Zx> H F ) . Then 
i f C U*, K C F*, and U* and F* are open in (X, r ) and disjoint. T h u s we 
have proved tha t (X, r ) is normal . 

I t remains to show tha t (X, r ) is not countably paracompact . For each 
n G co, define Dn = U ^ ^ J ; then Dn is closed in (X, r ) and Onçw -Pw = 0. If 
(X, r ) is countably paracompact , there are Un D Dn with f/n open in (X, r ) 
and Onçco Ĉn = 0- Suppose t h a t [7n Z) i \ is open. Since L0 is Lusin in (R, p), if 
|L0 — Un\ = coi, there is an open in (R, p) subset 17 of R such tha t \B Pi (L0 — 
C/„)| - co! for all WD B G ^ . Thus , by (a) cl(L0 - C/n) contains all of 
LnC\ W except a countable set. Bu t this contradicts Ln C Dn C £/n and 
|Ln Pi PF| = coi, so Z 0 — Un is countable. Since L0 — Un is countable for all 
n G co, Pin€oj Un j* 0 and (X, r ) is not countably paracompact . 
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