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I. INTRODUCTION 

Recent VLA observations of the lobes of Cygnus A exhibit complex 
"filamentary" structures, with typical scale width ~ 1 arcsec (Dreher, Carilli and 
Perley, 1987, Perley, 1987). The filaments appear aligned with the magnetic field, as 
results from polarization measures, suggesting that the field may play a fundamental 
role in the process of their formation. 

We propose a mechanism for the possible formation of these filaments 
based upon a thermal instability connected with synchrotron emission from rela­
tivistic electrons. This type of instability was studied by Simon and Axford (1967), 
who discussed it in connection with the Crab Nebula filaments, and by Eilek and 
Caroff (1979), who generalized the previous study for application to quasar atmo­
spheres. 

The treatment followed here assumes in addition that the energetic equi­
librium is maintained by continuous replenishment of relativistic electrons stream­
ing from the "hot spot" region. In section II we outline the general picture of the 
stability process, in section III we derive the conditions and the growth rate of the 
instability, and in section IV we discuss the application to the formation of filaments 
in the lobes of Cygnus A. 

II. THE SYNCHROTRON THERMAL INSTABILITY 

Following the approach of Simon and Axford (1967) we consider a two 
components magnetized plasma, where the inertia is provided by protons and the 
internal energy by relativistic electrons. Therefore the system can be described by 
classical MHD equations: 

^ - f V - ( p y ) = 0 , (la) 

dv 1 
p - = -VP + -JxB, (lb) 

dP P dp . _w-, *\ ,* i 

Tt-vji-to-w-Q* (lc) 
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J = V X ( T X B ) , (Id) 

where the pressure is given by P = Ne/3, N is the number density of relativistic 
electrons, e the average energy per electron and p is the mass density of the protons; 
consistently with our assumptions 7 = 4/3). In addition B and J are the magnetic 
field and current density respectively, and Q and £ the absorbed and emitted power 
per unit volume. If the zeroth-order configuration is chosen in energy balance, 
the process of instability can be studied by linearizing the MHD equations, and 
assuming for the perturbed quantities a form oc exp(— ikx — ikz + wi). 

In the present astrophysical application, the energy losses are due to 
the synchrotron emission from relativistic electrons, while the energy input is given 
by continuous supply of particles into the instability region ("lobe region"). If 
we assume that relativistic electrons are accelerated in the "hot spot" (which is 
overpressured with respect to the whole lobe), they diffuse across the lobe region 
streaming along pressure gradients. In this case the energy balance at each point 
can be maintained by continuous advection of energetic particles. While in previous 
works a maxwellian distribution was assumed for electrons (Simon and Axford 1967, 
Eilek and Caroff 1979), here we discuss a power law distribution as expected in radio 
lobes. 

We model this situation considering a rectangular domain, with uniform 
magnetic field directed along the z axis, where energetic electrons are injected at 
one end, and diffuse along the magnetic field with velocity t>o (of the order of the 
Alfven velocity V^), while losing energy by synchrotron radiation. The system of 
equations (1) can be linearized; in agreement with the previous considerations, and 
assuming that the equiUbrium variables vary only along the z direction, parallel to 
the magnetic field), one obtains: 

p 
Pov'0 = -vop'o , Pov0v'0 = - P „ , v0Po - 7—v0p'0 = - ( 7 - 1)£0 , (2) 

Po 

where primes indicates d/dz derivatives, and where we set Qo = 0, as appropriate 
in the lobe region, and 

£0 = CTC-^N0el 3 
' 8 T T ' 

For consistency the scale lengths of the variation of the equiUbrium variables must 
be much larger than the perturbations wavelengths (local instabihty criterion), i.e. 
kzlp > 1, where lp = -P0/P{, and 

with c\ = -yPo/po, and laync — VoT,ync ( r , y n c is the time scale of synchrotron losses). 
By introducing the nondimensional variables: 

Kx<z = kXiZcsT3yne, VAS = — i VA = 
CS 47T/0O 

L = kslp, Vo = — , V„ = v'0T,ync, VA' 
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we get the following conditions for the validity of our approximation: 

V0 = V±—(1+7V{), y0» = _ £ L - , X » ^ , (3) 
VASJH-X LV0VAS KZ 

The dispersion relation, obtained annulling the determinant of the lin­
earized MHD equations (1), is a 6 t h order polynomial: 

a-6 + aio-5 + a2<r4 + a3<r3 + a4<r2 + asa + a6 = 0, (4) 

with a = (w — ikzvo)T,ync. The coefficients of the polynomial (see the Bodo et ai., 
(1988) for their general expressions) depend upon the zeroth order configuration, 
and have the following functional form: 

a,i(Kx,Kz, VAS, «iV) <xe,ctB,L) 

where we have defined 

'(N,e,B) dC 
<*N,€,B OC 

C d{N,e,B) 
(5) 

For a homogeneous plasma (L —> oo) «te = 0, and Eq. (4) is reduced 
to a 5th degree polynomial, while, if Kz = 0 also, the dispersion relation becomes 
a third degree polynomial that, for the particular case of Kx ^ 1, leads to the 
following stability condition: 

aN~at(l + 7Vls)+aB>0, (6) 

(Simon and Axford 1967). 
In this case the unstable mode is a purely growing filamentary pertur­

bation aligned with the magnetic field. In the following Section we shall discuss 
some numerical roots of Eq. (4) by choosing for the parameters values consistent 
with the physical conditions in the lobes of Cygnus A. 

INSTABILITY ANALYSIS 

The growth rate of unstable perturbations has been evaluated numeri­
cally by means of a NAG routine for the search of the roots of a high order poly­
nomial, and are presented in function of the values of the physical parameters. 
Concerning the values of a, it is found for synchrotron losses ccjv = 1, and a a = 2, 
while the value of ae depends from the spectrum of relativistic electrons. For a 
maxwellian distribution with an average energy e, is at = 2. For a power law distri­
bution e depends from the spectral parameters, namely the maximum (erooa.) and 
minimum (emj„) energy cut-offs, and the spectral index V. The values of a are then 
evaluated form Eq.(5) by assuming that in the instability process the spectrum is 
varying only one of the three parameters emax, €min, and T. If we assume a typical 
spectral index T = 2.5, and emax/tmin = 103, we have from Eq.(5) (see also Bodo 
et ai. 1988) <x€ ss 4 (varying T), ae « 1.5 (varying emj„) and a€ « 0 (varying emax). 
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The nondimensional wavenumbers Kx and Kz, can be expressed in 
terms of physical variables: 

106 

Ape 

where vw is the frequency of radio emitting electrons in units of 10 GHz, B_B is 
the magnetic field in units of 10~5 gauss, n«/l_4 is the number density of thermal 
particles in units of 1 0 - 4 cm"5, and Ai.'" are the components of the perturbation 
wavelengths, in units of 1 parsec, perpendicular and parallel to the magnetic field 
direction. From the typical values of the physical parameters of the extended radio 
lobes, and for perturbations much smaller than the typical sizes of radio compo­
nents, we must have in general KX,KZ < 10 5 - 6 . If furthermore is VAS ~ 1 (as 
from equipartition conditions) conditions (3) provide a rough estimate of L: for the 
results presented here it will be assumed L = 10s 

The growth rate (Re(<r)) is plotted vs. Kz for a fixed vale of Kx (= 105), 
for some values of VAS, and for three values of at: a€ — 4 (Fig. 1), a( — 1.5 (Fig. 2) 
and ctf = 0 (Fig. 3). First of all we notice as a general feature for all unstable 
perturbations, that they are always travelling modes (Im(<r) ^ 0), as expected 
from the assumption of a travelling plasma, therefore the ratio Kt/Kz is related 
with the propagation direction of the perturbation with respect to the magnetic field 
direction. Three unstable modes are found: the perturbation analyzed by Simon 
and Axford (1967), modified by the streaming plasma (we call it the condensation 
mode), and two slow MHD modes (with opposite phase velocities). The former 
mode has large growth rate for small values of Kz, but it is sharply damped by 
increasing Kz; conversely the two slow MHD modes have a constant growth rate 
for a large range of values of Kz, and are damped for Kz approaching Kx. This 
stabilization is expected taking into account that for KK/KZ —• 0 the magnetic field 
perturbation, which drives the instability, tends to vanish. In addition we see that 
increasing the magnetic field strength tends to stabilize the perturbations since it 
inhibits the pressure build-up associated with them, more precisely, in the present 
case, stability is found for VAS » 1- Finally, the general behavior of the instability 
is not very sensitive to the spectral parameters, even though the exact value of the 
growth rate can vary. 

lll.SUMMARY 

We can summarize our results as follows: 
1) The thermal instability related to the synchrotron emission can be present in the 
lobes of Cygnus A under a quite wide range of conditions. 
2) The typical time scale of development of instability is ~ Ttync. 
3) The most unstable modes are found for small values of Kz, i.e. for modes 
propagating almost perpendicular to the magnetic field direction, which is in accord 
with the observational data. 
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Figure 1: Growth rate (Re(<r)) as a function of Kz for Kx = 10s, VAS = 0.1 (dashed 
hnes), and VAS — 0-5 (solid hnes), with a€ = 4. 
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Figure 2: Same as in Fig. 1, with a( = 1.5. 
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Figure 3: Same as in Fig. 1, the dot-dashed line is for VAS = 1> a n <l a« — 0. 
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