
FACTORIZATION RINGS 

J.-M. MARANDA 

1. Introduction. Let o be an integral domain with $ as field of quotients. 
W. Krull has shown (3 ; 4) that the following three conditions on o are equiva­
lent: 

1. There is a set of rank 1, discrete valuations of $ , {Vi\ itI, such that for 
each non-null element a Ç $ , Vi(a) = 0 for all i Ç / except a finite number, 
and such that for all a Ç $, a 6 o if and only if Vi(a) > 0 for all i £ I. 

2. Every non-trivial principal ideal of o is the intersection of a finite number 
of formal powers of minimal non-trivial prime ideals of o. 

3. The partially ordered semi-group of classes of quasi-equal non-null ideals 
(fractional) of o is a group with unique factorization theorem. 

Krull called an integral domain o satisfying these conditions an "endliche 
diskrete Hauptordnung" and showed that there is a minimum set of rank 1, 
discrete valuations of $ satisfying 1. We may notice that a Dedekind ring 
is an "endliche diskrete Hauptordnung" for which the theory of quasi-equality 
is trivial, i.e. if two ideals are quasi-equal, then they are equal. 

The object of this paper is to generalize this theory of integral domains 
to a theory of arbitrary commutative rings with unity element. For simplicity, 
we will call these generalized "endliche diskrete Hauptordnungen" ''factor­
ization rings". 

The reader will soon realize that the theory of quasi-equality of van der 
Waerden and Artin (7, §105), generalized to the case of an arbitrary com­
mutative ring with unity element, is the fundamental tool utilized. 

We will obtain in particular, those known results concerning Noetherian 
rings that are integrally closed in their full ring of quotients, that are given 
in (5, §4.7 and §4.9), most of them in a more general context (the ascending 
chain condition is not necessarily valid for the ideals of a factorization ring), 
and by methods that are undoubtedly ''multiplicative." 

In §6 we will define the notion of a "generalized Dedekind ring", and 
although we cannot go into any details here in the introduction, we may 
remark that for such a generalized Dedekind ring o, if the ascending chain 
condition is valid for its ideals, then, for any ideal a of o, 

a = as Pi p2 . . . Pr 

where S is the set of all regular elements of o, where as is the isolated com­
ponent of a determined by S and where the pt are relevant prime ideals (5, 
p. 76) of o, and this decomposition is "unique" in a certain sense. This is an 
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obvious generalization of the unique decomposition theorem for the ideals 
of an ordinary Dedekind ring. 

Finally, if O is a commutative ring with unity element, and if the descend­
ing chain condition is valid for the ideals of O, then we will determine, in §7, 
all orders of © that are Noetherian generalized Dedekind rings. 

2. Valuations and Subvaluations. Let us consider a commutative and 
associative ring £). 

Definition. A function V of D onto a partially ordered semi-group M will 
be called a valuation1 of £) if for all a, b, c G O , 

VI. V(a) < V{b) & V(a) < V(c) -> V(a) < V(b - c) 
V2. V(ab) = V(a) V(b) 

We will call M the ordered semi-group of values of V. In the case where M 
is totally ordered, VI may be replaced by 

VI' . V(b- c) > m i n {V(b), V(c)} 

Definition. A reflexive and transitive binary relation R on £) will be called 
a subvaluation of £) if for all a, b, c, d G D, 

51. aRb & aRc -> ai?(6 - c) 
52. ai?& & ci&2 -» aci^W 

If F is a valuation of £) and if we define the relation R on £) as follows: 
for all a, ô Ç O , ai^ô if and only if V(a) < V(b), then it is easily verified that 
R is a subvaluation of O. We will say that R is the subvaluation of £) deter­
mined by V. 

Conversely, let R be a subvaluation of O. If we define the relation ^ o n O 
as follows: for all a, b Ç £), a^6 if and only if aT ô̂ and bRa, then one can 
verify the following: 

1. The relation R is an equivalence relation and if V is the natural function 
of O onto the quotient set M = £)/R, then one may define a partial ordering 
relation on M as follows: for all a, b Ç O, F (a) < F(6) if and only if aRb. 

2. The relation R is multiplicative so that one can define an induced multi­
plication on M, and with respect to this operation and the partial ordering 
relation defined above, M is a partially ordered semi-group. 

3. The function F is a valuation of D with M as ordered semi-group of values 
and V determines the given subvaluation R of £). 

Let F be a valuation of D with ordered semi-group of values M and let R 
be the subvaluation of £) determined by V. For all a 6 D, we have aRO and 
aR{— a), for, since R is reflexive, aRa, and by SI, 

aRa & aRa —> aR(a — a) 
aRO & aRa -> aR(0 - a) 

Hn the case where © is a field and M is a partially ordered group with added symbol œ r 

this definition is not new, see e.g. (2). 
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The corresponding properties for 7 are: for all a G O, V(a) < 7(0) and 
V(a) < V{- a) so that 7(a) = F ( - a). 

PROPOSITION 1. /f 

a = {a G £\0Ra} = {a G 0 | 7(a) = 7(0)} 

then a is an idea/ of O which we will call the kernel of V. If a, b G O, ^en 

a s ft (mod a) -> 7(a) = 7(6) 

Proof. lî a, b G a, then 0i?a and 0i?6 so that by SI, (XR(a - 6) and a - b G a. 
If a 6 a and ô GO, then Oifo and bRb so that by S2, ObRab therefore, ab G a. 

Now if a, 6 G O and if a — b G a, then 0i?(a — 6), and since R is transitive, 

ai?0 & 0R(a - b) -> ai?(a - 6) 
6i?0 & 0R(a - b) -» 6i?(a - 6) 

Then, by SI, 

ai?a & ai?(a - J) -» ai?(a — (a - 6)) 
6i?(a - b) & bR(- b) -> 6i?((a - J) - ( - 6)) 

i.e. ai?6 and bRa so that 7(a) < 7(6) and 7(6) < 7(a) and therefore, 
V(a) = 7(6). ^ ^ ^ • 

We may notice that if a, b G O and if V{a) = 7(6), it is not necessarily 
true that a is congruent to 6, modulo a. 

Now if 0 is a homomorphism of O onto a ring O', and if the kernel of <j> 
is contained in the kernel a of 7, then, by Proposition 1, one can define a func­
tion 7 ' of £>' onto M by setting 7 ' (0(a)) = 7(a) for all a G O, and it can 
easily be verified that V is a valuation of O' with M as ordered semi-group of 
values. We will call 7 ' the projection of 7 by <t>. Notice that the kernel of V 
is just 0(a). 

Conversely, if V is a valuation of O' and if for all a G O one sets V{a) = 
7'(0(a)), one can easily verify that 7 is a valuation of O and that the kernel 
of <j> is contained in the kernel of 7. 

If O is a commutative ring with unity element, then the relation of divisi­
bility "a divides b if and only if there exists an element c G O such that 
b = ac" is evidently a subvaluation of O. By this definition of divisibility, 
every element of O divides 0 so that we will use the term "regular element" 
to denote those elements a G O that have the properties "a ^ 0 and for all 
b G O, ab = 0 implies that b = 0," instead of the usual term "non-divisor 
of zero." 

From now on, O will always denote a commutative ring with unity element 
in which every regular element is invertible. Also, G will denote the totally 
ordered additive group of ordinary integers, G' will denote the totally ordered 
semi-group obtained by adding the symbol œ to G with the laws 

1. for all u G G', u < <» ; 
2. for all u G G', u + °° = °° -(- u = oo ; 
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and G" will denote the totally ordered semi-group obtained by adding the 
symbol oo ' to G' with the laws: 

1. for all « G G", oo ' < U; 
2. for all u G G, » ' + w = # + 00 '= œ'; 
3 . o o ' + o o ' = o o ' ; 

4 . o o ' - | - c o = o o - | - o o / = 00. 

DEFINITION. We will say that a valuation V of O is special if Gr is the ordered 
semi-group of values of V and if there exists a regular element a G D such that 
V(a) > 0. 

If F is a special valuation of £), there exists an element a G £) such that 
F (a) 5̂  00 and then, 

F(a) = 7( la ) = 7(1) + V(a) 

so that 7(1) = 0. Also, if a is a regular element of O, then 

0 = 7(1) = Viaa'1) = V(a) + V(al ), 

so that V(a) ^ 00. 

LEMMA 1. If V is a special valuation of O and if we set 

0 = {a G £>\V(a) > 0} 

then 0 is an order of £). We will say that 0 is the order of £) determined by 7. 
If o' is any order of £) with the property that for all a G o', V(a) > 0, and if 

for each positive integer n we set 

q n = {a G o' |7(a) > n) 

then $ = (\\ is a proper prime ideal of o' containing a regular element and the 
qn are all ^-primary ideals of 0'. Furthermore, if we set 

p' = {a G o'\V(a) = 00} 

then p' is a prime ideal of 0' and 
00 

P' = n q „ . 
w = l 

Finally, if 0 = o', £&e qn are a// distinct and p' is a prime ideal of £). 

Pros/. If a, 6 G 0, then F(a) > 0 and V(b) > 0 so that 
Via - 6) > min {7(a), 7(e)} > 0, 7(aft) = V(a) + V(b) > 0 

and therefore, a — b, ab Go. Since 7(1) = 0, 1 G 0. By the definition of a 
special valuation, there exists a regular element a G D such that 7(a) > 0 
so that a G 0 and if b is any element of 0 that is not in 0, then there exists a 
positive integer n such that V(an) = nV(a) > — V(b) so that 

V(anb) = V(an) + V(b) > 0 

and anb G 0. We have thus shown that 0 is an order of O. 
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If a, 6 G qn, then V(a) > n and 7(6) > » and therefore, 

V(a - b) > min {F(a), 7(6)} > n 

so that a — b G qn. If a G q» and 6 G o', then V(a) > w and 7(6) > 0 so 
that 

V(ab) = V{a) + V(b) > n 

and therefore, ab G qn. The q„ are thus ideals of o'. 
If a G p,then V{a) > 1, so that F(aw) = nV(a) > n and therefore, an G q„. 

Therefore, p C rad qn. If a, 6 G o', a $ p and a6 G qn, then V(a) = 0 and 
V(ab) > n so that 

7(6) = 7(a) + 7(6) = 7(a6) > n 

and therefore, b G qn. This proves that p is a prime ideal of o' and that each 
qra is p-primary. Since 7(1) = 0, 1 $ p so that p is a proper ideal of o'. By the 
definition of a special valuation, there exists a regular element a G o such that 
V(a) > 0, and since o' is an order of D, there exists a regular element b G o' 
such that ba = c £ o'. Then c is a regular element of o' and V(c) = 
7(6) + 7(a) > 0 so that c G p. 

I t is evident that 
CO 

*>' = n q» 

so that p' is an ideal of o'. If a and 6 are elements of o' that are not in p', then 
7(a) ^ oo 5* 7(6) so that 7(a6) = 7(a) + 7(6) ^ a> and therefore, 
a6 $ p'. Thus, p' is a prime ideal of o'. 

If o = o', then evidently, 

p' = {a GD|7 (a ) = a,}. 

This means that p' is the kernel of 7 so that it is an ideal of O. Just as above, 
one may then show that p' is a prime ideal of ©. Finally, if n is any positive 
integer, there exists an element a G £) such that V(a) = n. This means that 
a G c\n and a $ qn+i. Therefore, the qn are all distinct. 

3. The Theory of Quasi-Divisibility. In this section, we give an account 
of the theory of quasi-divisibility of van der Waerden and Artin, generalized 
to the case of an arbitrary commutative ring with unity element. The proofs 
are easy generalizations of those given in (7, §105) and will be left to the 
reader. 

Let o be an order of £). By an o-ideal of £), we mean simply an o-submodule 
of £), and we denote the set of all o-ideals of £) by £(o). The ordinary ideals 
of o are just those o-ideals of £) that are contained in o; we will call these the 
integral o-ideals of £) or just simply the ideals of o. 

If as usual, one defines the product of two o-ideals a and b of D to be the 
o-ideal of £) generated by the set of all products ab, where a G a and 6 Gb, 
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then with respect to this operation and ordinary set inclusion, 8(0) is a com­
mutative partially ordered semi-group with the following properties: 

1. 0 is the unity element of 8(0); 
2. The null ideal (0) is the zero element of 8(0); 
3. 8(0) is complete and distributive, i.e., if {ai}i€i is a set of elements 

of 8(0), then 2ai (the sum of the a* considered as o-submodules of ©) is the 
least upper bound of {cLi}itI; 

Dai 
iel 

(set-theoretical intersection) is the greatest lower bound of {ai}iei and if 
a G 8(0), then 

a X ai = 2Ç <*<**• 
it I it I 

If a € 8(0), we denote by a - 1 the set of all a G © such that act C 0. One 
may show that a - 1 is the largest o-ideal b of © with the property bet C 0, 
and if a is invertible, then its inverse is a-1. If a is a regular element of 0, then 
(a)-» = (a-1). 

DEFINITION. If a, b G 8(0), we say that a quasi-divides b and write a < b, 
# a"1 ç b~K 

Let us notice that a Ç f ) implies that a ^ b. 
The relation of quasi-divisibility is a reflexive and transitive relation on 

8(0), and furthermore, it is multiplicative. We may then define a relation of 
"quasi-equality" on 8(0) as follows: a is quasi-equal to b, which we write 
a ^ b, if a < b and b < a, i.e. if a - 1 = b~\ and this relation is a multiplicative 
equivalence relation on 8(0). We will denote with 8(0) the set of equivalence 
classes of 8(0), determined by the relation of quasi-equality, and if a G 8(0), 
we will denote by a that class in 8(0) that contains a. Since the relation of 
quasi-equality is multiplicative, one can define an induced product on 8(0) 
and the relation of quasi-divisibility induces a partial ordering relation on 
8 (0), which we denote with the same symbol '* < ", and which is multiplicative, 
so that 8(0) is a partially ordered semi-group with 0 as unity element and (0) 
as zero element. 

PROPOSITION 2. If a, b G 8(0), then a < b if and only if (a - 1 ) - 1 3 b. 

COROLLARY 1. For all a G 8(0), a ~ ( a - 1 ) - 1 and for all b G 8(0), a ~ b 
implies that (cr1) - 1 2 b. 

From now on, for all a G 8(0), we will denote (a - 1 ) - 1 by a*. Of course, if a 
is invertible, a = a*; this is true in particular for the principal o-ideals of © 
generated by regular elements. 

COROLLARY 2. If a G 8(0), then a > 0 if and only if a Q 0. 
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COROLLARY 3. If {at} m is a set of elements of 8(0), then 

UI it I 

are, respectively, the greatest lower bound and least upper bound of {ai}i€l in 
8(0). 

Since the relation of quasi-divisibility is a reflexive, transitive and multipli­
cative relation on 8(0), it is evident that if we define the relation R0 on O as 
follows: for all a, b Ç £), aR0b if and only if (a) < (0), this relation is re­
flexive, transitive and multiplicative. Then, if a, b, c 6 O and if aR0b and 
aR0c, then (a) < (0) and (a) < (c), which implies that (a) < (0) + (c). 
But since 

b - c 6 (J) + (<;), (6 - c) > (6) + (0) > (a) 

so that aR0 (b — c). Therefore, R0 is a subvaluation of £). 

PROPOSITION 3. 7/ a, b ana7 c are ideals of 0, if a + b ~ 0 and if a + c ~ 0, 
/Ae» a + be ~ 0. 

PROPOSITION 4. 7/ a aw J b are ideals of 0 ana7 if a + b ~ 0, Jften a P\ b ̂  ab. 

PROPOSITION 5. 7f a € 8(0) awa7 if a is invertible in 8(0), ^ m a - 1 is /Atf 
inverse of a. 

PROPOSITION 6. If a, b G 8(0), if b is invertible in 8(0) awa7 if a:b denotes 
the set of all a £ D such that ah C a, tf^ew ct:b ^ ab_1. 

DEFINITION. VTe will say that an 0-ideal a 0/ £) is regular, if 
1. a contains a regular element {of D or 0/ 0, 00^ statements are equivalent), 
2. //zere is a regular element a (in £) or ira 0, 00/^ statements are equivalent) 

such that aa Q 0, i.e. a - 1 contains a regular element. 

Let g(o) denote the set of all regular o-ideals of £). Then g(o) has the 
following properties: 

1. g(o) is closed under multiplication. 
2. 0 e 8(0). 
3. If a Ç g(o), then a"1 C g(o). 
4. If a, b G g(o), then a + H g(o) and a H b £ g(o). 
5. If {at} t c / is a set of elements of %(o) and if this set has an upper bound 

in g(o), then 
Z a, 6 g(o), 

while if this set has a lower bound in %(o), then 

H a , 6 5(o). 

Since the distributive law is valid on g(o), §(0) is a complete lattice-ordered 
semi-group (1, p. 201). 
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Let us denote by §(o), the set of all a, where a Ç 3(o). We may notice 
that although a $ §(o), it may very well be that a - 1 Ç §(o) and therefore, 
a Ç g(o). It can easily be shown that %(o) is also a complete lattice-ordered 
semi-group. 

DEFINITION. An element a £ D is said to depend almost integrally on o 
if there exists a regular element 6 Ç o such that 6aw Ç o for all natural in­
tegers n. If every element of O that depends almost integrally on o is in o, 
then o is said to be fully integrally closed in £). 

If o is fully integrally closed in £) and if the ascending chain condition is 
valid for the ideals of o, then o is integrally closed in £), that is, every element 
of O which is a root of a monic polynomial with coefficients in o, is in £). 

THEOREM 1. If O is an order of £>, Jfeew g(o) ŝ a group if and only if o is 
fully integrally closed in £). 

4. Definition and elementary Properties of Factorization Rings. Let 
0 be an order of £) which is fully integrally closed in £) so that g(o) is a group. 
From the theory of partially ordered groups, we know that a unique factor­
ization theorem is valid for the elements of g(o) if and only if g(o) satisfies 
the chain condition, that is, if cti > cto > ct3 > • . • is a properly descending 
chain of elements of 2f(°)> where cti > o for all indices i, then this chain is 
finite. When g(o) satisfies this condition, then we will say that o is a factoriza­
tion ring. Let us recall that an element p of g(o) is a prime element if and only 
if p > o and p > a > o implies that a = o (one may say "for all^a G S(o)" or 
"for all a £ S(o)," since p > a > o and p Ç g(o) imply that a £ g(o)), and 
that the unique factorization theorem states that if a £ S(o), then 

a = pi p2 . . . pr 

where the p2 are prime elements of $(o), this decomposition being unique, and 
a > 0 if and only if nt > 0 for all indices i. 

Throughout this section, we assume that o is a factorization ring with £) 
as full ring of quotients. 

THEOREM 2. If p is a prime element of g(o) and if p = p*, Jfeew p is a regular 
prime ideal of o. We will call these prime ideals the relevant prime ideals of o. 

_ Proof. If a, b £ o, aô G p and J £ p, then (J) + p D p = p* so that 
p > (6) + p > o and therefore, (b) + p ~ o. Then, (a) = ao ~ a(Jô) + p) 
= (aô) + ap Ç p so that (a) > p and therefore, a £ p* = p. Since p Ç g(o) 
and p = p*, p must contain a regular element of o. 

LEMMA 2. If $ is a relevant prime ideal of o and if a and b are ideals of o, 
then, 
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1. if a > pm, a *\> pw+1, b > pn and 6 ;l> pn+1, T^e/^ w and n are non-negative 
integers, then ab > pm+n and ab *\> $m+n+l. 

2. if/or all natural numbers n, a > pw, then for all n, ab > pw. 

Proof. First of all, let us suppose that a and b satisfy the hypothesis of the 
first case. Then surely, ab > pm+re. If ab > $m+n+\ then (ap~m) (bp~w) > p so 
that (ap~m) (bp~w) C p. But since ap~™ > o and bp~w > o, ctp-™ and bp~w are 
ideals of o so that ap~m C p or bp~" C p which implies that a > pm+1 or b > p n + \ 
contradicting our hypotheses. 

The second case is trivial since ab Ç a and therefore, ab > a. 
Now, if p is a relevant prime ideal of o, we may use p to define a valuation 

F on o as follows: if a 6 o and if there is a non-negative integer n such that 
(a) > pw and (a) ;|> pw+1, we set V(a) = n, while if for all natural numbers n, 
(a) > pn, we set V(d) = œ. By Lemma 2, for all a, 6 G o, F(a&) = F (a) 
+ V(b). Now, if a, 6 Go and if n is a non-negative integer such that (a) > pn 

and (b) > pw, then since (a — b) Q (a) + (b), we have 

(Cor. 3, Prop. 2) so that V(a — 6) >min { F (a), F(#)}. If a is a regular element 
of o, since (a) G 5(o), it is evident that V(à) 9e °°. We may then extend the 
function V to all of D as follows: if a G O, a = b/c, where b, c Ç o and c is 
regular, and we set F (a) = V(b) — V(c). Then, one can easily verify that V 
is well defined on all of £) and that it satisfies VI ' and V2. If n is any non-
negative integer, since (pw+1)* ^ (pn)*> there is an element a £ (pw)* such 
that a $ (p**1)* and therefore, F (a) = «. Evidently, 7(0) = œ. Now p 
contains a regular element a, and therefore, Via) = m > 0, and if w is any 
positive integer, one can find an integer k such that V(ak) = km > n and 
therefore, there exists an element b Ç o such that F(6) = &ra — n so that 

F(far*) = V{b) - V(ak) = - n. 

Thus F is a special valuation of £). We will say that F is the valuation of © 
determined by the relevant prime ideal p of o. 

THEOREM 3. If p is a relevant prime ideal of o and if V is the valuation of O 
determined by p, then for each positive integer n, 

p(«) = (p»)* = {a e o\V(a) >n}. 

Proof. If a Go, V(a) > « if and only if (a) > pw, which evidently means 
that a £ (pw)*, so that 

(„»)* = {a ç o|F(a) >?z}. 

Then, by Lemma 1, each (pw)* is a p-primary ideal of o and since pw C (pw)*, 
p(») ç (pW)*4 if a ç (p»)*f then (a) > pw and therefore, a(pn)-x ÇZ 0. Since 
(pn)_1pn ~ o, there exists b G (pn)_1pw such that b $ p. Then 
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ab e ^((p*)-1 pn) = (a^)'1) p" Ç pn 

so that a Ç (pn)p = p<n> and therefore, p<w> = (pw)*. 
Under the hypotheses of Theorem 3, if we set 

P ' = M o|7(a) = OD} 

by Lemma 1, p' is a prime ideal of o and 

P' = n P(W) . 
n=l 

We will call p' the associate of p. 

THEOREM 4. If p is a relevant prime ideal of o and if p' is the associate o/p, 
then p' has the following properties: 

1. for every natural integer n, p' > pn awd p' contains any o-ideal of O that 
has this property, 

2. (py* = pr. 
3. aw;y prime ideal of o £/wz£ is properly contained in p, is contained in p \ 

Proof. If w is any natural integer, for all a 6 p', (a) > pn, so that by 
Corollary 3 of Proposition 2, 

P7 = £ (a) > P" • 
aep' 

Then, if a is any o-ideal of £) with the property that for all natural integers w, 
a > pn, for all a Ça , (a) > a > pw so that V(a) = °° and therefore, a Ç p' 
and a Ç p'. In particular, (p')* has this property, so that (p')* = p'. 

Let a be an ideal of o such that a CI p and a (2 p'. Then, there is a non-
negative integer n such that a > pn and a *\> pw+1. Now (ap-1)P =

 G(P_ 1P) ^ ct. 
Since a C p, p (2 a and ctp-1 > o so that ctp-1 ç o. If ap_1 C a, then ctp-1 

> a > pn so that a > pn+1, a contradiction. Therefore, a is not a prime ideal 
of o. 

THEOREM 5. If a is an ideal of o such that a 6 S(o), and if 

a — pi p2 . • • Pr 

where pi,p2, . . . , pr 0^0 relevant prime ideals of o, £/zew 

a* = p(iB1) nrèm2) n . . . n i ï r ) . 
Proof. Since a is the least upper bound, in g(o), and therefore also in 8(o), 

of the set 

{pl , p2 , . . . , pr } 

by Corollary 3 of Proposition 2, 

a ~ »ini) n të2) n • • • n ^nr) 
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and therefore, 

a* 2 pi"0 n p2n2) n . . . n p(;r) 

But since, for each i = 1,2, . . . , r, 

a* — a > p*1', a* ç p?'0 

and therefore, 

a* ç piB,) n p2B2) n . . . n iïr>. 
COROLLARY 1. If a is a regular element of o and if a is not a unit of o, then 

(a) = pi n P2 n ... n pr 
w&ere pi,p2, • • • , pr are relevant prime ideals of o. 

COROLLARY 2. 77*e relevant prime ideals of o are jws£ the minimal proper 
regular prime ideals of o. Every regular prime ideal of o contains a relevant prime 
ideal of o so that the non-minimal regular prime ideals of o are all quasi-equal 
to o. 

Proof. Since the relevant prime ideals of o are regular and since no relevant 
prime ideal is properly contained in another, all we have to show is that any 
regular prime ideal p of o contains a relevant prime ideal of o. 

We need only consider the case where p ^ o, and then, p contains a regular 
element a which is not a unit of o, so that by Corollary 1 of Theorem 5, 

(a) = pirei) n ̂  n . . . n p(,nr) 

where pi,p2, . . . , pr are relevant prime ideals of o, and evidently, p must contain 
one of them. 

THEOREM 6. If p is a relevant prime ideal of o, then the only p-primary ideals 
of o are the formal powers of p. 

Proof. Let q be a p-primary ideal of o. Since p contains a regular element a 
and since rad q = p, am G q for some positive integer m and q is regular. Since 
am is not a unit of o, by Corollary 1 of Theorem 5, 

{a ) = pi n p2 n ... n pr 
where pi,p2, . . . , pr are relevant prime ideals of o, and p must contain one of 
these, say p ID pi. Since p is relevant, p = pi. Then p^P = (am)p and since 
q is a p-primary ideal containing (am), 

q 2 p(*i) 

so that 

q < Pni 
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and therefore, q ^ pw for some positive integer n < rt\ and q Ç p(w). Then , 
by Proposit ion 6, 

q:p(w) ~ qO)™)-1 ~ q(pw)_1 ~ o 

so t h a t there exists an element b G q:p(w) such t h a t b $ p. Then , Z>p(w) Ç q, 
and since b $ p and q is p-primary, p(w) Ç q. 

COROLLARY. / / a is an ideal of o and if 

co ^ n = min { F (a ) | a G a} 

/^en ap = p(7° (63/ definition, p (0) = 0). 

Proof. I t is evident t h a t a £ p (n) and t h a t a (2 P(/z+1)- If P were not a minimal 
prime ideal of a, then p would properly contain a minimal prime ideal of a, 
which, by Theorem 4, would be contained in p' so t ha t a Ç f', a contradict ion. 
Therefore, p is a minimal prime ideal of a and dp is p-primary. Then , since 
a Q p (?0, ctp Ç pw and since a Ç dp, dp <£ p^+1> so t h a t by Theorem 6, 
up = p(?2). — 

T H E O R E M 7. / / p is a relevant prime ideal of 0, i/* p' w the associate of p a wo7 if 
V is the valuation of O determined by p, then (o/p')(p/p') ^ # regular local ring 
of dimension 1 {valuation ring determined by a discrete, rank 1 valuation of its 
field of quotients) and if <j> denotes the natural homomorphism of 0 onto o/p' , 
then, for any two elements a, b £ 0, V(a) < V(b) if and only if cf>(a) divides 
(t>(b) in (o/p')ovp'). 

Proof. Since p' is a prime ideal of 0, o/p ' and (o/p')(p/P') are integral domains . 
Since every prime ideal of 0 t h a t is properly contained in p mus t be contained 
in p' (Theorem 4), the null ideal is the only prime ideal of o/p ' t h a t is properly 
contained in p /p ' so t h a t (o/p')(p/*>') contains only one non-trivial pr ime ideal. 
Then , an arb i t ra ry non-trivial ideal of (o/p') (*>/*>') mus t be a pr imary ideal 
belonging to this unique non-trivial prime ideal. Now, the only p-primary 
ideals of 0 are the formal powers of p (Theorem 6) and they are total ly ordered 
under ordinary inclusion and all contain p' so t h a t the p/p ' -pr imary ideals 
of o/p ' are total ly ordered under ordinary inclusion and therefore, the non-
trivial ideals of (o/pOip/p') are also total ly ordered under ordinary inclusion. 
Thus , (o/pOcp/p') is a regular local ring of dimension 1. 

If a, b G 0, V(a) < V(b) if and only if for all non-negative integers n, 
(a) > p" implies t h a t (b) > pw, t h a t is, a G p(?,) implies t h a t b G p(/° or 0 (a ) 
G <£(p(w)) implies t h a t <j)(b) Ç 0(p ( ? o) , which evidently means t h a t 0 (a ) 

divides 0(e) in (o/p')(p/?')« 

Remarks. If 0 is an order of £), if 0 is fully integrally closed in O and if the 
ascending chain condition holds for the ideals of 0, then 0 is surely a factoriza­
tion ring, fo r J i cti_> Q2 > dz > • • . is a chain of elements of g(o) and if, for 
each index i, ai > 0, then the ascending chain cti* C ct2* ^ ct3* <^ . . . of ideals 
of 0 mus t be finite. Fur thermore , by Krull ' s Intersect ion Theorem, 
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P' = n r = (o), 
n=i 

so that (O/POCP/P') îs 3ust the generalized ring of quotients Op and p' is a minimal 
prime ideal of o. (We have thus obtained the results of (5, §4.7 and §4.9).) 

Under these assumptions, since the associates of relevant prime ideals of 
o are minimal prime ideals of o, there is only a finite number of them and by 
Theorem 4, for each relevant prime ideal p of o, p' is the only prime ideal of 
o properly contained in p. If a is an ideal of o contained in p', then 

p ' = ( 0 ) » ç a » ç p / = p' 

so that up = p'. Therefore, p' is the only p'-primary ideal of o, and if we set 

p' = n P ( W ) = P(OO) 

then we may restate the Corollary of Theorem 5 more generally as follows: 
If a is an ideal of o and if n = min {V(a)\a G a} (n may equal a>), then 
a p = p<w>. 

THEOREM 8. If {pi} {eI is the set of relevant prime ideals of o and if for each 
i G / , Vi denotes the valuation of D determined by piT then for all a G £), 
a G o if and only if Vi (a) > 0 for all i G / . Furthermore, if for each i G / , 
R i is the subvaluation of O determined by Vu then 

Ro = PI Ri 
iel 

Proof. From the definition of Vi} it is evident that if a Go, then Vt(a) > 0 
for all i G / . Conversely, let a be an element of £) such that Vi(a) > 0 for 
all i £ I. Then, a = b/c, where ft, c G o, c is regular and 7* (ft) > Vt{c) for all 
i G / . If c is not a unit of o, by Corollary 1 of Theorem 5, 

\c) = pu n Pi2 n • • • n p<r 

where ii,^2, . . . , ir £ I- Then, for each j = 1,2, . . . , r, 

since 7zV(ft) > Vis(c), (ft) > tfj so that ft G p<f 

and therefore, b G (c) and a = b/c G o. We may notice here that for every 
regular element c G O, 7*(c) = 0 for all i £ I except a finite number. 

If a, ft Go and aR0b, then (a) < (ft) and from the definition of Vu it is 
evident that Vt(a) < 7* (ft). In general, if a, ft G D, a = C\/d\, ft = Ci/d^ 
where d, di, c2, d2 G o and di and d2 are regular, and if (a) < (ft), then (ci) 
(di)-1 < (c2)(d2)~

1 so that (cid2) < fedi) and therefore, 

Vt(d) + 7<(d2) = Vi{Cld2) < 7 , M O = 7,(c2) + V,(di), 

and this implies that 
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Vt(a) = Vt(Cl) - V((di) < Vt(ct) - Vt(dt) = Vt(b), 

i.e. aRtb. Therefore, 

Conversely, if a, 6 G O and if for all i G J, aRib, i.e. Vi(a) < 7* (6), then, 
if c G (a) - 1 , ca G o so that for all i Ç / , 

7,(c6) = F,(<0 + 7,(5) > 7,(c) + VM) = Vt(ca) > 0 

and therefore, cb G o. Therefore, (a)"1 C (6) -1, i.e., (a) < (6) or aR0b. 
As a particular case of this theorem, we have that if there is only one relevant 

prime ideal p in o and if 7 is the valuation of O determined by p, then o is the 
order of D determined by 7 and i?0 is the sub-valuation of D determined by 
7 

5. Two characterizations of factorization rings. In this section, we 
will see that the properties of factorization rings given by Corollary 1 of 
Theorem 5 and by Theorem 8 may be used to characterize factorization rings. 

If 0 is an order of £) and if F is a special non-negative valuation of O, we 
define the function 70 on 8(o) as follows: if a 6 8(o) and if { V(a)\a G a} has 
a minimum, then 70(a) = min { V(a)\a G a}, while otherwise, 7D(a) = °°'. It 
is evident that for all a G D, 70((a)) = 7(a) so that we may think of 70 as 
an extension of 7 and drop the subscript o where no ambiguity arises. 

LEMMA 3. If o is an order of £) and if V is a special valuation of £) such that 
V(a) > 0 for all a G o, then V0 is a homomorphism of 8(o) onto G", and for all 
a, b G 8(o), 7(a + b) = min {7(a), V(b)}. 

Proof. Let a, b G 8(o). It is evident that a C b implies that 7(a) > 7(b). 
Any element of ab has the form aibi + . . . + anbn where at G a and 6* G b, 
and 

7 M i + . . . + anbn) > min { F(ai) + 7(60, . . . , F(an) + 7(6,)} 
> 7(a) + 7(b) 

so that 7(ctb) > 7(a) + V(b). To establish the reverse'inequality, let us sup­
pose first of all that 7(a) ^ °° ' 9e V(b) so that there exist a G a and 6 G b 
such that 7(a) = V{a) and 7(b) = 7(6), and then, 

7(a) + V(b) = V(a) + 7(6) = 7(a6) > 7(ab). 

Secondly, let us suppose that V(a) = a>' and that 7(b) 5̂  °°. Then, there 
exists 6 G b such that 7(6) 5̂  00 and if n is any ordinary integer, there exists 
a G a such that V(a) < n - 7(6) so that V(ab) = 7(a) + 7(6) < n and 
therefore, F(ab) = « ' = 7(a) + 7(b). Finally, if 7(a) = œ 'and 7(b) = «>, 
for every 6 Gb, 7(6) = 00 so that for every a G a, V(ab) = V(a) + 7(6) 
= 00 and therefore, 7(ab) = 0 0 = V(a) + V(b). That 70 is a function of 
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8(0) onto G" is evident, since for all a G £), F((a)) = V(a) and since 7(D) 
= <*>'. If a, b G 8(0), since a c a + b, 7(a) > F(a + 6) and similarly, 
V(b) > V(a + b) so that min {7(a), 7(b)} > 7(a + b). Then, if a G a 
and £ G b, 

7(a + 6) > min { 7(a), 7(e)) > min { 7(a), 7(b)} 

so that 7(a + b) > min {V(a), V(b)}. 

LEMMA 4. If 0 w a factorization ring with O as /«/ / râzg 0/ quotients, if W 
is a special valuation of D SWC/J that for all a G 0, 17(a) > 0, a^d if {a G o| T7(a) 
> 0} w a relevant prime ideal p 0/ 0, JÂe» 17 coincides with the valuation V of 
£) determined by p. 

Proof. By Lemma 1, for each positive integer w, the set 

qn= {a G o|I7(a) > rc} 

is a p-primary ideal of 0. Since pw Ç qn, pw C qw so that by Theorem 6, qn = p(w) 

where 1 < m < w, and therefore, W(qn) = 17(p(m)) = 17(pm) = mJ7(p). From 
this, it is easy to see that the set of all W{a) where a G O and 17(a) 9^ °°, 
is just the ideal of the ring of ordinary integers generated by T7(p), and since 
this ideal must be the whole ring of ordinary integers and T7(p) > 0, then 
W(p) = 1 so that there exists an element a G 0 such that W{a) = 1. Conse­
quently, for each positive integer n, W(an) = n so that the c\n are all distinct 
and therefore, qn = p(w). By Theorem 3, this means that for all a G 0, 17(a) 
= V(a), and since 0 is an order of £), one can easily show that for all a G D, 
W(a) = V(a), i.e. W = 7. 

THEOREM 9. If {Wj}j €J is a set of special valuations of £5 such that for each 
regular element a G £), J7^(a) = 0 for all j G / except a finite number, and if 
D is the set of all a G O S^C/Ê ^a£ 17;(a) > 0 /or a// j G / , ^ew 0 is a subring 
ofD containing the unity element ofO. If 0 is an order of£), then 0 is a factorization 
ring and if {p*} * c / is the set of relevant prime ideals of 0, and if for each i G / , 
Vi is the valuation of O determined by pt-, then { Vi\ t eI is a subset of {W j} j tJ. 

Proof.2 Since 0 is the intersection of the orders of O determined by the 
Wj, 0 is surely a subring of D containing the unity element of £). 

Now, let us suppose that 0 is an order of O. If a G O and if b is a regular 
dement of 0 such that for all natural numbers n, ban G 0, this means that 
for all j G J, 

Wi(b) + nWj(a) = Wj(ban) > 0 

or Wj(b) > n{- Wj(a))t and since <x> ̂  Wj(b) > 0, - Wj(a) < 0 and 
Wj(a) > 0 so that a G 0. Thus, 0 is fully integrally closed in £). 

If a, b G 8(0) and if Wj(a) < Wj(b) for all j G J, then by Lemma 3, 

Wjia-'b) = T^Or1) + W/b) > Wjicr1) + T7,(a) = 17, (aa"1) > 0 
2This proof is a slightly modified version of a proof given by my student M. Aubert Daigneault 

for the case where 0 is an integral domain, in his Master's thesis (Université de Montréal) 
•entitled "Les anneaux de Dedekind." 
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so that a - 1 i Ç o and a < 6. Therefore, W}{a) = Wj(b) for all j G J implies 
that a ~ b. 

Furthermore, if a G 3(o)> then ffl^(a) = 0 for all j G J except a finite num­
ber, for there exist regular elements A, K o such that a G ct and ba Ç o and 
then, for all j G J, IF, (a) > ^ ( a ) > ^(f r" 1 ) and Wj(a) = W^b'1) = 0 for 
all j £ J except a finite number. 

Now, if cti > ct2 > Ct3 > • • . is a chain of elements of g(o) where aJc > o 
for all indices k, then cti* C a2* C ct3* C . . . and therefore, for all j G / , 

Wj(an > Wj(a2*) > Wj(a**) > . . . > 0. 

Then, for each index k, Wjicik*) 9e Wj(ak+i*) for at least one j G J for other­
wise, by what we have seen above, a** ~ a^+i*, contradicting our hypothesis. 
Then, since WJ(CLI*) = 0 for all j G / excep t a finite number, it is evident that 
the chain considered must be finite. Thus, o is a factorization ring. 

By Lemma 1, for each j G J, 

% j = {a e o\Wj(a) > 0} 

is a regular prime ideal of o. If p* is a relevant prime ideal of o, pf contains a 
regular element a which is not a unit of o so that Wj(a) > 0 for at least one 
j G / . Let Ja denote the finite set of those indices j G J for which W0{a) > 0, 
and for each j G J, let q;- denote the set of all b Go for which Wj(b) > Wj(a). 
Then, q ;-^ 0 if and only if j G Ja and by Lemma 1, for each j G Ja, q;- is 
^-pr imary. It is evident that 

a G Hc\j = r\c\j . 
jtJa je J 

If b is in the intersection of all the q;-, for all j G J, Wj(b) > W}{a) so that 
Wjiba-1) = Wj(b) - Wj(a) > 0 and therefore, bar1 Go and K (a). 
Therefore, 

(a) = Pi q,-. 
jeJa 

Since pi Z) (a), p* contains one of the ^ with j G Ja , say p* 3 ^3^. Then, 
since ^ ; 1 is a regular prime ideal of o and pi is a minimal regular prime ideal 
of o, pz = tyfr and by Lemma 4, Vt = Wn. 

THEOREM 10. / / V is a special valuation of O and if o is the order of D deter­
mined by V, then V0 induces an isomorphism 0/8(0) onto G", this isomorphism 
mapping %(o) onto G. 

Proof. By Lemma 3, V0 is a homomorphism of 8(0) onto G". If a, 6 G 8(0), 

a < b «-» a"1 C b"1 

<-> (a G £)) (aa ÇI 0 —> ah ç; 0) 
<-» (a G D)(F(aa) > 0 -> 7(ab) > 0) 
<^ (a G D)(F(o) + F(a) > 0 -> 7(a) + 7(b) > 0) 
<-> 7(a) < 7(b). 
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Therefore, also a ~ b if and only if V(a) = V(b) and V0 induces an iso­
morphism of 8(0) onto G". 

By Theorem 9, 0 is a factorization ring with a single relevant prime ideal 
p and V is the valuation of O determined by p. It is evident that for each 
non-negative integer n, F(pn) = n. Since p^p7*)"1 C 0, F(pw(pw)_1) > 0. 
If we suppose that V(pw(pw)_1) > 0, then pw(pn)-1 C p so that pw(pw)_1 > p 
and pw > pw+1, a contradiction. Therefore, 

F(pw) + ^((p^)-1) = V^W)-1) = 0 

so that F((pw)_1) = — w. Therefore, V0 maps g(o) onto G. 
In Lemmas 5, 6, 7 and 8, 0 is to be considered as an order of £) with the 

property that for each regular element a £ 0 that is not a unit of 0, (a) is the 
intersection of a finite number of formal powers of minimal regular prime ideals 
of 0. In all of these lemmas, we may set aside the trivial case where 0 = £) 
so that the minimal regular prime ideals of 0 are all proper. 

LEMMA 5. If $ is a minimal regular prime ideal of 0, then for each positive 
integer n, p(7° ~ pw. 

Proof. Since pn Ç p<n>, (p")"1 3 (p™)"1. If a G (p*)"1, a = b/c where 6, c 6 0 
and c is regular. If c is a unit of 0, then a £ 0 CZ (p(n))-1. If c is not a unit of 
0, 

to = pini) n rên,) n . . . n tfnr), 
where pi, p2, . . . , pr are distinct minimal regular prime ideals of 0. Since 
bc~l$n ÇI 0, bpn C (c). If p is different from each pf, then 

btf Ç p<ni) & p* £ p, -> » Ç p? l) (* < r) 

and therefore, ô Ç (c), a = b/c Ç o Ç (p(n))_1. If p is equal to one of the 
pi, say p = pi, then, by the same argument as above, 

b e p ? 2 ) n . . . n p ( ; r ) . 
Then, if d £ p(w), there exists g £ 0 such that g $ p and gd G pn so that 

g(bd) = b(gd) d (C )Çp (">; 

also 
g $ p -> M e p(wl) -> jp(n) c p(wi) 

and therefore, 

^P(W) ç piwl) n p r n . . . n p?r) = w . 
Therefore, ap(w) = ôc^pw Ç o s o that a £ (p^)" 1 and (p7*)-1 = (pw)-1. 

LEMMA 6. / / p i and p2 are taw distinct minimal regular prime ideals of 0 
and if ki and ki are two positive integers, then 

Pi + p2 ~ 0. 
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Proof. 
D?° + ^ ç o -> (pi*0 + p ? V 3 o. 

If 
a 6 (pi*1' + p»")"1, 

a = 6/c where J , c f o and c is regular, and 

(r = 1,2) 

Of course, if ^ is a uni t of o, then a Ç o and there is nothing 'more to prove so 
t h a t we m a y suppose t h a t c is not a uni t of o and therefore, 

(C) = râ° n rê2) n . . . n pfcr) 

where 

Pù> Pz2> • • • y Pirf 

are dist inct minimal regular prime ideals of o. If pi is different from each 

Piy, then 

ip?l} C p£» & p(fl} £ „,. - 6 ç #/> (i < r), 
and therefore, 6 € (c) and a = b/c £ o. Similarly, if p2 is different from 
each pijt one m a y show t h a t a £ o. 

Now, if 

Pi = Pij, P2 = P<2, 

then 

ôp?° C p<?> & p<*» £ p,. - b £ p'f ( K J < r) 
and 

6p2 <= Pu &p2 C P ù - ^ O Ç pi, , 

so t h a t b £ (c) and a = 6/c G 0. Therefore 

(p?l} + P?*') = o. 

L E M M A 7. / / p i , p2, . • . , Pr are distinct minimal regular prime ideals of o 
and if ni, n2, . . . , nr are positive integers, then 

Pi H P2 (1 . . . (1 Pr ~ Pi P2 . . . Pr 

Proof. By induction from Lemmas 5 and 6, using Proposit ions 3 and 4. 

L E M M A 8. If $ is a minimal regular prime ideal of o, then p > o, p is invertible 
and for each positive integer n, (pw)* = p(w). 

Proof. Let a be a regular element of o contained in p. Then , 

{a) = pi n p2 n ... n pr 
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where pi, p2, • • • , Pr are distinct minimal regular prime ideals of o, and p 
must coincide with one of the p*, say p = pi. By Lemma 7, 

(a) ~ pi p2 . . . pr 

so that 

Pl(Pl p2 • • • Pr & ) ~ 0 

i.e., p is invertible. 
If p '—' o, then 

p i 1 - o so that (a) ~ p?2 . . . p?r 

and since (a) = (a)*, 

P 3 (a) 3 p - . . . p7 

so that p = pi contains some p* with Î ^ 1, contradicting the hypothesis that 
the pt are all distinct. Therefore, p > o. 

Since p is invertible, for each natural number n, pn is invertible and by 
Proposition 6, pw:(pw)* ~ pw(pn)_1 ~ o so that there exists b G 0 such that 
b i p and 6(pw)* ç pn Ç p<») and therefore, (p71)* C p(»> and by Lemma 5, 
(p»)* = p(»>. 

THEOREM 11. If o is an order of D with the property that for each regular element 
a G o that is not a unit of o, (a) is the intersection of a finite number of formal 
powers of minimal regular prime ideals of o, then o is a factorization ring. 

Proof. Let {p*}* c j be the set of all minimal regular prime ideals of o. For 
each i G / , because of the properties of p* given by Lemma 8, we may define 
a special valuation Vx of £5 in exactly the same way as we defined the valuation 
of £) determined by a relevant prime ideal of a factorization ring having D 
as full ring of quotients in the preceding section. Then, if a Go, it is evident 
that for all i Ç 7, Vt{a) > 0. Conversely, if a G £) and if F*(a) > 0 for all 
i G 7, then a = &/c where 6, c G o and c is regular, and if c is not a unit of 
o, then 

(c) = rô° n rê2) n . . . n ^:r) 

where ii, ii, . . . , ir are distinct elements of / , and one can easily verify that 
for j < r, Vij(c) = nj, while for i G / , i ^ ^-, F*(c) = 0. Then, 

Vi3.(a) = 7,,.(i) - F,y(c) > 0 -> F,-(£) > 7,,.(c) - b G p<f (j < r) 

and therefore, 6 G (c) and a = ô/c G o. Therefore, by Theorem 9, o is a 

factorization ring. 

6. Generalized Dedekind rings. We will say that a factorization ring 
o is a generalized Dedekind ring, if for et, b G 5(o), a ^ b implies that a = b. 
This means that g (o) is isomorphic to g (o) so that every proper regular ideal 
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of o may be expressed in a unique way as the product of a finite number of 
relevant prime ideals of o. 

If o is an order of £), then o is a generalized Dedekind ring if and only if 
0 satisfies one of the following sets of conditions: 

1. g(o) is a group. 
2. For any two regular ideals a and b of o, a Ç b implies that there exists 

an ideal c of o (it must be regular) such that a = be. 
3. (i) o is a factorization ring, 

(ii) the relevant prime ideals of o are the only proper regular prime 
ideals of o. 

4. (i) o is fully integrally closed in £), 
(ii) if a is any regular ideal of o, then the descending chain condition is 

valid for the ideals of o/ct. 
We will not prove the equivalence of these sets of conditions, the proofs 

being entirely similar to those given in the case of integral domains. 
For simplicity, we will use the term "Dedekind ring" instead of "generalized 

Dedekind ring" and "Dedekind domain" instead of "ordinary Dedekind 
ring." 

THEOREM 12. If o is a Dedekind ring with £) as full ring of quotients and if V 
is a special valuation of £) with the property that V{a) > 0 for all a G o, then 
V is determined by a relevant prime ideal of o. 

Proof. By Lemma 1, p = {a G o|F(a) > 0} is a proper regular prime 
ideal of o, and since o is a Dedekind ring, p is a relevant prime ideal of o so 
that by Lemma 4, V is determined by p. 

THEOREM 13. If V is a special valuation of £), if o is the order of £) determined 
by V and if £) satisfies either one of the following two conditions: 

1. there is only a finite number of maximal prime ideals of (0) in £), 
2. £) is ueinartig" (4, p. 22), 

then o is a Dedekind ring. 

Proof. Let p denote the unique relevant prime ideal of o. 
1. Let us assume that there is only a finite number of maximal prime ideals 

$ i , $2, . . . , $» of (0) in £) (this condition is satisfied when the ascending 
chain condition holds for the ideals of £3 and a fortiori, when it holds for the 
ideals of o). Let a be a proper ideal of o. If a G a and a $ p, then V(a) = 0 
and a is not a regular element of o, for if a were regular, V(a~l) = — V(a) = 0 
so that a - 1 Ç o and a would not be a proper ideal of o. Then, 

a e (Ci u ?2 u . . . u ?») n o = ($i n o) u (?2 n o) u . . . u (*» n o) 
and therefore, 

a ç p u 0Pi n o) u «32 n o) u . . . u (% n o) 
Since the ideals p, ^ i Pi o, ^32 ^ o, . . . , )̂3n H o are prime ideals of o, û 
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must be contained in one of them. But if aQ ( ^ H o ) , a is not regular. 
Therefore, p is the only proper regular prime ideal of o. 

2. Let us assume that O is "einartig" (this condition is certainly satisfied 
when the descending chain condition is valid for the ideals of £)). By Lemma 1, 
the associate p' of p is a proper prime ideal of O so that it must be a maximal 
proper ideal of © and O/p' is a field. Since p' is the kernel of V, we may speak 
of the projection V of V by the natural homomorphism of £) onto £)/p'. 
Then, o/p' is the order of D/p ' determined by V (rank 1, discrete valuation of 
the field £)/p') so that p/p' is the only non-trivial prime ideal of o/p' and p 
is the only proper regular prime ideal of o. 

For the remainder of this section, we will assume that o is a Dedekind ring 
and that the ascending chain condition is valid for the ideals of o. We will 
denote the set of all regular elements of o by 5, {p*} ie i will be the set of rele­
vant prime ideals of o and for each i £ I, Vt will denote the valuation of 
O = os determined by p*. If a is an ideal of o, 1(a) will denote the set of all 
i £ I for which 0 < Vi(a) < °° and / '(a) will denote the set of all i 6 J 
for which Vi(a) = °°. If i G 7, since 

rt = n P?} = nrt 
we will set p / = pi(oo) = pj00. 

THEOREM 14. / / a is an ideal of o, then 7(a) is finite, for each i G /(a) , a5 

and pi are without proper common divisor and 

a = as • IT »?*' 
iel(a) 

where mi — Vi(a). We will call this representation of a the standard decomposition 
of a. 

Proof. Let a = qi P\ q2 O . . . P\ qn be a normal decomposition of a into 
primary ideals. The radicals of some of these primary ideals may be relevant 
prime ideals of o. Let us say that the radicals of qi,q2, . . . , qr (0 < r < n) 
are the relevant prime ideals 

Pi!, Pi2> • • • » Pir 

respectively (ij Ç I), while the radicals of qr+i, . . . , qn are not relevant prime 
ideals of o. Since the relevant prime ideals of o are the only proper regular 
prime ideals of o, 

as = qr+i H . . . P\ qn. 

By Theorem 6, for each k < r, c\k is a formal power, say 

and since o is a Dedekind ring, 

< \ i n c \ 2 n . . . n ( \ r = ̂  n P^2) n . . . n p?r
r) = P":P12

2 ... Plr-
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Now, if h > r, then the radical of q̂  is not contained in any of the ideals 

Via P m • • • j Pi r» 

for if 
r a d q ^ Ç piJfc (1 < k < r) , 

since rad qh is a prime ideal of o, but not a relevant prime ideal of o, by 
Theorem 4, 

rad qh C p'fifc, qfc = p** 3 p'<ib 3 q*, 

contradicting the hypothesis that the given decomposition of a into primary 
ideals is normal. From this, we deduce first of all, since the p's are maximal 
proper ideals of o, that as and each pik are without proper common divisors, 
so that 

a = Pùpz 2 . . . pfr Pi a,s = p ù p i 2 . . . p i r as-

Secondly, for each k < r, pifc is a minimal prime ideal of a and 

a„„ = p ^ - > a ç p ^ a n d a g p r 1 

->nk = Vik(a) = m* and [iu i2, . . . , ir} £ / (a) . 

Now, let us assume that i Ç 7 and that i $ {ii, i2, . . . , ir}. First of all, 
if ct_(Z pi, then Vi(a) = 0 and i #I(ct). Secondly, if a C pi? since p* does 
not belong to a, all prime ideals belonging to a and contained in p* must be 
contained in p / (Theorem 4). Since p / is a minimal prime ideal of o, p / is 
the only prime ideal belonging to a and contained in p* so that Vi(a) = °° 
and i (£ 1(a). 

Theorem 14 implies that an ideal a of o is completely determined by its iso­
lated component as and by its values Vi(a), for all i Ç 1(a). 

Let us notice that if a and b are ideals of o, then by Lemma 3, 

V,(ab) = Vt(a) + VtÇb), 

Vt(a + b) = min{F i (a ) , 7,(b)}, 

and by one of the remarks made after Theorem 7, if Vt (a) = ra^and Vi(b) = nu 

then 

(a n v)*i = <**>*• n bPl- = pz n P* = P* 
so that Fi(a H b) = max (F*(a), F*(&)}. These rules are useful for finding 
J(ctb), I(a+b) and J ( a H 6 ) when the sets {Vi(a)}i€l and {F i (b )} i e J are 
given. 

The standard decomposition of an ideal a of o is not the only representation 
of a as the product of as with a finite number of positive powers of relevant 
prime ideals of o. For example, it p is a relevant prime ideal of o and if p'is the 
associate of p, then p / =(p / )s is the standard decomposition of p'. But since 

oo 

P' = n P" 
n=l 
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by Krull's Intersection Theorem, p' = (O)s', where S' is the set of all elements 
of o that are of the form 1 — a, where a G p. Then, if b G p', there exists 
a G p such that (1 - a)b = 0 so that b = ab G pp' and p' = pp' = p(p')s. 

THEOREM 15. If a is an ideal of o and if 

a = asU pT 

is the standard decomposition of a, then any representation of a as the product 
of a s 'with a finite number of positive powers of relevant prime ideals of o is of the 
form 

« = a* n *v n pr, 
z'e/(a) i € j 

where J is a finite subset of V (a). 

Proof. Let us suppose that 

(i) a3 n PT = *sll *>r, 
where i£ is a finite subset of / a n d w* > 0 for ali i G K.lîj G /(a) , by Theorem 
14, p;- and a5 are without proper common divisor so that as jZ Py, and since 

Py 3 a5 n Pi*, 
ieK 

p;- must contain, and therefore be equal to, some pi for i G K. Since p^ is 
invertible, we may cancel py from both sides of (1). It is then evident that we 
may repeat this argument until all the relevant prime ideals appearing on 
the left-hand side of (1) have been cancelled so that 1(a) is a subset of K, 
for each i G 1(a), mt < nt and if we set J = K — 1(a), 

* * I J ^ni—rai I I >jii 

tts = &s 11 Pi 11 Pi • 
iel(a) it J 

From this equation, since for each i G /(ci), pi ~P_ cts» it is evident that mt = wf 

so that 
as = as IT P**-

But if i G / , Pi 3 ci and therefore, F*(a) > 0. But then, since i $ J ( a ) , 
F,(a) = oo and i G / ' (a) . 

7. A special case. In this section, we will assume that the descending 
chain condition is valid for the ideals of £) and our object will be to determine 
all orders of D that are Noetherian Dedekind rings. 

If -9?i, 9Î2, • • • , yip are the proper prime ideals of £), then 
v 

(0) = OQi i (direct intersection), 
7 * = 1 

where each £lh is ^-pr imary , and 
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v 
O = ]C Oft (direct sum), 

k=l 

where 
V V 

O t = n O » and Oh = £ D* . 
ft=l k=l 
h^k k^h 

Also, Oft = O/Oft so that Oft is completely primary, i.e., every non-regular 
element of Oft is nilpotent. 

If for each k = 1,2, . . . , p, ô  is an order of Oft, then it is easy to show 
that 

V 

0 = S 0* 
k=l 

is an order of O and that 0 is fully integrally closed in O if and only if each 
0k is fully integrally closed in Oft. If o is any order of O and if $k is the pro­
jection function of O onto Oft, then $k(o) is an order of £)k and if 

V 

0 = ]C $*(<>) 

then we will say that o is decomposable. 

LEMMA 9. If o is an order of O, ^gn o is decomposable if and only if h ^ k 
implies that (£ih C\ o) + (Q* H o) = o, (h,k = 1,2, . . . , p). 

Proof. Suppose that 
V 

0 = Z ) 0», 

where each Oft is an order of Oft. Then evidently, 

o» n o = X) Oft, 

so that h T^ k implies that (Q* H o ) + (D* H o) = o. 
Conversely, if A F^ fe implies that (Da Pi o) + (Oft P\ o) = 0, and if we set 

(\n = O?* P 0, then, in o, 

(0) = H Cfo (direct intersection) 

so that 
V 

0 = X) 0ft 

where 
V 

0ft = Pl q* Q Ok . 
ft?** 
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COROLLARY. If o and o' are orders of £), if o C o' awd if o is decomposable, 
then o' w decomposable. 

Proof, h 9^ k implies that 

iGo=(Q,no) + ( a n o ) g (o, n o') + (o* n c) 
Let us suppose that for fe < g (0 < q < £), £ik = 91*1 i.e. D* = £)/Q* 

is a field, while for k > q, O* C 9?*. We consider a commutative ring with 
unity element in which every regular element is invertible as a Dedekind ring 
with no relevant prime ideals. 

THEOREM 16. If for each k = 1,2, . . . , p, ok is an order of £)k, if for each 
k < q, 0* is a Dedekind domain and if for k > q, ok = £)k, then 

V 

0 = Z) Ok 
k=l 

is a Noetherian Dedekind ring, and every order of O that is a No ether ian Dedekind 
ring may be obtained in this way. If ok C £5* for each k < 5 (0 < 5 < q) and 
Ok = D* for k > s, and if, for each k < s, nk is the kernel of $k in o, then 
{^k}k<s is the set of associates of relevant prime ideals of o and any ideal of o 
that contains nk properly (k < s) must be regular. 

Proof. Let us assume first of all that for each k < p, ok is an order of D* 
obeying the conditions of the theorem. Then, 

v 
o = X) ok 

k=l 

is an order of £), and since each o* is fully integrally closed in £)k, o is fully 
integrally closed in £). Furthermore, it is evident that o is a Noetherian. 
Let a be a regular ideal of o, a = cti + a2 + . . • + ap, where ak is an ideal of 
0k. Since a contains a regular element a of o and since a = a,\ + a2 + . . . + ap, 
where ak is a regular element of ok, each ak is a regular ideal of 0*. Then, 

o <A <L+_5*~ V* °* V' 0* fA. , v 
- = 2^ = 2-y ~7^— = 2-/ — (direct sums) 

and from the definition of the 0*, the descending chain condition is valid for 
the ideals of o^/a*, so that it is also valid for the ideals of o/ct. Therefore, o is 
a Dedekind ring. 

Conversely, let us assume that o is an order of £) and that o is a Noetherian 
Dedekind ring. For each k < p, set nk = ytk r\ 0 and qk = £ik P\ o. The ideals 
nk are the only non-regular prime ideals of o, h ^ k implies that tt„ (£ nk 

and each qk is ivprimary. 
To prove that o is decomposable, by Lemma 9, all we have to show is that 

h T^ k implies that qh + qk = o or equivalently, that n* + n* = o. If h ^ k 
and if n is a prime ideal of o containing nh + nk, then evidently, n cannot be 
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contained in any n ,̂ and furthermore, n cannot be contained in any relevant 
prime ideal p of o, for then, by Theorem 4, nh and nk would both be contained 
in the associate p' and p and would therefore be equal to p', a contradiction. 
Therefore, n = o and n» + it* = o. 

The associates of relevant prime ideals of o must be amongst the nk. If 
uk is the associate of a relevant prime ideal p of o, then nk is the only n^-primary 
ideal of o (see remarks following Theorem 7) so that 

o* = $*(o) = o / n * 

is an integral domain and not a field since it contains the non-trivial ideal 
$fc(p) and therefore, k < s. Furthermore, if a is an ideal of o that contains 
Ujc properly, then a is regular, for if a were not regular, then ©a would be a 
proper ideal of © and would therefore be contained in some Sflj and then 

n* C a ç ©a Pi o c nj7 

a contradiction. Then, a may be expressed as a product of relevant prime 
ideals of o having nk as associate (standard decomposition of a) so that 
$k(a) may be expressed as a product of prime ideals of ok and therefore, o* 
is a Dedekind domain. 

If nk is not the associate of a relevant prime ideal of o, then nk is a maximal 
proper ideal of o so that ok ~ o/qk is a completely primary ring and therefore, 
ok = ©& so that k > s. 

In the following corollaries, o is a Noetherian Dedekind ring having © 
as full ring of quotients and we adopt the notation developed in Theorem 16. 

COROLLARY 1. If for k K S, 

{Pi} Ulk 

is the set of relevant prime ideals of o that have nk as associate, then 

[$k(Pi)}i*Ik 

is the set of relevant prime ideals of ok and for each ielk, p* = «ÊAT^ACPO* 

COROLLARY 2. If for each ielk, Vt is the valuation of © determined by pf 

and V/ is the valuation of ©* determined by <£*(£*)» then VY is the projection 
of Vt by $k. 

COROLLARY 3. If o' is an order of © and if o C o', then o' is also a Noetherian 
Dedekind ring. 

Proof. By the Corollary of Lemma 9, o' is also decomposable, and since 
for each k, &k(o) ÇI $k(o'), for each k > s, $k(o

f) = £)k and by a theorem of 
MacLane and Schilling (6, Lemma 37), for k < s, $k(o') is a Dedekind domain, 
so that by Theorem 16, o' is a Noetherian Dedekind ring. It is evident that 
this Corollary is a generalization of the above mentioned Theorem of MacLane 
and Schilling. 
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