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1. When two uniform functions f(z)=2Za z o °,
n

0 1
-y, -1
glz) == bv 2 M are given, each with a finite radius of
1

absolute convergence R1, R_ respectively, and {\ }, {}«Lv}
n

2
are real positive increasing sequences tending to infinity, a
theorem due to Eggleston [1], which is a generalisation of
Hurwitz! s composition theorem, gives information about the
position of the singularities of a composition function h(z),
which is assumed to be uniform, in terms of the position of
the singularities of f(z) and g{z). This result can be
extended to Dirichlet series with real exponents by use of

the transformation z =eS.

If {a}, {bv} are sequences of complex numbers and
n

if the functions F{(s), G(s) and H(s) are given by the Dirichlet

series
© \ ©
F(s)= Z a e ns, G(s)= Z bve-u"s,
n=1 o v =1
(1)
© - - -
r()\n«l-pv 1) ()\n+|J.v 1)s
S TN T |
n,v =1 n VH nrpv

the following result comes immediately from Eggleston's theorem:
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THEOREM 1. If the Dirichlet series F(s), G(s) have
finite abscissae of absolute convergence o F O'G respectively,

then the composition series H(s) is absolutely convergent in

“F. .7 G ;
R(s) > loge(e +e ). Further H(s) can be continued

analytically to all points of the S-plane except those points vy

P

a .. .
which are such that (i) y = loge(e +e’) or (ii) y is separated

from the half plane of regularity of H(s) by a singular line.
Here o belongs to the closure of the singularities of F(s)
and B to the closure of the singularities of G(s). The

p

a
expressions log (e +e ) are to be taken in all their determinations.
ZEPRERRITNR P8,

2. Although Theorem 1 has no immediate transformation
into a composition theorem on Dirichlet series with complex
exponents, there are certain special cases of this type of series
for which we can consider the absolute convergence of the
composition series H(s) of the form given in (1). We consider
here two such special cases.

In the proof of Theorem 2 we will need the following lemma,
which includes a result due to Schwengeler [3].

b
LEMMA 1 . If the sequence of complex numbers {)\n}

is bounded and the series

X \
F(s) = Z ae n®
n=1 n

absolutely convergent at a point s , then for any other s there
o

exists a square with centre at s within which the series is
o

absolutely and uniformly convergent. Further, the series F(s)
represents an integral function

We can assume without loss of generality that the point at
which the series is absolutely convergent is the origin. The

b

I am indebted to the referee for the form taken by this lemma.
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c . . -A,S
series is then absolutely convergent at a point s if |e P |

is bounded for all n.
f N =« +ip and s=0+ iy, we have
n n
lexp{-x_s} | = exp{-R(\ s)} = exp{7p_-va}
exp{ [7][p_| + [o][e_[} <exp { o] + |+]},

A

since we may assume |\ | < 1.
n! =

-\
It follows that |e ns| is bounded if there exists a
constant K such that

exp{|o |+ |7]} <K,
or else
[c]+ 7| <log K=K!

It is clear that once s =0 + iT is known, K can be chosen,
but will depend on s. The series is therefore absolutely
convergent when s lies within the square

lof+ 7 <K,

and hence, according to Hille [2], the series is uniformly
convergent inside this square.

If we allow K to become large, this square covers the
whole finite plane and we have Schwengeler's result that the
series F(s) represents an integral function.

We now examine the two special cases mentioned above.
(a) Suppose F(s), G(s) represent two Dirichlet series with
sequences of complex exponents { X }, { pv} , respectively,
n

such that both sequences are bounded, 1i.e. ',\ ! < A\, l“v I <u
n ,

© )
and that both = |a | and Z |b | are convergent. Then
v
n=1 n v =1
if the composition series H(s) is given by (1) we have the

following result:
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THEOREM 2. The composition series H(s) of (1)
represents an integral function, provided only that for all n and
v, (N +p -1) 1is not zero or a negative integer, and does not have

n v

any of these values as a limit point.

It will be sufficient for the proof of the theorem if we show
that H(s) is of the same form as F(s) and G(s). That is, we
will show that the series representing H(s) is absolutely
convergent at one point, and the exponents of this series are
bounded. The conditions of Lemma 1 thus are satisfied, and
H(s) is an integral function.

Since ])\nl <\ and Ip.v | < W, the ratio

(N _+p -1)
n 1%
l‘(7\n)' I(uv)

will be bounded because of the conditions imposed on (A +|J.v -1).
n

Also Z|a b | is convergent because of the convergence of
n v

Zlanl and Zlbv" Thus the series
r(x tp -1
slap —2 Y
n v (A ) D(p )
n v

is convergent.

Since the exponents { X +p -1} of H(s) are bounded,
n v

H(s) is of the same form as F(s) and G(s) and therefore, by
Lemma 1, represents an integral function.

It is worth noting that the condition that (A +p -1) does
n v

not have zero or a negative integer as a limit point is necessary.

This may be seen by considering the case where )\n =—;— + -1—,
n
1 1 .
B, =5t 50 when I‘()\nﬂ.xv—i) is not bounded.
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https://doi.org/10.4153/CMB-1963-034-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1963-034-1

©
{(b) Suppose now that the Dirichlet series F(s) =2 a e_xn
n
1

is of the form considered in (a) (i.e. Z|a | convergent and
n 0
[\ | <\) and that the Dirichlet series G(s)==b e "V° is
n v

1
such that Z]bvl is convergent, and lim |p | =®. We have
v
v 00

S

the following result concerning the region of absolute convergence
of the composition series H(s) given by (1).

THEOREM 3. 1If the Dirichlet series F(s) and G(s)
have the property that there exists a 6> 0 such that for all
n and v

|arg (>\n+pv—2)[ <m-6, |arg ()\n+pv-1)l <m-06,

larg (p -1)[<m -6, [argp |<w-6,

and if further R(\N -1) < 0 for all n, then the Dirichlet series
n =

H(s) is absolutely convergent at least in the region of absolute
convergence SG of G(s), with perhaps the exception of the

point at infinity if this belongs to SG.

Consider

© Nt 41 (N +1) s
D(N ]+ +1) (A ) +1)

(3) His) = = anbv F(x;lﬂ) I‘(u'v+1) ©

n,v =1
where we have put

'"+1 = N, '+ 1 =
Xn-* n My Hy

From the asymptotic expansion [4]

1 1
log I'(z+a) = (z+a--Z) log z - z + > log 2w + o(1),

(where the principal value of the logarithm is taken) valid for
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and ]z] sufficiently large, we have, for sufficiently large
1
e |
1 1 x‘
F(Xn+p.V+1)

1 n
——————— = \' log(A'+p' )+ (p! +=) log(1+—) - X' + o(1).
log Tl 1) y log(hrdpy )+ () +5) logf “L) o to(1)

Consider the expression

)\l
1 n
vt )1 I S L
(4) (uv+2) og (1+ H,) A
Vv

The function log (1+z) is analytic for |z| <1 and has the Taylor

expansion
© n+1
n
log(1+z) = = (-1) = )
n+ 1
n=0
Thus for sufficiently large ’p" |, (4) has the form
Vv
. o (1)11 X n+1
(h,+3) = -+1 “‘.r}} - A= o(1) .
n=0 " By n
Thus
r(>\i+}lL+1)
n
5 log —————— = R(A') 1 Nt |- J(N! Nt
(5) g (M) Tog [N1epl |- JON ) arg(h +pt )

+i{R(K;}arg(X;+u;)+-9(R;ﬂog’X£+pL]]+ o(1) .

We see therefore that the real part of (5) is governed bv the term
R(Xl’l) log|X'+u' |, for the second term is pounasu. since
n v

Oilmgkypwl<n,

Hence, provided that R(A') < 0, we see that
n =
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I‘()\n+pv+1)

1
r(uvﬂ)

is bounded, and so the series (3) converges absolutely for s =0,
provided also that (X'+u' +1) is not zero or a negative integer.
n v

The series H(s) is therefore of the same form as G(s).

The series H(s) obviously converges absolutely in the
region of absolute convergence of G(s) except perhaps for the
point at infinity.
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