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1. Introduction. In the literature there are several generalisations to non-
commutative rings of the notion of a unique factorisation domain from commutative
algebra. This paper follows in the spirit of [1,3] and is set in the context of Noetherian
rings. In [3], A. W. Chatters and the author denned a Noetherian UFR (unique
factorisation ring) to be a prime Noetherian ring R in which every non-zero prime ideal
contains a prime ideal generated by a non-zero normal element p, that is, by an element p
such that pR = Rp. The class of Noetherian UFRs includes the Noetherian UFDs studied
by Chatters in [1], while a commutative Noetherian ring is a UFR if and only if it is a
UFD in the usual sense. For a Noetherian UFR R, the following are simple consequences
of the definition:

(i) every non-zero ideal of R contains a non-zero normal element;
(ii) the set N(R) of non-zero normal elements of R is a unique factorisation monoid

in the sense of [4, Chapter 3].
These two properties provide some justification for the terminology of [3], in that

they establish uniqueness of factorisation of a set of elements which is, loosely speaking,
dense relative to the ideal structure of the ring.

It is the purpose of this paper to study the class of those prime Noetherian rings, to
be termed Noetherian UFN-rings, satisfying (i) and (ii) above. Some examples of
Noetherian UFN-rings which are not UFRs will be exhibited in Section 3. In Section 4 we
shall identify a chain of five distinct classes of Noetherian UFN-rings, with the class of
Noetherian UFRs at the bottom and the full class of Noetherian UFN-rings at the top.
Motivation for the defining conditions of these classes comes variously from the examples
in Section 3, from considerations of straightforward generalisations of alternative
characterisations of commutative UFDs and from consideration of the correspondence
between the set of height one prime ideals of the ring and the set of irreducible normal
elements of the ring.

The fact that any commutative Noetherian UFD is integrally closed was generalised
in [3, Theorem 2.4] which stated that any Noetherian UFR is a maximal order. In Section
5 we shall see that this result does not generalise to Noetherian UFN-rings. Indeed for a
ring R in the second smallest of the five classes to be a maximal order it must be a
Noetherian UFR.

In [3, Theorem 3.1] it was shown that the class of Noetherian UFRs is closed under
polynomial extension. We have been unable to give a complete answer to the
corresponding question for the class of Noetherian UFN-rings. We have obtained positive
answers for some special cases including those of domains and algebras over infinite
fields. Details of these will appear elsewhere. In Section 3 of the present paper we exhibit
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an example of a Noetherian UFN-ring R such that R[x] is also a Noetherian UFN-ring but
the Laurent polynomial ring R[x, JC~1] is not.

I wish to thank Arthur Chatters and Camilla Jordan for their helpful comments.

2. Definitions, notation and preliminary results. Throughout this paper the term
"ring" means "associative ring with an identity element" and the term "Noetherian"
means "right and left Noetherian". Let R be a ring. An element a of R is said to be
normal if aR = Ra. The set of all non-zero normal elements of R will be denoted N(R).
Suppose now that the ring R is prime. Note that N(R) is a submonoid of the
multiplicative monoid of R containing the group U(R) of units of R and that all elements
of N(R) are regular in R. In the notation of [4, p. 156], N(R) coincides with I(R), the set
of invariant elements, and is an invariant cancellation monoid. Following [4], we say that
N(R) is a UF-monoid if the factor monoid N(R)/U(R) is free commutative.

Let a e N(R) and r eR. We shall say that a divides r, or that r is divisible by a, if
there exists s e R such that as = r. Since a is normal, this is equivalent to the existence of
t eR such that ta = r; so there is no need to distinguish between right and left divisibility.
If r is also normal and as = r then it is easy to check that 5 is normal; so divisibility of r by
a in the ring R is equivalent to divisibility of r by a in the monoid N(R). Whenever we use
the term greatest common divisor of finitely many elements of N(R), this should be
interpreted in the context of the monoid N(R) rather than of the ring R. The term
"associates" will only be used when referring to normal elements and there is then no
need to distinguish between right and left associates.

For a, be N(R), aR c bR if and only if aN(R) c bN(R); so if R is Noetherian then
N(R) satisfies the ascending chain condition on principal ideals.

Let p e N(R). We shall say that p is prime in N(R) if, for all a, b e N(R), p divides
ab implies p divides a or p divides b. If pR is a prime ideal of R, we shall say that p is
prime in R. Clearly if p is prime in R then it is prime in N(R) but the converse is false, as
can be seen from the examples in Section 3. We shall say that p is an irreducible element
of N(R), or is irreducible in N(R), if it cannot be written as the product of two elements
of N(R)\U(R).

The following proposition is a special case of [4, Chapter 3, Theorem 1.1 and
Corollary 1.2].

PROPOSITION 2.1. For a prime Noetherian ring R, the following are equivalent:
(i) N(R) is a UF-monoid;

(ii) any two elements of N(R) have a greatest common divisor;
(Hi) for all a, be N(R), there exists c e N(R) such that aN(R) n bN(R) = cN(R);
(iv) every irreducible element of N(R) is prime in N(R).

As in [3], we say that a ring R is a Noetherian UFR if it is a Noetherian prime ring in
which every non-zero prime ideal of R contains an element which is prime in R. We shall
say that a ring R is conformal if every non-zero ideal of R contains a non-zero normal
element of R. If R is a prime Noetherian conformal ring such that N(R) is a UF-monoid,
we shall say that R is a Noetherian UFN-ring.
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PROPOSITION 2.2. Let R be a prime Noetherian ring. Then R is a Noetherian UFR if
and only if R is conformal and every irreducible element of N(R) is prime in R.

Proof. Let R be a Noetherian UFR. Since every non-zero prime ideal of R intersects
N(R) non-trivially, so does every non-zero ideal of R. Let p be an irreducible element of
N(R) and P a prime ideal of R minimal over pR. By Jategaonkar's principal ideal
theorem [2, Corollary 3.5] P has height one and so P = aR for some a e N(R). Since p is
irreducible in N(R), it follows that pR = aR = P and so p is prime in R.

Conversely, suppose that R is conformal and that every irreducible element of N(R)
is prime in R. Let P be a non-zero prime ideal of R and choose a e P D N(R). Since R is
prime Noetherian, a can be written as a product of irreducible elements of N(R) and one
of these, p say, must belong to P. Thus P contains the prime ideal pR = Rp and R is a
Noetherian UFR.

A commutative Noetherian domain is a UFD if and only if the intersection of any
two principal ideals is principal. This characterisation has proved useful in the
commutative theory, for example see [12, p. 55, 90], and can be generalised to the
non-commutative case in two obvious ways, namely to (iii) of Proposition 2.1 or to the
corresponding statement with "aN(R) n bN(R) = cN(fl)" replaced by "aR C\bR = cR".
We next show that the latter statement is true if and only if the irreducible elements of
N(R) have a property intermediate between being prime in R and being prime in N(R).

PROPOSITION 2.3. For a prime Noetherian ring R, the following are equivalent:
(i) for all a, be N(R), there exists c e N(R) such that aRDbR = cR;

(ii) if p is an irreducible element of N(R) and p divides ab, where a e N(R) and
b e R, then p divides a or p divides b;

(iii) if p is an irreducible element of N(R) and p divides ab, where aeR and
b e N(R), then p divides a or p divides b.

Proof. Suppose that (i) holds and let a, b e N(R). Then there exists c e N(R) such
that aRtlbR = cR and it is easy to check that aN(R) D bN(R) = cN(R). By Proposition
2.1, it follows that irreducible normal elements of N(R) are prime in N(R). Let p be an
irreducible element of N(R) and let a e N(R), b, teRbe such that pt = ab. Suppose that
p does not divide a. By (i), there exists ceN(R) such that aRDpR = cR. There exist
u, v eR such that c = au=pv and, since c, a,p are normal, u and v are normal. Sincep is
prime in N(R) and does not divide a, p divides u. But pt = ab epR C\aR = cR = auR; so,
by the regularity of a, b e uR. Since p divides u, it must also divide b. Thus (i) implies (ii).

Suppose now that (ii) holds. Then irreducible elements of N(R) are prime in N(R)
and so, by Proposition 2.1, N(R)/U(R) is free commutative and any two elements of
N(R) have a greatest common divisor in N(R). In showing that (i) holds there is no loss
of generality in assuming that a, b have greatest common divisor 1 and that a $ U(R). If a
is an irreducible element of N(R) then a does not divide b and, by (ii), aRHbR = baR. If
a is not irreducible in N(R) then we may write a=pau where aleN(R) and p is an
irreducible element of N(R) not dividing b, and, by induction, we may assume that there
exists Cj e N(R) such that axR (~)bR = ctR. Let x = ar = bs e aR D bR. Then p divides bs;
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so, by (ii), s=psx for some sxeR and, since N(R)/U(R) is commutative, paxr = ar =
bs = bpsx = pbusi for some u e U(R). By the regularity of p, axr = busx e axR D bR. Thus
axr e cxR and so x = paxr epcxR. Thus aR n 6/? c.pcxR. The reverse inclusion is clear.

This completes the proof that (i) is equivalent to (ii). The equivalence of (i) and (iii)
follows by the symmetry of (i) which can be seen by rewriting aR, bR and cR in (i) as
Ra, Rb and Re.

Let a be a regular normal element of a ring R. There is an induced automorphism aa

of R such that ar = aa{r)a for all r e R. For any automorphism a of R, an ideal / of R is
said to be an a-ideal of R if a(I) c / , and to be a-prime if it is an ar-ideal of R such that,
for all cr-ideals A, B of R, AB cI implies X c / o r B c / . We shall require the following
results from [6].

LEMMA 2.4. Let R be a Noetherian ring and a an automorphism of R.
(i) An ideal I of R is an a-ideal if and only if 1 = (x(I).

(ii) Any a-prime ideal of R is semiprime.

3. Examples. In this section we shall discuss some examples of Noetherian
UFN-rings which are not UFRs. We begin with two classes of examples constructed from
a commutative Noetherian UFD R and a prime element p of R. For such R and p, we let
F(R, p) denote the subring of the 2 x 2 matrix ring M2(R) generated by the matrices

ri 0] ri 0] ro Pi ro <n
Lo iJ'Lo oJ'Lo oJ and L oJ"

We let A(fl, p) denote the subring of M2(R) generated by the matrices

ri oi \P 0] ro P ] ro on
Lo iJ'Lo o M o oJ and Li oJ-

T h u s a typical e l e m e n t of A(R, p) ha s t h e form \ P \, w h e r e a, b,c,de R . A n
Lc a+pdi

example of a ring of the form A(7?, p) is discussed in [2, p. 157].

PROPOSITION 3.1. Let R be a commutative Noetherian UFD and p be a prime element
of R. Then the rings T(R, p) and A(R, p) are Noetherian prime conformal rings. Neither
T(R, p) nor A(R, p) is a Noetherian UFR.

Proof. In both cases the generators for the ring given above are generators for the
ring as a module over its Noetherian centre. Hence the ring is Noetherian. It is easy to
check, using the presence in the ring of pen, pen, e2i andpe22 (where the elements etj are
the usual matrix units), that each ring is prime. That each ring is conformal follows from
the fact, easily established by direct computation involving adjoints or by quoting
standard results of Pi-theory, that every non-zero ideal of the ring intersects the centre
non-trivially.
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rix .Let A denote the matrix . Then A is a normal element of both T{R, p) and

A(R, p) because both rings are invariant under the inner automorphism of M2(Q) induced
by A, where Q denotes the quotient field of R. This automorphism maps a typical

element \" P>] of T(R, p) to * ^ 1 .
Lc d J \-b a J

Let Pj = I P P and P2 =
 P . These are ideals of F(/?, p) with factor rings

L R R J L/? p/?J
isomorphic to R and so are prime. Note that AT(R, p) = Px D P2;

 s o that A is not prime in
T(R,p). Any non-trivial factorisation of A in N(T(R, p)) would give a non-trivial
factorisation of det A = —p in K, for if B e T(i?, p) is a unit in M2(7?) then B~l e T(R, p).
Thus A is an irreducible element of N{T{R, p)) which is not prime in T{R, p). By
Proposition 2.2, T(7?, p) is not a Noetherian UFR.

Now consider the ring A(R, p) and let P = , a prime ideal of A(7?, p) with
L /? pRi

factor ring isomorphic to R. Then P2 c=>lA(7?, p) c P, both inclusions being strict. In fact
P2 = AP. Thus .4 is not prime in A(R, p) but, as for T(R, p) above, it is an irreducible
element of N(A(R, p)). Thus A(R, p) is not a Noetherian UFR.

PROPOSITION 3.2. Let R be a commutative Noetherian UFD and p a prime element of
R. Then the ring r(R, p) is a Noetherian UFN-ring.

Proof. Let A be as in the proof of Proposition 3.1. We shall show that, up to
associates, the irreducible elements of N(r(R, p)) are A and the irreducible elements of
the centre of T(R, p) (which we identify with R) apart from p, which factorises as A2.
Since N(R)/U(R) is free commutative, so is N(T(R, p))/U(T(R, p)). By Proposition 3.1,
it will follow that T(R, p) is a Noetherian UFN-ring.

Let B = e T(R, p) be a normal non-unit with i, j , k, I coprime in R and let

6 = det B, which is necessarily non-zero. The ring T(R, p) is invariant under the mapping
C^B~XCB and calculation of B~lpel2B and B~le2XB reveals that d'H2, 6~lpj2, 5~lpk2

and d~ll2e R. It follows that p and its associates are the only possible prime factors of 8
and that p2 does not divide 6. Since B is a non-unit in T(R, p), 8 is a non-unit of R. Thus
8 is an associate of p and it follows that i epR and I epR, i =pm, l=pn, say. But then

B = = CA, say. Since jk —pmn = -8p~l is a unit in /?, C is a unit in

M2(R) and hence in F(/?, p). Thus B is an associate of A. It follows from these
calculations that the irreducible elements of N(T(R, p)) are as claimed above. Thus
F(R, p) is a Noetherian UFN-ring.

By contrast with T(R, p), it turns out that A(R, p) is rarely a Noetherian UFN-ring.

PROPOSITION 3.3. Let R be a commutative Noetherian UFD and let p be a prime
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element of R. The ring A(R, p) is a Noetherian UFN-ring if and only if, for all elements
j , k of R and units u of R, jk = u mod pR implies j = k mod pR.

Proof. Suppose that there exist j , k, ueR, with u a unit, such that jk = u mod pR

but ; =£ k mod pR. Let D denote the matrix , where jk - u= pr. Note that D is a
L/* K J

unit in M2(R) and that neither D nor D'1 belongs to A(R, p). However it can be
calculated that DA(R, p)D~l = A(R, p) = D~lA{R, p)D,

AD=[>;=[>;
Consequently AD and D~XA are normal elements of A(R, p). But (AD)(D~1A) = A2 = p
and, since D, D~l $ A(R, p), A divides neither AD nor D~1A in A(R, p). So A is not
prime in N(A(R, p)) and, by Proposition 2.1, the prime Noetherian ring A(R, p) is not a
Noetherian UFN-ring.

Conversely suppose that, for all elements j , k of R and units u of R, jk = M modp/?
implies j = kmodpR. Follow the proof of Proposition 3.2, with A(R,p) replacing

Y(R, p), up to the point where B factorises as CA, with C = , and /& — pmn is a
L ft rC J

unit in i?. By supposition, C e A(/?, p) and so is a unit in A(R, p). As in the proof of
Proposition 3.2, B is an associate of A and A(R,p) is a Noetherian UFN-ring.

REMARK 3.4. Examples in which A(R,p) is a Noetherian UFN-ring include the
following: (i) p = 2 and R = Z; (ii) p = 2 and i? is the localisation of Z at the maximal
ideal 2Z; (iii) p = 2 and R is a polynomial ring Z[xu x2, • • • , xn] over Z in finitely many
commuting indeterminates; (iv) p = 1 + i and R is the ring of Gaussian integers; (v) p =xt

and R is a polynomial ring Z2[jti, JC2, • • • , xn\ over the field Z2 of two elements in finitely
many commuting indeterminates.

Examples in which A(R, p) is not a Noetherian UFN-ring include those where R=Z
and p is an odd prime, those where R is a polynomial ring over a field of order greater
than 2 in finitely many commuting indeterminates and p is one of the indeterminates, and
those where R = S[x, x~l] is the Laurent polynomial ring over any commutative
Noetherian UFD 5 and p is any prime element of 5. To see that such a ring S[x, x'1] fails
to satisfy the condition in Proposition 3.3, take j = u = x and k = \.

These examples reveal some surprising bad behaviour of the class of Noetherian
UFN-rings. Note that A(Z, 2) and A(Z, 2)[x], which is isomorphic to A(Z[JC], 2), are
Noetherian UFN-rings, but that A(Z, 2)[x, x~l], which is isomorphic to A(Z[JC, x~l], 2), is
not. Thus the class of Noetherian UFN-rings is closed under neither Laurent polynomial
extensions nor localisation at the set of powers of a central element.

REMARK 3.5. The proof of Proposition 3.1 reveals some significant difference in the
behaviour of the irreducible normal elements in the rings T(R, p) and A(R, p), even in
cases where the latter is a Noetherian UFN-ring. In Y{R, p) the ideal generated by A is
semiprime, being equal to PiC\P2, see the proof of Proposition 3.1. Note that the
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automorphism aA transposes Pl and P2; so that AT(R, p) is a^-prime. However in
A(R,p) we have P2 = AP<zAA(R,p)<=P and aA{P) = P\ so that AA(R,p) is neither
aA -prime nor semiprime. In both rings every irreducible normal element apart from A
generates a prime ideal.

The next example serves to illustrate that a Noetherian UFN-ring need not satisfy the
equivalent conditions of Proposition 2.3.

EXAMPLE 3.6. Let K be a field, A the polynomial ring K[x, y] over K in two
commuting indeterminates and M the maximal ideal xA+yA. Let R be the subring

[ of M2(A). Routine arguments and calculations, similar to those given in the
A AJ

proofs of 3.1 and 3.2, show that R is prime Noetherian and conformal and that the normal
elements of R are, up to associates in R, the elements of its centre, which we identify with
A. Consequently R is Noetherian UFN-ring.

Note that x and y are irreducible elements of N(R) and that, although the matrix unit
c12 $ R, xeX2 6 R and ye12 e R. Since x(yen) = y(xel2) and x divides neither y nor xen, R
does not satisfy the equivalent statements of Proposition 2.3. The ideal xR C\yR is not
generated by a normal element of R.

In this example there is a bijection between the set of associate classes of irreducible
elements of N(R) and the set of height one prime ideals of R given by

Pp
y VpA pA

Note that if p $ M then P =pR and that if p e M then Pi-pR but P2=pP.

In all the examples of Noetherian rings considered so far each height one prime ideal
contains, up to associates, a unique irreducible element of N(R). The next example shows
that this is not always the case.

EXAMPLE 3.7. Let K be a field of characteristic zero and let A be the factor ring
K[u, v,w,t:ut = vw] = K[U, V, W, T]/(UT - VW) of the commutative polynomial ring
K[U, V, W, T]. Let y be the /^-derivation

Ud/dU + V3/3V + (U + W)d/3W + (V + T)d/3T

of K[U, V, W, T]. Note that y{UT - VW) = 2(UT- VW); so that y induces a K-
derivation 6 of A such that 8(u) = u, d(v) = v, 8(w) = w + u and 6(t) = v + t. Let R be
the formal ring of differential operators or Ore extension A[x; 8]. Thus R is a Noetherian
domain, see for example [4, p. 53]. We shall show that

(i) N(R) is the set of non-zero homogeneous polynomials in u and v with
coefficients in K. Hence N(R) is a UF-monoid;

(ii) R is conformal;
(iii) R has a height one prime ideal P which contains all the irreducible elements of

N(R).
The ring A has as subrings three polynomial rings Ax = K[u, v, t], A2 = K[u, v] and

A3 = K[u]. Note that each of these is invariant under 8. Let H denote the set of non-zero
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homogeneous elements of A2 and observe that \ifeH has degree d then d(f) = df and
hence that / e N(R). Thus H c N(R). To establish the reverse inclusion, let a e R be
normal of degree n in x, a = a,,*" +". . . +a0. If « > 0 then au — ua = nand(u)x"~l + terms
of lower degree = nanux"~l + terms of lower degree. But this element must belong to the
ideal aR, which is not possible since A is a domain and au - ua is non-zero with degree
less than that of a. Thus n = 0 and a e A. Since 5{a) =xa - ax eaRDA = aA there must
exist b €A such that 6{a) = ba. Straightforward computations in the graded rings A, Ax

and A2 can now be used to show successively that b eK, aeAly aeA2 and finally that
a eH. Thus N(R) = H which is clearly a UF-monoid.

To show that R is conformal, it is enough to show that if P is a non-zero prime ideal
of R then PC\N(R) is non-empty. By [8, Lemma 1] and [7, Lemmas 1.3 and 2.1 and
Theorem 2.2], Pf\A is a non-zero prime ideal of A and is invariant under 6. So
PDA = P'/(UT - VW) for some prime ideal P' of height at least 2 in K[U, V, W, T]. It
follows, using [10, Theorem 37], that for some /, l g j § 3 , PD/ i , is a height one prime
ideal of A,. By [10, Theorem 5], P (lAi, = ayi, for some non-zero a eAh But <5(/l,) c/1,.
and ^(P) c />; so <5(a) e a4,. It follows that a e N(R) and hence that R is conformal.

Now let Q be the prime 6 -invariant ideal uA + vA of A and let P = QR = uR + vR
which, by [7, Lemma 1.3], is a prime ideal of R. Any prime ideal of A containing u must
contain either v or w; so Q is minimal over wA and, by the principal ideal theorem, has
height one. It follows, by [8, Lemma 1] and [7, Lemmas 1.3 and 2.1 and Theorem 2.2],
that P has height one in R. Clearly N(R) = HcP. Thus (iii) holds.

Nevertheless, in the ring R, there is a strong correspondence between the height one
prime ideals and the irreducible elements of N(R). This is simplest to describe in the case
where the field K is algebraically closed. In this case the irreducible elements of N(R) are
the homogeneous polynomials in u and v of degree 1. Thus

N(R) = {AM + fiv: A, n e K, not both zero}.

It can be checked that, for a = AM + fiv e N(R), aR = PH PKll, where P = uR + vR as
above and Pkili = (AM + i*v)R + (kw + pt)R is another height one prime ideal of R. The
mapping Q >-> P D Q is a bijection from the set of height one primes of R different from P
to the set of ideals of R generated by irreducible elements of N(R).

4. Five classes of UFN-rings.

THEOREM 4.1. Let R be a prime Noetherian ring and consider the following
statements:

(1) Risa Noetherian UFR;
(2) R is conformal and, for every irreducible element a of N(R), aR is an aa-prime

ideal of R;
(3) R is conformal and, for all a, b e N(R), there exists c e N(R) such that

(4) R is conformal and each height one prime ideal of R contains, up to associates, a
unique irreducible element of N(R);

(5) R is a Noetherian UFN-ring.
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Then (1) implies (2), (2) implies (3), (3) implies (4) and (4) implies (5) 6uf none o/ the
reverse implications are true.

Proof. (1) implies (2). This is immediate from Proposition 2.2.
(2) implies (3). Let p eN{R) be such that pR is Op-prime and let a eN(R), beR

such that p divides ab. We shall show that p divides a or p divides b. By Proposition 2.3,
this will establish that (2) implies (3). By [2, Lemma 3.3], pR has the right Artin-Rees
property; so there exists a positive integer n such that aR C\p"R c apR. Hence p"a = apr
for some reR. Since a is regular, ar"1^)" =pr. By Lemma 2.4(ii), pfl is semiprime; so,
since a^ip) is normal, a~1(p)epR. It follows, by Lemma 2.4(i), that pR = aa(pR).
Hence there exists s e R such that pa = asp. But then ap(a) = as eaR and a7? is an
up-ideal. Since the ideal {reR.arepR} is then also an ap-ideal, it follows, since pR is
ap-prime, that a epR or b epR.

(3) implies (4). Suppose that (3) holds and that P is a height one prime ideal of R
containing two irreducible elements p, q of N(R) which are not associates. Let
P = Plt P2, .. . , Pn be the prime ideals of R minimal over pR. Since R is Noetherian,
there exists a positive integer k such that (P, D P2 D . . . n Pn)

k cpR. If q ePj for all i then
<y* epi?, but this is not possible by Proposition 2.3. So we can renumber the ideals P, so
that qePu P2, . . . , Pm, qi Pm+U . . . , Pn, where 1 ^ m < n. If i > m then aq(P,)q =
qPt c P, and so, since q $ P, and is normal, ar,(P,-) c P,. By Lemma 2.4, a,(P,) = P,. Thus
aQ(Pm+l n . . . n Pn) = Pm+1 n . . . n Pn and so

<?*(Pm+1 n . . .np, )* = fa(Pm+1 n . . . . npn))*^PR.

By Proposition 2.3, (Pm+1 n . . . n Pn)
k cpR gP j . This is a contradiction. Thus (3)

implies (4).
(4) implies (5). Suppose that (4) holds and let p be an irreducible element of N(R)

and a, b eN(R) such that p divides ab. By Proposition 2.1, it suffices to show that p
divides a or p divides b. Let P be a prime ideal of R minimal over pR so that, by
Jategaonkar's principal ideal theorem [2, Corollary 3.5], P has height one. Either a e P or
b e P. But, up to associates, p is the only irreducible element of N(R) in P and, since R is
Noetherian, every element of N(R) factorises as a product of irreducible elements of
N(R). Hence either/? divides a orp divides b, as required.

The rings F(R, p) constructed in Section 3 satisfy (2), see Remark 3.5, but not (1),
see Proposition 3.1.

Let R be the ring obtained by localising Z at 2Z and consider the ring A(R, 2)
constructed in Section 3. By Remark 3.5, A(R, 2) does not satisfy (2). But the normal

elements of A(R, 2), up to associates, are powers of the element A = . Hence

A(/?, 2), which is prime Noetherian conformal by Proposition 3.1, satisfies (3).
The ring of Example 3.6 satisfies (4) but not (3), while the ring of Example 3.7

satisfies (5) but not (4).
In the remaining section of the paper we shall say that a Noetherian UFN-ring is of

class i, 1 ^ i ̂  5, if it satisfies statement (i) of Theorem 4.1.
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5. Maximal orders. In [3, Theorem 2.4] it was shown that if A is a Noetherian
UFR, in other words a Noetherian UFN-ring of class 1, then R is a maximal order. That
this result does not generalise to any of the larger classes of Noetherian UFN-rings
introduced in Section 4 is clear from the following result and the existence, observed in
Section 4, of a Noetherian UFN-ring of class 2 which is not a Noetherian UFR.

THEOREM 5.1. If R is a Noetherian UFN-ring of class 2 and is a maximal order then R
is a Noetherian UFR.

Proof. Suppose that R is a Noetherian UFN-ring of class 2 which is not a Noetherian
UFR. Then there exists an irreducible element p of N(R) such that the ideal pR is
ar-prime but not prime, where a = ap. Let P,, P2, . . . , Pn be the prime ideals of R
minimal over pR. By Lemma 2.4, pR is semiprime; so pR = Px C\ P2 f~l. . . D Pn. Hence
n > 1. Since a permutes the ideals P, and pR is ar-prime, the ideals P, must form a single
orbit under the action of a. Thus we may assume that <*(Pi) = P2 =£ Pi. Now p is invertible
in the quotient ring of R and Plp~x{P2 D. . . n Pn)Pl c Prp~lpR = Pv On the other hand,
PiP'KPz n . . . n Pn) £ R, otherwise, since Ap" 1 = p~lP2, Pz(P2 • • • Pn) spf i £ Pi, giving
Pj c P, for some / > 1, which is impossible. It follows by [11,1.3.1] that R is not a maximal
order.

The proof of Theorem 5.1 can be generalised, using primary decomposition theorems
for reflexive ideals in maximal orders, for example [5, Theorem 2.2], to show that if a
prime Noetherian ring R has a height one prime ideal which is not invariant under the
automorphism of R induced by some normal element of R then R cannot be a maximal
order. For other "bad behaviour" which is guaranteed in this situation, see [9].

If R is either of the rings used to show that, in Theorem 4.1, (3) does not imply (2)
and (4) does not imply (3) then R has a prime ideal P and a normal element p such that
Pi^pR but P2 = pP, see Remark 3.5 and Example 3.6. It follows that, in the quotient
ring of R, (p~1P)P^P but p~*P£R so that, by [11, 1.3.1], R is not a maximal order.
However the ring of Example 3.7 which is a Noetherian UFN-ring of class 5, but not of
class 4, is a maximal order. It is of the form A[x; 6], where A is an integrally closed
commutative Noetherian domain, and so is a maximal order by [11, 1.5.1 and V.2.5].
Thus Theorem 5.1 does not generalise from class 2 to class 5.
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