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Turbulent flow separation induced by a protuberance on one of the walls of an
otherwise planar channel is investigated using direct numerical simulations. Different
bulge geometries and Reynolds numbers – with the highest friction Reynolds number
simulation reaching a peak of Reτ = 900 – are addressed to understand the effect of
the wall curvature and of the Reynolds number on the dynamics of the recirculating
bubble behind the bump. Global quantities reveal that most of the drag is due to the
form contribution, whilst the friction contribution does not change appreciably with
respect to an equivalent planar channel flow. The size and position of the separation
bubble strongly depends on the bump shape and the Reynolds number. The most
bluff geometry has a larger recirculation region, whilst the Reynolds number increase
results in a smaller recirculation bubble and a shear layer more attached to the bump.
The position of the reattachment point only depends on the Reynolds number, in
agreement with experimental data available in the literature. Both the mean and the
turbulent kinetic energy equations are addressed in such non-homogeneous conditions
revealing a non-trivial behaviour of the energy fluxes. The energy introduced by the
pressure drop follows two routes: part of it is transferred towards the walls to be
dissipated and part feeds the turbulent production hence the velocity fluctuations in
the separating shear layer. Spatial energy fluxes transfer the kinetic energy into the
recirculation bubble and downstream near the wall where it is ultimately dissipated.
Consistently, anisotropy concentrates at small scales near the walls irrespective of
the value of the Reynolds number. In the bulk flow and in the recirculation bubble,
isotropy is restored at small scales and the isotropy recovery rate is controlled by the
Reynolds number. Anisotropy invariant maps are presented, showing the difficulty in
developing suitable turbulence models to predict separated turbulent flow dynamics.
Results shed light on the processes of production, transfer and dissipation of energy in
this relatively complex turbulent flow where non-homogeneous effects overwhelm the
classical picture of wall-bounded turbulent flows which typically exploits streamwise
homogeneity.
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1. Introduction
Flow separation consists of fluid flow around bodies becoming detached, causing

the fluid closest to the object’s surface to flow in reverse or different directions, most
often giving rise to turbulent fluctuations. The flow separation can be induced either
by geometrical singularities, for example in presence of sharp corners, or by smooth
geometry variations, as those occurring over a curved wall. The resulting adverse
pressure gradient is sufficient to cause flow detachment.

Given its importance from both theoretical and practical point of view, the study of
turbulence and separation has long been of interest to the fluid mechanics community,
see e.g. Simpson (1989) for a review. However, due to its complexity, this classic
subject is still widely investigated. The separation of fluid flow from objects inevitably
results in effects such as increased drag and mixing, momentum and energy transfer
and vortex shedding. An understanding of such effects is helpful to improve road
vehicle performance, in the study of fluid–structure interaction, to regulate air mixing
with other substances, such as pollutants or fuels, in the study of boundary layer
control, see e.g. Bai et al. (2014) and Marusic, Talluru & Hutchins (2014). In
modern bioengineering studies such as in hemodynamics, the nature of the flow
and the intensity of the shear stresses helps to determine whether lesions occur at
particular vascular sites, as described by Epstein & Ross (1999).

Turbulent boundary layers with pressure gradients are a common characteristic of
many aerodynamic flows such as the flow past airfoils, gas turbine blades, sails and
diffusers. To correctly predict the behaviour and the efficiency of such components, the
understanding of separation and reattachment mechanisms together with the associated
energy behaviour is essential, see e.g. Harun et al. (2013) and references therein. The
fundamental physics is indeed complex and no entirely satisfactory turbulence models
for numerical simulation of high Reynolds number separated flows are nowadays
available. This is mainly due to the complexity of the geometries inducing separation
and to the difficulty in obtaining sufficiently accurate experimental or numerical data
for reliable statistical analysis.

Flow separation occurs in both external and internal flows. In external flows,
boundary layer separation is induced by strong curvature effects and the associated
adverse pressure gradient (APG). The understanding of such complex interplay among
flow curvature, the APG and separation is considered one of the most challenging
issues in fluid dynamics both for modelling (Wilcox 1998) and most recently for
direct numerical simulation (DNS) (Soria et al. 2017). In these conditions, the
classical scaling of turbulent statistics is not valid since the flow separation modifies
the Reynolds shear stress distribution as discussed by Skaare & Krogstad (1994). In
internal flows, such as channel or pipe flows, on average the pressure decreases in the
flow direction. However, the pressure gradient may locally revert due to, for example,
an abrupt change of section and/or the presence of curved walls. In this case, a
localised separated flow occurs characterised by a statistically steady recirculation
region and by an eventual reattachment downstream. In such conditions, turbulence
develops in highly anisotropic and non-homogeneous conditions. In addition to the
non-homogeneous effects induced by the wall, it is fundamental to address the
non-homogeneous effects in the streamwise direction where the dynamics of turbulent
fluctuations occurs under rapidly changing conditions, see e.g. Chen, Meneveau &
Katz (2006), Gualtieri & Meneveau (2010) for a similar study in the context of
turbulent flows subjected to rapid time variations of the mean flow.

The statistical characterisation of separated flows in presence of adverse pressure
gradients is challenging due to the difficulty in controlling the actual pressure gradient
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and the ensuing separated flow in presence of curved flows, see Alam & Sandham
(2000). The experimental generation of turbulent flow with an APG is not standardised
and the different approaches employed lead to substantially different configurations.
Skaare & Krogstad (1994) and Krogstad & Skaare (1995) performed a detailed study
of a turbulent boundary layer in presence of a strong APG and constant skin friction
coefficient, providing a detailed analysis of the turbulence statistics including the
budget of the kinetic energy. Some studies are focused on the intermediate state
of separating and re-attaching flow, such as the experimental study of a boundary
layer that is maintained on the verge of separation conducted by Elsberry et al.
(2000). On the other hand, Castro & Epik (1998) study the separated flow at the
leading edge of a flat plate in a wind tunnel considering two different conditions:
with and without added homogeneous isotropic turbulence. In Webster, DeGraaff
& Eaton (1996) the experimental data of an APG boundary layer created by a
bump in the wall are provided and a detailed analysis of turbulence statistics is
discussed. Dengel & Fernholz (1990) performed experimental measurements of an
APG turbulent boundary layer reporting different cases of pressure distributions,
with and without reverse flow, showing the strong dependence of the near-wall flow
properties on the presence or absence of the recirculation region. To address the
turbulent flow separation on smooth geometry the ERCOFTAC test case 81 has been
employed in the literature. A period hill experiment has been designed by Manhart
at TU Munich, Rapp & Manhart (2011). This experimental set-up is made by nine
consecutive two-dimensional bumps to reproduce an infinite channel with periodic
bumps in the streamwise direction. Kähler, Scharnowski & Cierpka (2016) carry out
several measurements on this experimental set-up to address the separated flow. High
resolution particle image velocimetry and particle tracking velocimetry highlight the
crucial role of the spatial resolution close to the wall. As stated by the authors, the
difficulties to perform these measurements can be compared to those encountered in
obtaining reliable large eddy simulations (LES), see e.g. the discussion in Gualtieri
et al. (2007).

A geometry similar to the ERCOFTAC test case 81 is also employed for validation
of different numerical methods and subgrid models for LES and Reynolds-averaged
Navier–Stokes (Mellen, Frölich & Rodi 2000; Temmerman et al. 2003; Fröhlich
et al. 2005; Peller & Manhart 2006; Šarić et al. 2007; Hickel, Kempe & Adams
2008; Breuer et al. 2009; Diosady & Murman 2014). From this collection of works,
separation and reattachment points or turbulence intensity in the recirculation bubble
are found to strongly depend on modelling and numerics (Temmerman et al. 2003;
Šarić et al. 2007).

Among the methods used in numerics to introduce an APG, one of the easiest ways
is to use wall flow suction. Alternatively, the APG can be prescribed by a body force.
Na & Moin (1998a,b) performed a DNS of a separated boundary layer on a flat plate
using suction and blowing velocity distributions at the upper boundary. The inflow
condition was taken from Spalart’s temporally evolving zero pressure gradient (ZPG)
simulation, see Spalart (1988). Chong et al. (1998) used these data to analyse the
topology of near-wall coherent structures using the invariants of the velocity gradient
tensor. The comparison of experimental and DNS data is presented in Spalart &
Watmuff (1993) for turbulent boundary layers with different pressure gradients. The
DNS was performed using a spectral code with a fringe region to deal with periodic
conditions in the non-homogeneous streamwise direction and the friction velocity at
the edge of the boundary layer was prescribed to reproduce the pressure gradient of
the experiment. A similar numerical technique was used by Skote, Henningson &
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Henkes (1998) for simulations of self-similar turbulent boundary layers in adverse
pressure gradients prescribed by the freestream velocity. Skote & Henningson (2002)
performed the DNS of separated boundary layer flow with two different adverse
pressure gradients, while Ohlsson et al. (2010) addressed the separation in a three
dimensional turbulent diffuser. On to relatively more complex geometries, Le, Moin &
Kim (1997) concentrated on the re-attachment location and the skin friction coefficient
behind a backward facing step.

Issues related to the separation control have been investigated by Neumann &
Wengle (2004), by means of LES. The LES performed by Wu & Squires (1998)
was compared to the results by Webster et al. (1996) and it emerged that the use
of a coarse resolution with an eddy viscosity model did not allow an accurate
description of the small coherent vortical structures in the near-wall region which
were observed in experiments. LES has been performed by Kuban et al. (2012)
to evaluate the consistency and accuracy with respect to similar DNS simulations.
Indeed, the subgrid-scale models needed in any LES are expected to hamper the
physics at the smallest scales, calling for the use of DNS where no modelling
assumptions are introduced. Simulations of channel flow with a lower curved wall
were performed by Marquillie & Ehrenstein (2003) at relatively low Reynolds
numbers for a two-dimensional case to study the onset of nonlinear oscillations.
Marquillie, Laval & Dolganov (2008) investigated the vorticity and kinetic energy
budget downstream of such lower curved wall. Marquillie, Ehrenstein & Laval (2011)
and Laval, Marquillie & Ehrenstein (2012) expanded on these simulations by studying
the vorticity and streaks dynamics and linking the streaky structures to the kinetic
energy production.

The present work deals with the DNS of a fully turbulent channel with a lower
curved wall, or bump, which produces the flow separation. The simulations are based
on the spectral element method, as implemented in Nek5000 (Fischer, Lottes &
Kerkemeier 2008). The basic domain, a planar channel equipped with a lower curved
wall, is essentially repeated infinite times and is sufficiently long to allow the flow
beyond the bump to re-attach. This is numerically obtained with periodic boundary
conditions in the streamwise direction to avoid artificial inlet and outlet conditions.
The highest Reynolds number simulation reaches Reτ = 900 over the bump that
is, presumably, one of the highest friction Reynolds number achieved for such a
configuration.

The objective is to study the effects of the bump geometry and Reynolds number on
flow separation. One of the global quantities available from experiments is the position
of the reattachment point, an elusive quantity to reproduce in numerical simulations
due to the need of using closure models to reach sufficiently high Reynolds numbers.
In our case, we can directly compare the simulations with the experiments, observing
a good agreement with the available data. Beside classical first and second-order
statistics, the present DNSs provide access to high quality data concerning pressure
and friction drag and to wall shear stress and pressure coefficient distributions at
the walls. In the present flow geometry, the energetics of the flow is rather complex
and needs an accurate discussion. In particular, the shear layer at the boundary of
the separation bubble acts as source of turbulent kinetic energy, which is spatially
redistributed through the domain by the associated energy fluxes. In the analysis a
crucial role is played by the corresponding terms in the kinetic energy budget of
the mean flow, which are usually trivial in absence of separation. Locally the flow
turns out to be strongly anisotropic, with anisotropy persisting down to the smallest
scales. This effect was already discussed for the zero pressure gradient boundary
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Simulation Re Reτ Reτ 1x+ 1z+ 1y+max/min a

A1 2500 300 160 2.8 2.8 3.7/0.5 0.15
B1 2500 300 160 2.8 2.8 3.7/0.5 0.25
C1 2500 300 160 2.8 2.8 3.7/0.5 0.50
A2 5000 550 280 4.4 5.0 6.0/0.7 0.15
A3 10 000 900 550 6.5 7.0 9.5/0.9 0.15

TABLE 1. Simulation matrix. The nominal Reynolds number is Re= h0Ub/ν where h0 and
Ub are the half-nominal channel height and the bulk velocity respectively. Reτ = huτ/ν is
the maximum friction Reynolds number taken at the bump tip with uτ =

√
τw/ρ the local

shear velocity (τw is the local mean shear stress and ρ is the density) and h half the local
channel height. The average friction Reynolds number is denoted with Reτ where averages
are performed on both the upper and lower walls. 1x+, 1z+ and 1y+max/min are the spatial
resolution in the streamwise, spanwise and wall-normal directions made dimensionless with
the average wall unit. The parameter a determines the different bump geometries, see text.

layer (Jacob et al. 2008) and for the homogeneous shear flow (Casciola et al. 2007).
In the present case, the analysis of the anisotropy of both large and small scales
is studied via the deviatoric components of the Reynolds stresses and the pseudo-
dissipation tensor. Increasing the Reynolds number, isotropy recovery at small scale
is found to occur in the recirculating bubble. However, the anisotropy persists in the
shear layer where the production of turbulent kinetic energy overwhelms the energy
cascade forcing the shear scale to approach the dissipative scales. The anisotropy
invariant maps of the Reynolds stresses are finally used to quantify the different
anisotropic states of the large turbulent scales. The results confirm that the present
flow poses a significant challenge for turbulence modelling due to the existence of
the recirculating bubble behind the bump and the adverse pressure gradient region
along the opposite wall.

The paper is organised as follows. The dataset is presented in § 2 together with
some basic statistics used for validation. The main results are reported in § 3 which
is divided into several subsections illustrating different topics, i.e. instantaneous
flow fields, Reynolds stress tensor, budget of mean and turbulent kinetic energies
and anisotropy analysis, including anisotropy invariant maps. The last section, § 4,
summarises the main findings of the paper.

2. Simulations
Five different simulations, whose parameters are summarised in table 1, have

been carried out. Simulations A1, B1 and C1 have the same Reynolds number but
different bump geometries, going from the most streamlined (A1) to the most bluff
(C1) profile, see figure 1. A sketch of the whole three dimensional domain is shown
in figure 2. Simulations A2 and A3 have the same bump geometry as simulation A1
but are performed at higher Reynolds numbers. Table 1 lists the nominal Reynolds
number Re, the maximum friction Reynolds number Reτ on the bump, the friction
Reynolds number averaged on the top and bottom walls Reτ and the grid spacing in
all directions. The grid is uniform in the streamwise and spanwise directions, and
stretched in the wall-normal direction to cluster grid nodes toward the walls, see
table 1. The nominal Reynolds, Re= h0Ub/ν, is defined in terms of half the channel
height, h0, of the bulk velocity, Ub, and of the kinematic viscosity, ν. The friction
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FIGURE 1. Sketch of the different bump geometries given by y = −a(x − 4)2 + 0.5
where a is reported in table 1 and localisation of the different stations where statistics
are addressed.

Reynolds number is Reτ = huτ/ν, with uτ =
√
τw/ρ the shear velocity (τw is the local

mean shear stress and ρ is the density), and h half the local channel height. DNS is
employed to solve the incompressible Navier–Stokes equations,

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+

1
Re
∂2ui

∂x2
j

∂ui

∂xi
= 0, (2.1a,b)

where ui is the ith velocity component, and p is the hydrodynamic pressure.
Henceforth all length scales are made dimensionless with the nominal channel
half-height, h0, time scales with h0/Ub and pressures with ρU2

b .
The simulations are carried out using Nek5000, see (Fischer et al. 2008), which is

an open-source code that can simulate unsteady incompressible and low Mach number
flows. The discretisation is based on the spectral element method (SEM), see Patera
(1984), whose formulation allows for DNS. Highly accurate numerical approaches for
the simulation of wall-bounded turbulent flows are crucial since it is desirable that
the numerical error does not contaminate the multi-scale nonlinear interactions. This
feature is fulfilled by the SEM approach, which reconciles the high accuracy, typical
of a spectral method, and the flexibility (in terms of geometrical configuration), typical
of finite element approaches.

The grid spacing in the wall-normal direction y at the centre of the domain and
at the walls is given by 1y+max and 1y+min, respectively. The superscript + denotes
wall units referred to the average friction Reynolds number. The uniform grid spacing
in the streamwise x and spanwise direction z in inner units is denoted by 1x+ and
1z+ respectively. These values, reported in table 1, are well within the grid resolution
suggested by Kim, Moin & Moser (1987) for well resolved DNS of wall-bounded
turbulent flows. Comparison of the local grid spacing, ∆= 3

√
1x1y1z, with the local

Kolmogorov scale, η= (ν3/εT)
1/4 where εT is the turbulent kinetic energy dissipation

rate, is shown in figure 3, in particular the quantity πη/∆ is reported for the highest
Reynolds number case. The resolution requirement for a classical spectral method is
kmaxη = πη/∆ > 1. In the present case πη/∆ ranges between 1 in the recirculation
bubble and almost 3 in the bulk of the flow, values adequate for the high fidelity
reconstruction of the small-scale dynamics of the flow, given the accurate dispersion
characteristics of the spectral element method.

The bump profile on the lower wall is generated using the equation y=−a(x−4)2+
0.5, where the coefficient a is reported in table 1 for each simulation. The mesh for
the lower Reynolds number case contains approximately 120 million grid points and
the simulation was run on 8192 cores, using approximately 6 million core hours. The
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x

y
z

FIGURE 2. Sketch of the geometry of the channel with the curved lower wall for
simulation (A). Periodic conditions are enforced in the streamwise, x, and spanwise, z,
direction. No slip and impermeability are enforced on the top and bottom walls.
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FIGURE 3. (Colour online) Kolmogorov scale with respect to the local grid spacing,
πη/∆, for simulation A3, where ∆= 3

√
1x1y1z.

mesh for the higher Reynolds number case was run with approximately 400 million
grid points on 32 768 cores using approximately 30 million core hours. All simulations
were run with a spectral element order N = 9 except for the high Reynolds number
simulation (A3) which was run at a spectral element order N = 11. The reason for
changing the spectral order is purely technical, motivated by the need of optimising
the machine performance at changing dimensions of the simulation. All simulations
were run on the FERMI Blue Gene/Q Tier0 system at the CINECA supercomputer
centre in Bologna, Italy.

The geometry is shown in figure 2. The domain has dimensions (Lx × Ly × Lz) =
(26× 2× 2π) to avoid flow confinement at high Reynolds number, see Lozano-Durán
& Jiménez (2014) for similar issues in the context of planar channel flows. In the
pictures, the flow is from left to right in the x direction with periodic boundary
conditions in both the x and z directions. No slip and zero normal velocity boundary
conditions are imposed at the top and bottom walls. Accounting for periodicity, the
actual geometry consists of an infinite channel with periodic bumps in the streamwise
direction that are spaced by approximately 44 bump heights. The distance between
consecutive bumps is enough to allow flow reattachment and to minimise the effects
that the separation behind the fore bump may have on the aft bump. In this way,
the use of inflow conditions, either synthetic or provided by companion channel
simulations, is avoided. The flow is sustained by an overall pressure drop 1p(t) in
the x direction that is modulated in time to keep the same constant flow rate for all
simulations.

Approximately 500 statistically uncorrelated fields, separated by a time interval of
1tstat = 6, were collected for each simulation in order to obtain properly converging
statistics. 1tstat is normalised with h0/Ub. Defining the ‘flow-through time’, tft, as the
time needed for a turbulent structure to travel all along the channel length, see Kähler
et al. (2016), the simulation time is Ttot = 3000 ' 115 tft, which makes sure that the
velocity statistics converge (Kähler et al. 2016). Figure 4 shows, for simulation A1,
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FIGURE 4. (Colour online) Temporal auto-correlation of velocity and pressure signals, for
simulation A1, probed just after the bump at x= 5.8 in (a) and at x= 24 in (b). Panel
(c) shows the spatial correlation of axial velocity fluctuations in the spanwise direction at
x= 5.8 and at x= 24. All panels refer to the same distance from the upper planar wall,
d= 2− y= 1.6; τ is normalised with h0/Ub.

the temporal auto-correlation of velocity,

Rii(x, y, τ ) = lim
T→∞

1
πTui

2
rms

∫ T

0

∫ π

0
u′i(x, y, z, t)u′i(x, y, z, t+ τ) dz dt

=
〈u′i(x, y, z, t)u′i(x, y, z, t+ τ)〉

ui
2
rms

, no sum, (2.2)

and pressure signals, Rpp(x, y, τ ) = 〈p′(x, y, z, t)p′(x, y, z, t + τ)〉/p2
rms, probed at

different locations inside the domain with the local root mean square fluctuation
defined to normalise to one the correlation at zero time separation, i.e. Rii(x, y, 0)= 1.
Angular brackets indicate averages over the homogeneous coordinates, z and t,
while a prime indicates the fluctuation with respect to the local mean value. Some
probes are located just beyond the bump (figure 4a) and some others in the fully
reattached flow (figure 4b). The correlations confirm that fields separated by 1tstat
are uncorrelated. For the same points, the spatial correlation of streamwise velocity
fluctuations, Rxx(x, y, ζ )=〈u′x(x, y, z, t)u

′

x(x, y, z+ ζ , t)〉/ux
2
rms, in the spanwise direction,

z, is shown in figure 4(c). The solid line refers to the correlation just beyond the
bump whilst the dashed line refers to the correlation in the fully reattached flow.
The spatial separation is normalised with (nominal) wall units ζ+ = ζReτ . In the
reattached flow region, the minimum correlation occurs at ζ+ ' 100 assuring that the
spanwise length is suitable to avoid confinement effects on the turbulent structures.
Close to the bump, the correlation minimum occurs at ζ+ ' 80. The inset in the
figure reports the same quantities as a function of the spanwise separation normalised
with the external unit.

Figure 5 shows plots of dimensionless mean streamwise (x-direction) velocity,
〈ux〉

+
= 〈ux〉/uτ , against y+ = yReτ at x= 24 averaged in the top half of the channel

(blue) and in the bottom half (red), for simulations A1, A2 and A3. At this station,
the flow almost entirely recovers the structure of a canonical turbulent channel flow.
The plots show a well resolved viscous sublayer, the buffer layer and the expected
log-law region. The theoretical prediction for the viscous region close to the wall is
represented by the dashed black line, 〈ux〉

+
= y+. The symbols in the plots denote

actual data points, showing the high resolution achieved in the simulation. The solid
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FIGURE 5. (Colour online) Plot of mean streamwise (x-direction) velocity normalised with
friction velocity, 〈ux〉

+
= 〈ux〉/uτ , against y+ at x = 24 for simulations A1, A2 and A3

in (a), (b) and (c), respectively. The top and bottom wall velocities are represented by
the blue and red lines, respectively. The dashed black line is the theoretical prediction,
〈ux〉

+
= y+, in the viscous sublayer. The solid black line is the theoretical prediction,

〈ux〉
+
= 1/k log (y+)+ A, in the log-layer region with k= 0.41 and A= 5.

black line represents the log law, 〈ux〉
+
= 1/k log y+ + A. The figure shows that, both

at the bottom and top wall, this law is approached by the present data with better
accuracy as the Reynolds number is increased, see the caption of the figure for the
values of von Kármán constant and intercept which are in agreement with those
found in, e.g. Nagib & Chauhan (2008), Marusic et al. (2013).

3. Results
3.1. Instantaneous flow fields

Figure 6 shows instantaneous contour plots of streamwise velocity in the x–y plane
for all the simulations. As expected, investing the bump, the flow velocity increases at
the channel restriction and separates behind the bump with the formation of an intense
shear layer between the bulk flow and the separation bubble close to the bottom wall.
With increasing Reynolds number, cases A1, A2 and A3 progressively, structures at
smaller scales appear. The separated region behind the bump becomes smaller, more
attached to the bump and less protruded in the streamwise direction. It is interesting to
compare, at least qualitatively, the flow snapshots for cases A1 and A3 with the smoke
patterns used to visualise the boundary layer on a convex wall as shown in p. 91 of
the classical album by Van Dyke (1982). Indeed, in case A3 the flow impinging the
bump is clearly characterised by small-scale structures while case A1, even though
nominally turbulent, appears smoother. Under this respect, case A3 can be regarded
as producing a turbulent boundary layer between the external turbulent stream and
the wall able to better withstand the adverse pressure gradients before separation. The
separated region in front of the bump is also smaller at high Reynolds number. On
the other hand, the separated region behind the bump becomes larger as the bump
becomes bluffer. At the top wall, the boundary layer thickens after the constriction
due to the adverse pressure gradient but separation is not observed. This effect is more
evident for the lower Reynolds number cases, probably due to the higher extension of
the recirculation bubble.

Figure 7 shows instantaneous contour plots of streamwise velocity in x–z planes
at three wall-normal distances for simulations A1 and A3 to qualitatively compare
Reynolds number effects. At the higher Reynolds number, smaller structures are
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FIGURE 6. (Colour online) Instantaneous streamwise velocity contour plots in x–y plane
for all five simulations.

clearly present and the spacing between region of high and low speed is greatly
reduced. In the far downstream region and close to the walls, this is consistent with
the expected scaling of streak spacing in internal units (Robinson 1991). In particular,
figure 7(a,b) shows x–z-planes close to the bottom wall at y+= 15. This wall distance
corresponds to the classical buffer layer of the channel flow. The empty region in the
plot represents the intersection of the plane with the bump. The recirculation region
behind the bump is characterised, at this distance from the wall, by negative velocity
and small-scale structures. The size of the region where reverse flow occurs decreases
when increasing the Reynolds number. Downstream, the small-scale structures elongate
in the flow direction and resemble the streaky structures found in turbulent planar
channel flow. The x–z-planes for simulations A1 and A3, in (c) and (d), respectively,
just touch the top of the bump which is indicated by the continuous zero velocity
line at x = 4 in the contour plot. The acceleration of the flow just before the bump
and its deceleration just behind can be observed. The small-scale structures far
away from the bump increase their length downstream. For simulation A3, the flow
structures generated in the shear layer appear confined in a smaller region since
the flow is more attached to the bump’s surface and the separated region protrudes
less in the streamwise direction. Figure 7(e, f ) shows the x–z-planes close to the top
wall, at y+ = 15. The effect of the bump on the velocity is still present and a clear
velocity increase is seen at the bump’s location, due to the cross-section restriction.
This is followed by a low velocity region corresponding to the end of the separation
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FIGURE 7. (Colour online) Instantaneous streamwise velocity contour plots in x–z plane
at y+ = 15 in (a,b), y= 0.5 in (c,d) and y+ = 15 (from the top wall) in (e, f ). Simulation
A1 in (a,c,e) and simulation A3 in (b,d, f ).

bubble at the opposite wall. In this region, the turbulent structures maintain a
streamlined, streaky shape and no separated region is present.
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FIGURE 8. (Colour online) Average streamwise velocity 〈ux〉 contour plots with isoline at
〈ux〉 = 0 for all five simulations.

3.2. Mean velocity and turbulent fluctuations
In the statistical analysis to follow, the average of a generic quantity q is indicated
with the angular brackets, 〈q〉, or with the capital letter, Q, according to convenience,
while the fluctuation is indicated with the apex, q′. Details of the recirculation bubble
for all the simulations are shown in figure 8, providing the contour plot of the mean
streamwise velocity 〈ux〉 normalised with the bulk velocity. The black solid line
highlights the zero isolines to better appreciate the mean flow reversal.

By progressively restricting the section, the first part of the bump makes the
flow velocity increase consistently with the pressure decrease which is mechanically
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FIGURE 9. (Colour online) Mean axial velocity, 〈ux〉, at six positions (a–f ) corresponding
to the stations in figure 1. Simulations A1, B1 and C1 are represented by solid, dashed
and dashed-dotted blue lines respectively. Simulations A2 and A3 are represented by solid
green and red lines respectively.

responsible for the acceleration. After the top of the bump the flow decelerates
and a strong adverse pressure gradient occurs. This produces a backward flow near
the bottom wall, giving rise to flow detachment. The bubble becomes smaller and
more attached to the bump starting from the lower Reynolds number (A1) to the
higher Reynolds number (A3). The profiles recuperate positive average velocity
at the bottom wall behind the bump at an earlier x-position for simulation A3
compared to simulation A2 or A1. Concerning the effect of the geometry, the bubble
becomes larger starting from the streamlined bump in simulation A1 to the more bluff
geometry in simulation C1. However, the mean position of the reattachment point in
the streamwise direction is basically independent of the bump width, at x= 7 for all
three geometries at Re= 2500, while it clearly depends on the Reynolds number.

The above discussion is confirmed in detail by considering the mean velocity
profiles extracted from figure 8 and reported in figures 9 and 10 at the downstream
positions shown in figure 1. Simulations A1, B1 and C1 are represented by solid,
dashed and dashed-dotted blue lines respectively whilst simulations A2 and A3 are
represented by solid green and red lines respectively. Figure 9 shows mean streamwise
velocity profiles for all five simulations. For the station shown in (a), the profiles are
almost independent of the Reynolds number (solid lines) while they depend strongly
on the geometry (broken lines), suggesting that the mean flow has already achieved a
sort of asymptotic state. The profile for case C1 extends down to the bottom wall with
a slightly negative velocity, indicating a small recirculating region ahead of the bump.
At the tip of the bump, (b), all the profiles essentially exhibit the same behaviour.
The recirculation is already well developed at the station of (c) for the bluffest bulge,
case C1. Further downstream, (d), the wall-normal extension of the backward flow are
well evident for all cases except for the highest Reynolds number (case A3), where
the recirculation is more attached to the wall and extends less streamwise. Since the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

25
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.255


Effect of geometry and Reynolds number on the separation behind a bulge 113

0–0.2 0.2 0.4 0–0.2 0.2 0.4 0–0.2 0.2 0.4

0–0.2 0.2 0.4 0–0.2 0.2 0.4 0–0.2 0.2 0.4

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

y

y

(a)

(d )

(b)

(e)

(c)

( f )

FIGURE 10. (Colour online) Mean wall-normal velocity, 〈uy〉, at six positions (a–f )
corresponding to the stations in figure 1. Simulations A1, B1 and C1 are represented
by solid, dashed and dashed-dotted blue lines respectively. Simulations A2 and A3 are
represented by solid green and red lines respectively.

extension of the bubble is larger for the lower Reynolds number cases, it is still
present at the station corresponding to figure 9(e). In contrast, reattachment already
occurred for the higher Reynolds number (cases A2–A3). Further downstream, ( f ),
the flow is attached for all conditions.

Figure 10 shows the mean wall-normal velocity profiles. Wall-normal velocities are
particularly intense as the flow invests the bump, (a). At the tip of the bump, (b),
the positive (away from the bottom wall) wall-normal velocity peak is higher for the
less streamlined bump (C1), indicating that the flow is strongly converging towards
the opposite wall, leading to a contraction of the effective section (vena contracta).
The wall-normal velocity is progressively reduced downstream, to eventually become
negative. At intermediate stations, see e.g. (c), the wall-normal velocity is negative in
the outer flow, indicating the trend toward reattachment to the lower wall. Approaching
the wall, 〈uy〉 becomes zero at the edge of the recirculation bubble. Inside the bubble
〈uy〉 is positive, indicating that the profile is traversing the fore part of the bubble,
recirculating clockwise. Moving further downstream, the external flow still moves
toward the lower wall, but now the aft part of the bubble is reached, implying a
negative wall-normal velocity also inside the bubble. Finally, the reattachment point
is reached and the wall-normal average velocity tends to vanish in the entire channel
section, starting to recover nearly parallel-flow conditions expected far away from
the bump. The shorter bubble length leads to a more abrupt reattachment, as seen by
the large negative wall-normal average velocity in the red plot of (c). The bluffest
configuration induces an evident secondary recirculation bubble just below the primary
one where the bump ends, see also figure 8. Note that in this figure a small bubble
is also apparent just ahead of the bump.

The next figures present the mean profiles for the fluctuating quantities, i.e. 〈u′2x 〉,
〈u′2y 〉 and 〈u′xu

′

y〉, at the same stations addressed above for the mean velocity profiles.
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FIGURE 11. (Colour online) Mean streamwise velocity fluctuations, 〈u′2x 〉, at six positions
(a–f ) corresponding to the stations in figure 1. Simulations A1, B1 and C1 are represented
by solid, dashed and dashed-dotted blue lines respectively. Simulations A2 and A3 are
represented by solid green and red lines respectively.

Figure 11 shows mean streamwise velocity fluctuation profiles 〈u′2x 〉 for all five
simulations. These are particularly strong close to the walls or inside the shear layer
above the recirculating region, for all cases. The fluctuations are maximum in the
high Reynolds number case (A3) and in the most bluff case (C1). In the former, the
high velocity fluctuations are due to the higher Reynolds number, whilst in the latter,
the fluctuations are fed by the strong flow separation induced by the bump shape. In
the lower Reynolds number simulations, the regions with higher velocity fluctuations
are larger, corresponding to a larger shear layer. The presence of the bump also
results in an increase in fluctuations at the top wall, particularly evident for the
lower Reynolds number simulations. The change in geometry also affects the maxima
reached by the fluctuations. In particular, due to the increased size of the recirculating
region, simulation C1 exhibits peak values which are comparable to simulation A3
in the shear layer, see (c). In correspondence of the recirculating region, the peaks
are higher for case C1 with respect to the cases at the same Reynolds number, B1
and A1. The profiles for the wall-normal velocity fluctuations 〈u′2y 〉 and the Reynolds
stress, 〈u′xu

′

y〉, follow a similar trend. The profiles are shown in figures 12 and 13 for
all five simulations. The positive values of Reynolds stress confirm the presence of
the small recirculation bubble ahead of the bump, figure 13(a).

The position of the reattachment point clearly does not depend on the dimension
of the obstacle in the streamwise direction, but on the Reynolds number. These
observations are in agreement with both numerical and experimental data already
available in the literature. Figure 14 shows the reattachment point normalised with
the height of the bump, xr/hb as a function of the Reynolds number based on the
bulk velocity and on the height of the bump, Rehb = Re hb (note that hb is the
dimensionless bump height). Data have been collected in Kähler et al. (2016) from
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FIGURE 12. (Colour online) Mean wall-normal velocity fluctuations, 〈u′2y 〉, at six positions
(a–f ) corresponding to the stations in figure 1. Simulations A1, B1 and C1 are represented
by solid, dashed and dashed-dotted blue lines respectively. Simulations A2 and A3 are
represented by solid green and red lines respectively.
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FIGURE 13. (Colour online) Reynolds stress, 〈u′xu
′

y〉, at six positions (a–f ) corresponding
to the stations in figure 1. Simulations A1, B1 and C1 are represented by solid, dashed
and dashed-dotted blue lines respectively. Simulations A2 and A3 are represented by solid
green and red lines respectively.
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FIGURE 14. (Colour online) Dependence of the reattachment point normalised with the
height of the obstacle xr/hb, on the Reynolds number based on hb, Rehb =Re hb. hb is the
bump height normalised with the nominal channel half-height, h0. Closed black symbols
refer to experimental measurements, open black symbols to numerical simulations (mainly
LES). Red dashed line is the exponential fit of the experimental data (Kähler et al. 2016).
Open red symbols are extracted from the present DNS (Mellen et al. 2000; Temmerman
et al. 2003; Fröhlich et al. 2005; Peller & Manhart 2006; Šarić et al. 2007; Hickel et al.
2008; Breuer et al. 2009; Rapp & Manhart 2011; Diosady & Murman 2014; Kähler et al.
2016).

several experiments (closed symbols) and numerical simulations, mainly LES, (open
symbols), whilst the open red circles are the present simulations.

Note that the geometries in these experiments and simulations only qualitatively
corresponds to ours. We therefore focus the comparison on the re-attachment point
whose position is mainly controlled by bump height and Reynolds number, quite
independently of the detailed geometry. The red dashed line in the figure is a
power-law fit, based on all experimental results, which asymptotically reaches
3.71 x/hb for large Reynolds numbers. The reattachment location scales with Rehb to
the power −1.4. The reattachment position moves further upstream with increasing
Reynolds number due to the stronger turbulent mixing, i.e. due to a higher turbulent
momentum transfer towards the wall. The present DNS data agree well with the
experimental results of Kähler et al. (2016) and of Rapp & Manhart (2011). Overall,
this compilation of data shows a significant scatter of data obtained by turbulence
modelling and a certain inability of the models to capture the bubble reattachment
position, see also the discussion in Kähler et al. (2016) for more details. Concerning
the present DNS, the slight differences with the experiments can be attributed to
details of the turbulence investing the bump and the confinement effect of the upper
wall.

3.3. Pressure, drag and friction coefficients
The instantaneous pressure is decomposed as the sum of a contribution linearly
decreasing in the streamwise direction, which is associated with the instantaneous
pressure drop 1p(t) across the channel, plus a departure p̃ from the linear law,

p(x, t)=−
1p
Lx

x+ p̃(x, t). (3.1)
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Case Cd Cform
d Cchannel

d Cfriction
d −Cchannel

d

A1 3.07× 10−2 1.06× 10−2 1.80× 10−2 0.21× 10−2

B1 3.26× 10−2 1.28× 10−2 1.80× 10−2 0.18× 10−2

C1 3.49× 10−2 1.55× 10−2 1.80× 10−2 0.14× 10−2

A2 2.68× 10−2 1.05× 10−2 1.44× 10−2 0.19× 10−2

A3 2.05× 10−2 7.07× 10−3 1.17× 10−2 0.17× 10−2

TABLE 2. Drag coefficient decomposed into form and friction contributions and
comparison against an equivalent planar channel. See text for definitions.

In the present simulations 1p(t) does not significantly fluctuate in time, oscillating
within 1 % at most, although its value is in principle continuously adjusted to
keep the flow rate rigorously constant. The drag coefficient in terms of the present
dimensionless variables is

Cd = 4
1P
Lx
=−

2
Lx

∫
walls
〈t〉 · ex dl, (3.2)

where 1P=〈1p〉 is the average pressure drop, t is the (dimensionless) traction at the
wall (pressure plus shear force) and ex is the unit vector in the streamwise direction.
Wherever needed (see e.g. § 3.4.2) the fluctuation of the pressure drop will be denoted
by 1p′(t).

The drag increases moving from the most streamlined (A1) to the most bluff profile
(C1), see table 2. On the other hand, the drag coefficient decreases with the increase
in Reynolds number, from simulation A1, A2 to A3. For purpose of comparison, the
drag in a planar channel at the same flow rate is Cchannel

d = 4(Re0
τ/Reb)

2. The drag
coefficient can be decomposed in form and friction components, namely

Cform
d =

2
Lx

ex ·

∫
walls

Pn dl, Cfriction
d =−

2
Lx

ex ·

∫
walls

µ
∂U
∂n

dl, (3.3a,b)

where n is the unit normal exiting the fluid domain. The form drag coefficient
increases by 50 % going from the most streamlined to most bluff shape. The
observed decrease of the form drag coefficient with increasing Reynolds number
is more than compensated by the larger velocity for flows in the same geometry
implying, as obvious, the increase of the corresponding contribution to the resistance,
Dform
∝U2

bCform
d . In the present geometry, the friction component is dominated by the

straight part of the channel and its value is not significantly different from the one
expected in a planar channel, see the small difference Cfriction

d − Cchannel
d in table 2.

This confirms that most of the bump-induced drag should be interpreted as form drag.
Given its relevance in determining the drag, the mean pressure field is shown in

figure 15 for all simulations. Approximately, the qualitative behaviour is similar for
all cases. A high pressure region occurs just before the bump where a stagnation
point occurs. Further downstream the pressure decreases reaching its minimum in the
high velocity region, at the top of the bump. The pressure field behind the bump is
strongly influenced by the shape and dimension of the recirculation bubble. When the
separation region is significant, cases A1, B1 and C1, a second pressure minimum
develops inside the recirculation bubble. The high Reynolds number simulations where
performed on the most streamlined geometry, which produces a smaller separation
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FIGURE 15. (Colour online) Average pressure 〈p〉 contour plots for all five simulations.

compared to the other geometries. With increasing Reynolds number, cases A2 and
A3, the flow more easily faces the adverse pressure gradient due to enhanced turbulent
mixing, resulting in delayed separation. As a consequence, pressure recovery behind
the bump is more effective.

Given the average pressure drop along the channel, the effect of the bump on the
wall pressure is better addressed in terms of a departure-pressure coefficient

Ct/b
p (x)= 2〈p̃〉|y=2/y=0, (3.4)

where the superscripts ‘t’ and ‘b’ refer to the top and bottom wall respectively.
Adding the linear term −2x1P/Lx recovers the standard definition of Cp. Figure 16
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FIGURE 16. (Colour online) Modified pressure coefficient at the top and bottom walls of
the domain, (a) and (b) respectively. Simulations A1, B1 and C1 are represented by solid,
dashed and dashed-dotted blue lines respectively. Simulations A2 and A3 are represented
by solid green and red lines respectively.

shows the departure pressure at both walls. The effect of the bump extends to
the opposite wall, with Ct

p presenting a trough just after the bump tip (at x = 4)
and recovering downstream. The trough is smaller and shifted closer to the bump
tip with increasing Reynolds number. At constant Reynolds number, the trough is
more pronounced and farther away from the tip when the geometry is bluffer, i.e.
simulations B1 and C1. At the bottom wall, as the flow reaches the bump, Cb

p initially
increases producing a small recirculation just ahead of the bump. The pressure then
decreases to its minimum slightly ahead of the tip. These trends become stronger
for the bluffer geometries. Immediately downstream of the tip, the pressure abruptly
rises reaching the separation point. In the recirculation bubble the pressure remains
almost constant, with the extension of the plateaux becoming smaller at increasing
Reynolds number (red line). The extension of the plateaux is almost independent of
the geometry, where Cb

p decreases for bluffer bumps.
Figure 17 shows the mean skin friction coefficient Cf = 2τw. At the top wall,

Cf is always positive, showing that the adverse pressure gradient (see figure 16) is
too mild to induce average flow separation on the wall opposite to the bump. The
maximum and minimum Cf occur just before the bump tip and at the end of the
bubble, respectively. At the bottom wall, the skin friction coefficient ahead of the
bump becomes slightly negative due to the small recirculation bubble and reaches a
positive peak as the flow approaches the tip of the bump. For the different Reynolds
numbers, the position of the peak coincides but the maximum reduces with increasing
Reynolds number. The peak is shifted towards the tip with increasing bluffness of
geometry. A skin friction plateaux is observed behind the tip, along the bump where
the cross-stream section of the channel increases. At the bubble, consistently with
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FIGURE 17. (Colour online) Mean skin friction coefficient along x at the top and bottom
walls of the domain in (a) and (b) respectively. Simulations A1, B1 and C1 are represented
by solid, dashed and dashed-dotted blue lines respectively. Simulations A2 and A3 are
represented by solid green and red lines respectively.

the backward flow at the wall, the skin friction is negative, with increasing absolute
value for bluffer geometries and lower Reynolds numbers.

3.4. Mean kinetic energy and turbulent kinetic energy budgets
The Reynolds decomposition entails the splitting of the total kinetic energy into two
parts, K = KM + kT , where KM = 1/2 〈ui〉〈ui〉 is the kinetic energy of the mean flow
and kT = 1/2〈u′iu

′

i〉 is the turbulent kinetic energy. In the literature, little attention is
typically paid to the kinetic energy of the mean field and most interest is focused on
the turbulent contribution. This is motivated by the usually simple flow configuration
where the mean balance equation for KM is trivial. In the present case both mean and
turbulent kinetic energy need to be dealt with explicitly. The reason is that the bump
breaks the streamwise homogeneity and induces strong mean wall-normal velocities.
This gives rise to non-trivial mean and turbulent spatial energy fluxes, dissipation and
turbulent kinetic energy production.

3.4.1. Mean kinetic energy
The (stationary) mean flow kinetic energy equation reads

∂ΦMj

∂xj
=−εM −Π +

1P
Lx

Ux, (3.5)

where εM = 1/Re(∂Ui/∂xj)(∂Ui/∂xj) is the mean flow energy dissipation rate per unit
volume and Π =−〈u′iu

′

j〉∂Ui/∂xj is the turbulent kinetic energy production. Ux1P/Lx
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is the external average power input. The spatial flux,

ΦMj =UjKM +Uj〈p̃〉 −
1

Re
∂KM

∂xj
+Ui〈u′iu

′

j〉, (3.6)

redistributes energy across the flow, overall providing zero net contribution to the
power.

Figure 18 shows the terms in (3.5) normalised with the total average power
injection per unit volume, i.e. the total dissipation rate,

∫
(εM + εT) dV where

εT = 〈1/Re(∂u′i/∂xj)(∂u′i/∂xj)〉 is the turbulent dissipation rate density. In the figure,
the turbulent kinetic energy production rate, −Π , is shown in the background colour
plot whilst solid isolines (mostly concentrated near the bump wall) represent the
mean field dissipation, εM. Vectors correspond to the spatial flux ΦMj.

Given the behaviour of the mean streamwise velocity, see figure 8, the mean
energy input, Ux1P/Lx, is largest at the bump tip. On the other hand, the production
−Π , is concentrated in the detaching shear layer well behind the bump, where
the largest fluctuation intensities are attained, as discussed in the previous section.
This region acts as a sink of mean energy and is fed by the mean energy flux,
ΦMj, that is crucial in redistributing energy from the external input to the turbulent
production. With respect to case A1, taken as a basis for comparison, the maximum
turbulent production increases by almost 50 % for the bluffer geometry and by
400 % at the maximum Reynolds number. By definition, turbulent production is the
product of mean flow gradients and Reynolds stresses. For the given geometry, the
mean gradients in the shear layer slightly depend on Reynolds number, as shown in
figure 9(c) which corresponds to the section of maximum production. This suggests
that the mean field already attained an almost Reynolds independent state. On the
other hand, turbulent stresses increase significantly at this section, see figure 13(c),
resulting in the increased peak production apparent in figure 18. In general, the
position of the energy production region depends, through the shear layer, on the
dimensions and the position of the separation bubbles. Changing geometry at fixed,
lower Reynolds number, the strength of the mean gradients in the same section,
now in figure 9(d), are only marginally affected by the change in geometry. On the
other hand, the Reynolds stresses are greatly enhanced passing from a streamlined
to a bluff configuration, figure 13(d), consistent with the increasing peak energy
production from case A1 to case C1 in figure 18.

Although hardly apparent in figure 18, for the considered cases the mean flow
dissipation rate is not irrelevant, and contributes of order 40 % of the total dissipation
in the system, consistently with significant mean velocity gradients, observed at the
bump wall where the flow is abruptly accelerated.

3.4.2. Turbulent kinetic energy
The balance equation for the turbulent kinetic energy reads

∂ΦTj

∂xj
=−εT +Π +

〈
1p′(t)

Lx
u′x

〉
, (3.7)

where, as anticipated, εT is the turbulent kinetic energy dissipation rate, Π , here
with the opposite sign with respect to (3.5), is the production and 〈1p′ u′x/Lx〉 is the
external source of fluctuating energy. The spatial flux,

ΦTj =UjkT +
1
2
〈u′iu

′

iu
′

j〉 + 〈p̃
′u′j〉 −

1
Re
∂kT

∂xj
, (3.8)
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FIGURE 18. (Colour online) Mean kinetic energy balance equation: turbulent kinetic
energy production −Π (background colour), mean energy dissipation εM (solid isolines)
and mean energy spatial flux ΦM (vectors).

contributes zero net power when integrated over the whole domain. The energy locally
provided by the fluctuations of pressure difference between inlet and outlet 〈1p′ u′x/Lx〉

is negligible, maxx,y 〈1p′ u′x/Lx〉 ' 10−5 maxx,y Π .
Figure 19 shows the turbulent kinetic energy production, turbulent energy dissipation

and spatial fluxes for all the simulations. The terms are normalised with the overall
power injected in the system which, in the statistically steady state, is balanced by the
total dissipation rate,

∫
(εM + εT) dV . The production term injects most energy in the
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FIGURE 19. (Colour online) Turbulent kinetic energy balance equation: turbulent kinetic
energy production Π (background colour), turbulent energy dissipation εM (solid isolines)
and turbulent energy spatial flux ΦM (vectors).

shear layer behind the bump. From the shear layer the energy follows different paths,
see the vector field in the figure where local energy release is associated with the
(positive) divergence of the energy flux. The turbulent energy is transferred towards
the centre of the channel, into the separation bubble or towards the wall, in particular
behind the bump under the separation bubble. From the analysis of the dissipation
field, εT , part of the energy is found to be locally dissipated in the shear layer and
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FIGURE 20. (Colour online) Norm of the deviatoric component of the Reynolds stress
tensor, ‖b‖=

√
bijbij with bij=〈u′iu

′

j〉/〈u
′

ku
′

k〉−1/3 δij, and δij the components of the identity
tensor.

in the separation bubble. Most of the energy is dissipated at the bottom wall after the
bump (note the isolines of dissipation concentrated in that region).

3.4.3. Large- and small-scale anisotropy
The anisotropy of the large turbulent scales is described by the deviatoric

component of the Reynolds stress, bij = 〈u′iu
′

j〉/〈u
′

ku
′

k〉 − 1/3δij, where δij denotes
the Kronecker symbol. Note that in isotropic conditions, bij is identically zero. An
overall measure of anisotropy is given by the norm ‖b‖ =

√
bijbij, figure 20. The

anisotropy is particularly significant in the near-wall region and in the shear layer,
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FIGURE 21. (Colour online) Norm of the deviatoric component of the pseudo dissipation
tensor, ‖d‖=

√
d ijd ij, where d ij= εij/εkk − 1/3 δij and εij= 2/Re〈(∂u′i/∂xk)(∂u′j/∂xk)〉 is the

pseudo dissipation tensor.

while the bulk flow and the recirculation bubble are almost isotropic, consistent with
the Reynolds stress profiles of figures 11–13. Increasing the Reynolds number, the
anisotropic regions become progressively smaller, squeezed closer to the wall, on one
side, and more concentrated in the shear layer, on the other. The extension of the
isotropic region in the bulk widens, whilst it shrinks with the recirculation bubble
in the separated region. As a result of the change in geometry, the bluffest bump
produces the highest anisotropic content.

Figure 21 reports the norm, ‖d‖ =
√

d ijd ij, of the deviatoric component, d ij =

εij/εkk − 1/3 δij, of the pseudo-dissipation tensor, εij = 2/Re〈(∂u′i/∂xk)(∂u′j/∂xk)〉. ‖d‖
provides a measure of the small-scale anisotropy content (Antonia, Djenidi & Spalart
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1994; Pumir, Xu & Siggia 2016) and therefore, as ‖d‖ approaches zero, isotropic
behaviour of the smallest scales is achieved. The small scales in the recirculation
bubble and in the bulk of the flow are isotropic, consistently with the isotropy of the
large scales in the same regions. Strong anisotropy persists in the near-wall regions
and in the shear layer. The behaviour of ‖d‖ is strongly dependent on the Reynolds
number which ultimately sets the separation between the largest and the smallest
scales. The regions of small-scale isotropy progressively increase with the Reynolds
number, basically due to the shrinking of the large-scale anisotropy regions. However,
anisotropy still persists at small scales, irrespective of the Reynolds number, near
the walls and in the shear layer. This behaviour can be explained and understood
by addressing the dynamics of a turbulent flow in presence of strong shear. In
isotropic conditions the turbulence is forced at the largest scales comparable with the
integral scale L0= (2kT)

3/2/εT and is dissipated by viscosity at the Kolmogorov scale
η= (ν3/εT)

1/4. In the inertial range (η� r�L0) the energy is simply transferred from
the large to the small scales. In turbulent shear flows the shear scale LS =

√
εT/S3,

extensively discussed in Casciola et al. (2003), where S is the shear rate, plays a
crucial role in explaining the dynamics. Basically the shear scale identifies the range
of scales LS < r < L0 where the turbulence is driven by the (anisotropic) production
of turbulent kinetic energy due to the Reynolds stresses. In the range of scales below
LS, η < r< ŁS, the dynamics of the turbulent fluctuations is driven by the process of
energy cascade typical of isotropic flows, see e.g. Marati, Casciola & Piva (2004),
Cimarelli, De Angelis & Casciola (2013) for a detailed analysis of the energy paths
in a planar channel. It follows that the dynamics of a shear flow is described by
two dimensionless parameters. The first one is the shear intensity S∗ = S(2kT)/εT ,
see e.g. Lee, Kim & Moin (1990), that can be recast in terms of the shear scale as
S∗ = (L0/LS)

2/3, (Casciola et al. 2007). The shear intensity measures the separation
between the shear scale and the integral scale thus providing the extension of the
range of scales directly affected by the production mechanisms. The second parameter
is the Corrsin parameter Sc = S

√
ν/εT (Corrsin 1958) that can be recast in terms of

the shear scale as Sc = (η/LS)
2/3. The Corrsin parameter measures the extension

of the range between the shear scale and the Kolmogorov scale where the flow
is driven by the inertial cascade. Clearly, only in the range of scales below the
shear-scale isotropisation of turbulent fluctuations can take place. The shear scale
can be evaluated in spatially non-homogeneous flows by considering the norm of
the local mean velocity gradient LS =

√
εT/(∂jUi∂jUi)3/2. In our case the shear scale

is a field LS(x, y). In a similar way the local integral scale L0 = (2kT)
3/2/εT and

the local Kolmogorov scale η = (ν3/εT)
1/4 can be considered. The shear strength S∗

and the Corrsin parameter Sc are position dependent. When S∗ is large the whole
range of scales is dominated by production and there is no room left for isotropy
recovery at small scales. On the contrary, an isotropy recovery range is available
where the Corrsin parameter is small. Figures 22 and 23 provide the fields S∗ and
Sc respectively, for the different Reynolds numbers and geometries considered in
this paper. A joint analysis of S∗ and Sc provides the physical interpretation of the
observed anisotropy (figures 20 and 21). In the bulk region, S∗ decreases, denoting
weak production of turbulent kinetic energy since the shear scale approaches the
integral scale. Concurrently, Sc is small, indicating a large separation between shear
and Kolmogorov scale. This behaviour is generic and the only relevant changes are
observed when the Reynolds number is increased, A1–A3. At large Reynolds number,
the spatial region in the bulk where isotropisation occurs is broadened. The relative
position of integral, shear and Kolmogorov scales in the bulk explains why the small
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FIGURE 22. (Colour online) Shear intensity S∗ = S(2kT)/εT = (L0/LS)
2/3 in the flow

domain for all simulations.

scales are isotropic (figure 21). The conditions are different near the wall and in
the shear layer. In these regions, see figure 22, S∗ is large and the whole range of
scales is now dominated by turbulent kinetic energy production. Concurrently Sc is
of order one, i.e. the shear scale is forced on the Kolmogorov scale (figure 23). This
behaviour is again generic for the cases we address. In a nutshell, near the wall and
in the shear layer there is no room for the formation of the inertial range where
isotropisation can take place. The flow is driven by the anisotropic mechanisms of
turbulent kinetic energy production, see figure 20 and the anisotropy persists down to
the smallest scales (figure 21).

3.4.4. Invariant maps
The anisotropy invariant map (AIM) originally introduced by Lumley & Newman

(1977), Lumley (1979) provides a description of the different anisotropic states of the
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FIGURE 23. (Colour online) Corrsin parameter Sc = S
√
ν/εT = (η/LS)

2/3 in the flow
domain for all simulations.

large turbulent scales. They are quantified in terms of the invariants of the anisotropy
tensor, i.e. the deviatoric component of the Reynolds stress, bij, namely I = bii = 0,
II = bij bji and III = bij bjk bki. The admissible states of the flow must lie within a
(curvilinear) triangle of the II–III plane. This constraint comes from the requirement
that the eigenvalues of bij should be real and the squared velocity fluctuation in
the principal direction must be positive. The admissible region is delimited above
by the line II = 2/9 + 2III corresponding to statistically two-dimensional turbulence,
i.e. the fluctuation intensity in one of the eigen-directions vanishes. The other two
limiting lines, II = 3/2(16/9 III2)1/3, represent axisymmetric turbulence, i.e. the
fluctuation intensity in two eigen-directions are identical. In the left branch (III< 0),
the fluctuation intensity in the third eigen-direction is smaller than the other two
(pancake turbulence). In the right branch (III> 0), the third component is larger than
the other two (cigar-like turbulence). The corners correspond to: the isotropic state
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FIGURE 24. (Colour online) Anisotropy invariant map for case C1 at: (a) the tip of the
bump; (b) end of the bump; (c) inside the recirculation region. Note that (a–c) correspond
to stations (b–d) in figure 1. The colour legend represents the y coordinate.

(II = 0, III = 0), the two-component isotropic state (II = −1/36, III = 1/6), and the
one-component state (II= 2/9, III= 2/3). In many applications, turbulence modelling
exploits the idea of eddy viscosity which assumes that the Reynolds stress tensor
is proportional (via the eddy-viscosity) to the mean strain rate tensor, see Speziale
(1991), Gatski & Speziale (1993). Modelling is particularly challenging for separated
flows. The AIM is helpful to directly take into account the anisotropy of the flow, see
Jovičić, Breuer & Jovanović (2006), Kumar et al. (2009) and the general discussion
in Jovanovic (2013) where II and III are used to compute the length scale appearing
in the eddy viscosity thus including anisotropic effects in the model.

Figure 24 shows the AIM for simulation C1 at three stations. At the tip of the bump,
(a), close to the bump wall at y= 0.5, turbulence is essentially two-dimensional. As y
increases, the points in the plot approach the lower left branch indicating axisymmetric
turbulence. As expected, close to the centreline of the channel, the flow becomes
isotropic. As the top wall is approached, the flow follows a trend similar to what is
found in a planar channel (Gilbert & Kleiser 1991) becoming two-dimensional again
(red points) at the top wall. However, in our case due to the adverse pressure gradient
at the top wall the trajectory followed in the map by the orange/red points is shifted
away from the right branch, departing from the axisymmetric state typical of the
planar channel flow. Figure 24(b) corresponds to the end of the bump which exhibits
a more complex AIM. As the y coordinate increases, the initial axisymmetric state
is hardly reached and the trajectory in the II–III plane follows an inner path towards
the opposite axisymmetric state (III > 0) as the shear layer is crossed (light blue).
At the centreline, the flow is again isotropic and follows an inner path towards the
top wall. These results are typical of separated flows as found, e.g. in the backward
facing step configuration (Le et al. 1997). Figure 24(c) shows the trajectory at a
station closer to the reattachment point. Flow close to the lower wall is completely
axisymmetric (III < 0) until the shear layer is reached (light blue). The turbulence
shifts from axisymmetric contraction to axisymmetric expansion, similar to (b). The
flow is isotropic at the centreline and follows the same trend discussed for (a) and
(b) as the top wall is reached. The analysis of the AIM suggests that the flow we
are addressing is rather complex to model, due to the presence of the recirculating
region behind the bump and the adverse pressure gradient along the top wall.

4. Conclusions
Turbulent separation behind a bump in channel flow is addressed using DNS for

different bump geometries and for Reynolds number ranging between Re= 2500 and
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Re= 10 000. The latter is probably the largest Reynolds number ever achieved in the
DNS of this specific configuration, corresponding to a maximum friction Reynolds
number of approximately Reτ = 900.

The separation behind the bump generates small-scale structures which grow
downstream, an intense shear layer and a recirculating region after the bump. Although
the recirculation size depends on geometry, the reattachment position is constant. The
reattachment point is controlled by the Reynolds number based on the bump height,
as confirmed by the available experimental data (Kähler et al. 2016).

With increasing Reynolds number, a net decrease in drag coefficient is observed
in association with the reduced dimensionless pressure drop needed to maintain the
flow rate constant. The reduction is overwhelmed by the increase in the dimensional
velocity, quadratically entering the expression for the drag force, leading to the
expected increase in flow resistance. The drag increase with respect to that of an
equivalent planar channel is almost entirely due to form effects induced by the
separation, even though a significant increase in velocity, hence in local wall shear
stress, is measured at the bump tip. At larger Reynolds number, the shear layer
separating the recirculation bubble from the outer stream becomes more attached
to the lower wall. Its fluctuations correspond to higher turbulent kinetic energy
production peaks. The DNS captures a small recirculation originated by the sudden
change in slope at the bump leading edge. The separation at the bottom wall affects
the opposite near-wall region by inducing a significant adverse pressure gradient
which is not sufficient to separate the flow at the upper wall.

Due to the strong non-homogeneity and the resulting mean gradients, the mean
flow draws energy from the local external energy source, namely the pressure drop
multiplied by velocity. The uptake mostly occurs in the bulk. Fluxes move this
energy to the shear layer where it is partially dissipated but mostly intercepted by
the production term to sustain the turbulent fluctuations. The dissipation in the mean
flow is significant, given the strong mean gradients present at the walls and in the
shear layer. Overall, the most important feature is the peak of turbulent kinetic energy
production localised in the shear layer. The path taken by this energy bifurcates, in
part sustaining the turbulent fluctuations inside the bubble and in part feeding the
turbulence of the external flow downstream of the bubble. From the most streamlined
to the bluffest bump, a 50 % increase in peak energy production is observed. For
fixed geometry, a fourfold Reynolds number change leads to approximately 400 %
increase in peak production.

In turbulence modelling, the level of anisotropy at both the large and small scales is
crucial. They can be characterised in terms of the deviatoric components of Reynolds
stress and pseudo-dissipation tensor, respectively. Apart from the near-wall region,
anisotropy at both large and small scales concentrate in the shear layer, irrespective
of bump shape and Reynolds number. Interestingly, the small scales keep a high
level of anisotropy in the shear layer, even at larger Reynolds number. This is due
to the intensity of the mean gradients which maintain the production active close to
dissipation scales. Finally, the analysis of the anisotropy invariant maps shows that
the separated flow poses a significant difficulty for turbulence modelling due to the
recirculating region behind the bump and the adverse pressure gradient along the top
wall.
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