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The SL(2,C) Casson Invariant for Knots and
the Â-polynomial

Hans U. Boden and Cynthia L. Curtis

Abstract. In this paper,we extend the deûnition of the SL(2,C)Casson invariant to arbitrary knots
K in integral homology 3-spheres and relate it to the m-degree of the Â-polynomial of K. We prove
a product formula for the Â-polynomial of the connected sum K1#K2 of two knots in S3 and deduce
additivity of the SL(2,C) Casson knot invariant under connected sums for a large class of knots in
S3 . We also present an example of a nontrivial knot K in S3 with trivial Â-polynomial and trivial
SL(2,C) Casson knot invariant, showing that neither of these invariants detect the unknot.

Introduction

Given a knot K ⊂ Σ in an integral homology 3-sphere, let M = Σ∖τ(K) denote the
complement of K and let Mp/q be the result of p/qsurgery on K. In the case where K
is a small knot, [12,_eorem 4.8] gives a surgery formula for λSL(2,C)(Mp/q), and it
follows that the diòerence λSL(2,C)(Mp/(q+1))−λSL(2,C)(Mp/q) is independentof p, q,
provided p and q are relatively prime and q is chosen suõciently large. _e SL(2,C)
Casson knot invariant is therefore deûned for small knots by setting, for q ≫ 1,

λ′SL(2,C)(K) = λSL(2,C)(M1/(q+1)) − λSL(2,C)(M1/q).

In this paper, we present amethod for deûning the invariant λ′SL(2,C)(K) more gen-
erally for knots in integral homology 3-spheres. Unfortunately, the surgery formula
does not hold for non-small knots; the proof breaks down when M contains a closed
essential surface. Here,we adopt a diòerent approach and study the asymptotic behav-
ior of λSL(2,C)(Mp/q) as q →∞, where the limit is taken over all q relatively prime to
p. As a function in q, we prove that λSL(2,C)(Mp/q) has linear growth, and we deûne
λ′SL(2,C)(K) to be the leading coeõcient of λSL(2,C)(Mp/q) as q →∞.
For small knots there is a close relationship between the knot invariant λ′SL(2,C)(K)

and the m-degree of the Â-polynomial of K, which is the A-polynomial with multi-
plicities as deûned by Boyer and Zhang [5]. For instance, in the case of a two-bridge
knot K, it is known that λ′SL(2,C)(K) = 1

2 degm ÂK(m, ℓ); see [4, Section 3.3]. We ex-
tend this relationship to the general setting of knots in homology 3-spheres. We show
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4 H. U. Boden and C. L. Curtis

that the Â-polynomial is multiplicative under connected sums in S3 and deduce ad-
ditivity of λ′SL(2,C)(K) under connected sums for most (conjecturally all) knots in S3.

We conclude the paper with an example of a nontrivial knot K in S3 for which the
Â-polynomial and λ′SL(2,C)(K) are trivial. _urston classiûed knots into three types:
torus, hyperbolic, and satellite. For torus and hyperbolic knots, one can show directly
that the m-degree of the Â-polynomial is nontrivial. Using the relationship between
λ′SL(2,C)(K) and them-degree of the Â-polynomial, it then follows that any knotwith
λ′SL(2,C)(K) = 0 is necessarily a satellite knot.

We therefore consider satellite knots K given asWhitehead doubles, andwe exam-
ine the SL(2,C) character variety X(M) of the complement M = S3∖τ(K). We show
that formany untwisted doubles, apart from the component of reducibles, every other
component X j of X(M) has dimension dimX j > 1. _is implies that ÂK(m, ℓ) = 0,
and it shows that the Â-polynomial does not detect the unknot, answering a question
raised in [1]. Using the relationship between the knot invariant λ′SL(2,C)(K) and the
m-degree of the Â-polynomial of K, this implies further that λ′SL(2,C)(K) = 0 and
answers the question raised in [4] as to whether the SL(2,C) Casson knot invariant
detects the unknot (cf. [4,_eorem 3.3]).

1 Preliminaries

In this section, we begin by introducing notation for the SL(2,C) representation
spaces and character varieties. We also review the deûnition of the SL(2,C) Cas-
son invariant and surgery formula from [12], as well as the A-polynomial of [7] and
the Â-polynomial of [5].

1.1 Representations and the Character Variety

Given a ûnitely generated group G, we set R(G) to be the space of representations
ρ∶G → SL(2,C) and R∗(G) the subspace of irreducible representations. Recall from
[11] that R(G) has the structure of a complex aõne algebraic set. _e character of
a representation ρ is the function χρ ∶G → C deûned by setting χρ(g) = tr(ρ(g))
for g ∈ G. _e set of characters of SL(2,C) representations admits the structure
of a complex aõne algebraic set. We denote by X(G) the underlying variety of this
algebraic set and by X∗(G) the variety of characters of irreducible representations.
Deûne t∶R(G)→ X(G) by ρ ↦ χρ , and note that t is surjective.

Next,wewill deûne the character schemeX(G) in terms of the universal character
ring. Since G is ûnitely generated, there exist elements g1 , . . . , gn ∈ G such that for
any g ∈ G, we have a polynomial PG ,g ∈ C[x1 , . . . , xn] with the property that χρ(g) =
PG ,g(x1 , . . . , xn) under the substitutions x i = tr ρ(g i) for all ρ∶ Γ → SL(2,C). _is
assertion follows easily from the Cayley–Hamilton theorem if G is the free group Fk
of rank k, and in general, using a presentation for G to write it as the quotient of Fk ,
we deûneR(G) = C[x1 , . . . , xn]/I (G), whereI (G) = {PFk ,g ∣ g ∈ ker(Fk → G)}.
_e ring R(G) can be shown to be independent of the choice of presentation of G
and is called the universal character ring. _e character scheme is deûned as X(G) =
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SpecR(G) and is said to be reduced ifR(G) contains no nonzero nilpotent elements,
or equivalently ifI (G) =

√
I (G) is a radical ideal.

For a manifold M, we set R(M) = R(π1(M)) and X(M) = X(π1(M)) for the
spacesof representations and character variety, andR(M) = R(π1(M)) andX(M) =
X(π1(M)) for the universal character ring and character scheme. We will bemainly
interested in the case when M is a compact 3-manifold with boundary a torus; typi-
cally,M will be the complement Σ∖τ(K) of a knotK in an integral homology 3-sphere
Σ. In any case, it is well known that every component X j of X(M) has dimX j ≥ 1,
see [7, Proposition 2.4]. In the case where X j is a curve, there is a smooth projective
curve X̃ j and a birational equivalence X̃ j → X j , and we refer to points x̂ ∈ X̃ j where
X̃ j → X j has a pole as ideal points. Notice that the set of ideal points is Zariski closed
and hence ûnite.

1.2 The SL(2,C) Casson Invariant

We brie�y recall the deûnition of the SL(2,C)Casson invariant. Suppose Σ is a closed
orientable 3-manifold with a Heegaard splitting (W1 ,W2 , S). Here, S is a closed ori-
entable surface embedded in Σ, and W1 and W2 are handlebodies with boundaries
∂W1 = S = ∂W2 such that Σ = W1 ∪S W2. _e inclusion maps S ↪ Wi andWi ↪ Σ
induce surjections of fundamental groups. On the level of character varieties, this
identiûes X(Σ) as the intersection

X(Σ) = X(W1) ∩ X(W2) ⊂ X(S).

_ere are natural orientations on all the character varieties determined by their
complex structures. _e invariant λSL(2,C)(Σ) is deûned as an oriented intersec-
tion number of X∗(W1) and X∗(W2) in X∗(S) that counts only compact, zero-
dimensional components of the intersection. Speciûcally, there exist a compact
neighborhood U of the zero-dimensional components of X∗(W1) ∩ X∗(W2) that
is disjoint from the higher dimensional components of the intersection and an iso-
topy h∶X∗(S) → X∗(S) supported in U such that h(X∗(W1)) and X∗(W2) inter-
sect transversely in U . Given a zero-dimensional component {χ} of h(X∗(W1)) ∩
X∗(W2), we set εχ = ±1, depending on whether the orientation of h(X∗(W1)) fol-
lowed by that of X∗(W2) agrees with or disagrees with the orientation of X∗(S) at χ.

Deûnition 1.1 Let λSL(2,C)(Σ) = ∑χ εχ , where the sum is over all zero-dimensional
components of the intersection h(X∗(W1)) ∩ X∗(W2).

1.3 The Surgery Formula for Small Knots

In this subsection, we recall from [12] the surgery formula for the Casson SL(2,C)
invariant for Dehn surgeries on small knots in integral homology 3-spheres.

Given a compact, irreducible, orientable 3-manifold M with boundary a torus, an
incompressible surface in M is a properly embedded surface (S , ∂S)↪ (M , ∂M) such
that π1(S) → π1(M) is injective and no component of S is a 2-sphere bounding a
3-ball. _e surface S is essential if it is incompressible and has no boundary parallel
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components. A 3-manifold is called small if it does not contain a closed essential sur-
face, and a knot K in Σ is called small if its complement Σ∖τ(K) is a small manifold.

If γ is a simple closed curve in ∂M, let Mγ be the Dehn ûlling ofM along γ; it is the
closed 3-manifold obtained by identifying a solid toruswithM along their boundaries
so that γ bounds a disk. Note that the homeomorphism type of Mγ depends only
on the slope of γ, that is, the unoriented isotopy class of γ. Primitive elements in
H1(∂M;Z) determine slopes under a two-to-one correspondence.

If S is an essential surface in M with nonempty boundary, then all of its boundary
components are parallel and the slope of one (and hence all) of these curves is called
the boundary slope of S. A slope is called a strict boundary slope if it is the boundary
slope of an essential surface that is not the ûber of any ûbration of M over S1.
For γ ∈ π1(M), there is a regular map Iγ ∶X(M)→ C deûned by Iγ(χ) = χ(γ). Let

e∶H1(∂M;Z) → π1(∂M) be the inverse of the Hurewicz isomorphism. Identifying
e(ξ) ∈ π1(∂M) with its image in π1(M) under π1(∂M) → π1(M), we obtain a well-
deûned function Ie(ξ) on X(M) for ξ ∈ H1(∂M;Z). Let fξ ∶X(M)→ C be the regular
function deûned by fξ = Ie(ξ) − 2 for ξ ∈ H1(∂M;Z).
For any algebraic component X j of X(M) with dimX j = 1, let f j,ξ ∶X j → C be

the regular function obtained by restricting fξ to X j . Let X̃ j denote the smooth,
projective curve birationally equivalent to X j . Regular functions on X j extend to
rational functions on X̃ j , and we abuse notation and use f j,ξ also for the extension
f j,ξ ∶ X̃ j → C ∪ {∞} = CP1 .

Deûnition 1.2 Let r∶X(M) → X(∂M) be the restriction map. Given a one-di-
mensional component X j of X(M) containing an irreducible character such that
r(X j) is also one-dimensional, deûne the seminorm ∥ ⋅ ∥ j on H1(∂M;R) by setting
∥ξ∥ j = deg( f j,ξ) for all ξ ∈ H1(∂M;Z). We refer to ∥ ⋅ ∥ j as the Culler–Shalen semi-
norm associated with X j , and we say X j is a norm curve if ∥ ⋅ ∥ j deûnes a norm on
H1(∂M;R).

Note that if M is hyperbolic, then any algebraic component X0 of X(M) contain-
ing the character χρ0 of a discrete faithful irreducible representation ρ0∶ π1(M) →
SL(2,C) is a norm curve, see [10, Section 1.4].

If M is the complement of a small knot K, the SL(2,C) Casson invariant of a
Dehn ûlling is closely related to this semi-norm; however, we must impose certain
restrictions on the slope of the Dehn ûlling.

Deûnition 1.3 _e slope of a simple closed curve γ in ∂M is called irregular if there
exists an irreducible representation ρ∶ π1(M)→ SL(2,C) such that
(i) the character χρ of ρ lies on a one-dimensional component X j of X(M) such

that r(X j) is one-dimensional,
(ii) tr ρ(α) = ±2 for all α in the image of i∗∶ π1(∂M)→ π1(M),
(iii) ker(ρ ○ i∗) is the cyclic group generated by [γ] ∈ π1(∂M).
A slope is called regular if it is not irregular.
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If M is the complement of a knot K in an integral homology 3-sphere Σ, then the
meridian M and longitudeL of the knot K provide a preferred basis for H1(∂M;Z).
We say that the curve γ = pM + qL has slope p/q, and we denote by Mp/q = Mγ the
3-manifold obtained by p/q-Dehn surgery along K.

Deûnition 1.4 A slope p/q is called admissible for K if
(i) p/q is a regular slope that is not a strict boundary slope, and
(ii) no p′-th root of unity is a root of the Alexander polynomial of K, where p′ = p

if p is odd and p′ = p/2 if p is even.

_e next result is a restatement of [12,_eorem 4.8], as corrected in [13].

_eorem 1.5 Suppose K is a small knot in an integral homology 3-sphere Σ with
complement M. Let {X j} be the collection of all one-dimensional components of the
character variety X(M) such that r(X j) is one-dimensional and such that X j∩X∗(M)
is nonempty. Deûne σ ∶Z→ {0, 1} by σ(p) ≡ p mod 2.

_en there exist integral weights m j > 0 depending only on X j and non-negative
numbers E0 , E1 ∈ 1

2Z depending only on K such that for every admissible slope p/q, we
have

λSL(2,C)(Mp/q) = 1
2∑

j
m j∥pM + qL ∥ j − Eσ(p) .

We brie�y recall some useful properties of the SL(2,C) Casson invariant, and we
refer to [2, 12] for further details.

On closed 3-manifolds Σ, the invariant λSL(2,C)(Σ) ≥ 0 is nonnegative, satisûes
λSL(2,C)(−Σ) = λSL(2,C)(Σ) under orientation reversal, and is additive under con-
nected sum of Z/2–homology 3-spheres (cf. [2, _eorem 3.1]). If Σ is hyperbolic,
then λ(Σ) > 0 by [12, Proposition 3.2].

If K is a small knot in an integral homology 3-sphere Σ, then _eorem 1.5 implies
that the diòerence

1
p ( λSL(2,C)(Mp/(p+q)) − λSL(2,C)(Mp/q))

is independent of p and q, provided p and q are relatively prime and q is chosen
suõciently large. _is allows one to deûne an invariant of small knots K in homology
3-spheres by setting

λ′SL(2,C)(K) = λSL(2,C)(M1/(q+1)) − λSL(2,C)(M1/q)

for q suõciently large.

1.4 The Â-polynomial

We begin with the deûnition of the A-polynomial AK(m, ℓ) from [7] (see also [8,9]).
Given a knot K in a homology 3-sphere Σ, let M = Σ∖τ(K) be its complement and
choose a standardmeridian-longitude pair (M ,L ) for π1(∂M). Set

Λ = { ρ∶ π1(∂M)Ð→ SL(2,C) ∣ ρ(M ) and ρ(L ) are diagonal matrices}
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and deûne the eigenvaluemap Λ → C∗ ×C∗ by setting ρ ↦ (u, v) ∈ C∗ ×C∗, where

ρ(M ) = (u 0
0 u−1) and ρ(L ) = (v 0

0 v−1) .

_is map identiûes Λ with C∗ × C∗, and the natural projection t∶Λ → X(∂M) is a
degree 2, surjective, regular map.

_e natural inclusion π1(∂M) → π1(M) induces a map r∶X(M) → X(∂M),
which is regular. We deûne V ⊂ X(∂M) to be the Zariski closure of the union of the
images r(X j) over each component X j ⊂ X(M) that contains an irreducible character
and for which r(X j) is one-dimensional. We deûne D ⊂ C2 to be the Zariski closure
of the algebraic curve t−1(V) ⊂ Λ,wherewe identifyΛ andC∗×C∗ via the eigenvalue
map. _e A-polynomial AK(m, ℓ) is just the deûning polynomial of D ⊂ C2; it iswell
deûned up to sign by requiring it to have integer coeõcients with greatest common
divisor one and to have no repeated factors. Some authors include the factor ℓ − 1 of
reducible characters in AK(m, ℓ), but our convention is to only include components
X j ⊂ X(M) that contain irreducible characters. _us ℓ − 1 is a factor of AK(m, ℓ)
if and only if there is a component X j ⊂ X(M) containing an irreducible character
whose restriction r(X j) ⊂ X(∂M) is the curve ℓ − 1.

In [5], Boyer and Zhang deûne an A-polynomial ÂK ,X j(m, ℓ) for each one-dimen-
sional component X j of X(M) forwhich r(X j) is one-dimensional. (Although Boyer
and Zhang assume that X j is a norm curve in this deûnition, the approach works for
any one-dimensional component X j of X(M).) _eir deûnition takes the deûning
polynomial Â to have factors with multiplicities given by the degree of the restriction
map r∣X j rather than requiring that the polynomial have no repeated factors. Taking
the product

ÂK(m, ℓ) = ÂK ,X1(m, ℓ) ⋅ ⋅ ⋅ ÂK ,Xn(m, ℓ)
over one-dimensional components X j of X(M) diòerent from the component of re-
ducibles gives an alternative version of the A-polynomial that includes factors with
multiplicities. Note that only one-dimensional components X j of X(M) with one-
dimensional image r(X j) contribute to ÂK(m, ℓ). Aswith the A-polynomial, by con-
vention the component of reducible characters does not contribute to ÂK(m, ℓ). For
small knots, it is not diõcult to check that AK(m, ℓ) and ÂK(m, ℓ) have the same
factors, only that ÂK(m, ℓ) may include some repeated factors.

2 Main Results

In this section, we give a general deûnition of the SL(2,C) Casson knot invariant
for knots and relate it to the m-degree of the Â-polynomial. We prove product for-
mulas for both invariants under the operation of connected sum, and we useWhite-
head doubling to construct examples of knots whose character variety contains only
components X j of dimension dimX j > 1. _ese knots are nontrivial but have trivial
Â-polynomial and trivial SL(2,C) Casson knot invariant.

We are particularly interested in knots K in integral homology 3-spheres Σ that
satisfy the following property, where M = Σ∖τ(K) is the complement of K in Σ:

(∗) _e character scheme of X(M) is reduced.
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Note that (∗) is equivalent to the condition that the universal character ring R(M) is
reduced, and in [19] the authors explain its relationship to the AJ conjecture. For in-
stance, in [19, Conjecture 2], Le and Tran conjecture that (∗) holds for all knots in S3,
and they point out that it has been veriûed in numerous cases, including two-bridge
knots [18], torus knots [20], andmany pretzel knots [19,23]. On the other hand, in [16]
Kapovich andMillson have proved a kind ofMurphy’s law for 3-manifold groups that
implies that there are 3-manifolds whose character schemes are not reduced; thus,
(∗) does not hold in general (see also [22]).

2.1 The SL(2,C) Casson Invariant for Knots

In this subsection, we extend the SL(2,C) Casson knot invariant to knots in integral
homology 3-spheres satisfying (∗).

_eorem 2.1 For any knot K in an integral homology 3-sphere satisfying (∗), the
limit

lim
q→∞

1
q λSL(2,C)(Mp/q)

exists, is independent of p, and equals 1
2 degm ÂK(m, ℓ).

We then deûne the SL(2,C) Casson knot invariant by setting

(2.1) λ′SL(2,C)(K) = lim
q→∞

1
q λSL(2,C)(Mp/q).

Here, p is ûxed, and the limit is taken over all q relatively prime to p. _e theorem
implies that this gives a well-deûned invariant of knots. As a direct consequence of
_eorem 2.1, we deduce the following corollary.

Corollary 2.2 For any knot K in an integral homology 3-sphere satisfying (∗), we
have λ′SL(2,C)(K) = 1

2 degm ÂK(m, ℓ).

_e rest of this subsection is devoted to proving _eorem 2.1, and we begin with a
deûnition.
For any representation ρ∶ π1(M)→ SL(2,C) that extends over p/q-Dehn surgery,

the eigenvalues m, ℓ of ρ(M ), ρ(L ) satisfympℓq = 1. So for p, q relatively prime,we
deûne Fp/q to be the plane curve given by mpℓq − 1 and call Fp/q the surgery curve.

Lemma 2.3 For any slope p/q, the surgery curve Fp/q is non-singular. If p/q and
p′/q′ are distinct slopes, then Fp/q and Fp′/q′ are transverse.

Proof We will show that every point on Fp/q is simple, and from this it will follow
that Fp/q is non-singular.

Let F = Fp/q be the polynomial mpℓq − 1. Any solution to F = 0 must have m ≠ 0
and ℓ ≠ 0, and itwill be a simple point so long as one of the partial derivatives ∂F/∂m
or ∂F/∂ℓ is non-zero at that point. But ∂F/∂m = pmp−1ℓq and ∂F/∂ℓ = qmpℓq−1 are
both non-zero at each point on F. _us, every point on F is simple and consequently
F is non-singular.
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Now suppose p/q and p′/q′ are distinct slopes and set F = Fp/q and F′ = Fp′/q′ .
Suppose (m0 , ℓ0) is common solution to F = 0 and F′ = 0. _e equations of the
tangent lines to F and F′ at (m0 , ℓ0) are given by

pmp−1
0 ℓq0(m −m0) + qmp

0 ℓ
q−1
0 (ℓ − ℓ0) = 0,

p′mp′−1
0 ℓq

′

0 (m −m0) + q′mp′

0 ℓq
′
−1

0 (ℓ − ℓ0) = 0.

(2.2)

Since (m0 , ℓ0) lies on both surgery curves, we see that

m−1
0 ℓ−1

0 = mp−1
0 ℓq−1

0 = mp′−1
0 ℓq

′
−1

0 ,

and dividing both equations in (2.2) by this common factor, we obtain the tangent
lines pℓ0(m−m0)+qm0(ℓ−ℓ0) = 0 and p′ℓ0(m−m0)+q′m0(ℓ−ℓ0) = 0,which have
distinct slopes, since p/q and p′/q′ are distinct. _is shows that F and F′ intersect
transversely at (m0 , ℓ0).

We now give an outline of the proof of_eorem 2.1. It is established by comparing
the SL(2,C) Casson invariant λSL(2,C)(Mp/q) for large q with the algebro-geometric
intersection number ∑x Ix(ÂK ∩ Fp/q) of the Â-polynomial with the surgery curve
Fp/q , where the sum is taken over all points in the intersection. A critical step in
proving the theorem is to show the following claim.

Claim _ere exists a real number B such that, for any slope p/q such that Fp/q does
not divide ÂK , we have

(2.3) 1
2∑

x
Ix(ÂK ∩ Fp/q) − B ≤ λSL(2,C)(Mp/q) ≤ 1

2∑
x

Ix(ÂK ∩ Fp/q).

Before proving the claim, we explain how to use it to deduce _eorem 2.1. _e
following lemma evaluates

lim
q→∞

1
q∑

x
Ix(ÂK ∩ Fp/q),

where the limit is taken over all q relatively prime to p. Since ÂK has ûnitely many
factors, the claim excludes ûnitely many slopes p/q. _us, the theorem follows from
the lemma by dividing (2.3) by q, taking the limit as q → ∞, q relatively prime to p,
and squeezing.

Lemma 2.4 For any p, we have

lim
q→∞

1
q∑

x
Ix(ÂK ∩ Fp/q) = degm ÂK(m, ℓ).

Proof If p and q are relatively prime, then we have integers r, s with pr + qs = 1. We
parameterize solutions to Fp/q(m, ℓ) = 0 by setting m = tq and ℓ = t−p , where t ∈ C∗.
Clearly, (m, ℓ) = (tq , t−p) lies on the curve Fp/q , and ℓ−rms = tpr tqs = tpr+qs = t,
thus any point on Fp/q lies on this parameterization.

Suppose degm ÂK(m, ℓ) = n. _en we can write

ÂK(m, ℓ) = mnαn(ℓ) +mn−1αn−1(ℓ) + ⋅ ⋅ ⋅ +mα1(ℓ) + α0(ℓ),
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where each α i(ℓ) is a polynomial in ℓ. Now substitute m = tq and ℓ = t−p to obtain

ÂK(tq , t−p) = (tq)nαn(t−p) + (tq)n−1αn−1(t−p) + ⋅ ⋅ ⋅ + tqα1(t−p) + α0(t−p).

Further, since t ≠ 0, the roots of this Laurent polynomial are identical to the roots of
thepolynomial obtained bymultiplying by td ,where d is chosen so that td ÂK(tq , t−p)
is a polynomial with nonzero constant term. Note that, for large q, we can take d =
pdeg α0, which is clearly independent of q.

_e fundamental theorem of algebra implies that ∑x Ix(ÂK ∩ Fp/q) equals the
degree of td ÂK(tq , t−p). For q suõciently large, we have

deg td ÂK(tq , t−p) = d + nq − pdeg αn = nq + p(deg α0 − deg αn).

_us, ûxing p and letting q →∞,we see that the intersection∑x Ix(ÂK∩Fp/q) grows
linearly in q with leading coeõcient n = degm ÂK(m, ℓ). _is completes the proof of
the lemma.

Proof of Claim In order to establish the bound (2.3),we compare the SL(2,C)Cas-
son invariant λSL(2,C)(Mp/q) with the intersection number 1

2 ∑x Ix(ÂK ∩ Fp/q). We
will show that most points in C∗ × C∗ contribute equally to λSL(2,C)(Mp/q) and
1
2 ∑x Ix(ÂK ∩ Fp/q), with the sole exceptions being points of the following types:

(1) Solutions x = (m, ℓ) to both ÂK(m, ℓ) = 0 and Fp/q(m, ℓ) = 0 with m, ℓ = ±1.
(2) Solutions x = (m, ℓ) to both ÂK(m, ℓ) = 0 and Fp/q(m, ℓ) = 0 with ℓ = 1 and m2

equal to a root of the Alexander polynomial ∆K(t).
(3) Solutions x = (m, ℓ) to both ÂK(m, ℓ) = 0 and Fp/q(m, ℓ) = 0 with t(x) = r(x̂)

for an ideal point x̂ ∈ X̃ j .

Suppose Fp/q does not divide ÂK and that x ∈ ÂK ∩ Fp/q is not a point of type
(1), (2), or (3). Writing ÂK = ÂK ,X1 ⋅ ⋅ ⋅ ÂK ,Xn , the basic properties of intersection
numbers from [14, 3.3] imply that Ix(ÂK ∩ Fp/q) = ∑ j Ix(ÂK ,X j ∩ Fp/q). Under the
assumption (∗), since the ringR(G) is independent of the presentation for π1(M), it
is clear that the intersectionmultiplicity nYj given in the proof of [12, Proposition 4.3]
is equal to one for each component X j of X(M), and therefore by the same proposi-
tion the contribution of x to λSL(2,C)(Mp/q) is∑ j d j iX j ,x , where d j = deg(r∣X j) and
iX j ,x = 1

2 Ix(E j ∩ Fp/q), where E j is the unique polynomial with no repeated factors
and integer coeõcients vanishing on t−1(r(X j)). _e factor of 1/2 is due to the fact
that t∶Λ → X(∂M) is generically two-to-one. Here note that the proof of [12, Propo-
sition 4.3] holds for any one-dimensional component X j of X(M) such that r(X j)
is one-dimensional even if M contains a closed incompressible surface. Note further
that by [21, Corollary 2, p. 75], if Y is a component of X(M) with dimY > 1, then the
intersectionY∩r−1(t(Fp/q)) doesnot contain any zero-dimensional components and
thus Y does not contribute to the Casson SL(2,C) invariant λSL(2,C)(Mp/q).

Since ÂK ,X j is deûned as a curve with multiplicity d j = deg(r∣X j), it follows that
ÂK ,X j = E

d j
j , and this implies that

Ix(ÂK ,X j ∩ Fp/q) = d jIx(E j ∩ Fp/q).
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_is shows that points x ∈ C∗ ×C∗ which are not of types (1)–(3) contribute equally
to λSL(2,C)(Mp/q) and 1

2 ∑x Ix(ÂK ∩ Fp/q).
In contrast, points of types (1)–(3) may contribute diòerently to λSL(2,C)(Mp/q)

and 1
2 ∑x Ix(ÂK ∩ Fp/q) as follows:

Points of type (1) need not correspond to points in the character variety X(Mp/q)
and will therefore sometimes contribute less to λSL(2,C)(Mp/q) than to

1
2∑

x
Ix(ÂK ∩ Fp/q).

(For more details, see [12, Section 4.1].)
By [7, Proposition 6.2], we see that points of type (2) correspond to images of re-

ducible characters in X(Mp/q) and thus will contribute less to λSL(2,C)(Mp/q) than
to 1

2 ∑x Ix(ÂK ∩ Fp/q).
Points of type (3) correspond to images of ideal characters and as such will also

contribute less to λSL(2,C)(Mp/q) than to 1
2 ∑x Ix(ÂK ∩ Fp/q).

Since in all three cases, the points x never contributemore to λSL(2,C)(Mp/q) than
to 1

2 ∑x Ix(ÂK ∩ Fp/q), it follows that

(2.4) λSL(2,C)(Mp/q) ≤ 1
2∑

x
Ix(ÂK ∩ Fp/q).

We will now show that there are at most ûnitely many points of types (1), (2), and
(3). A type (1) point x satisûes x = (m, ℓ) = (±1,±1); thus, there are at most four
of them. Because the Alexander polynomial ∆K(t) has ûnitely many roots, there
are ûnitely many points of type (2). Since the number of ideal points on any one-
dimensional component X j is ûnite, and since X(M) has ûnitely many components,
it follows that there are ûnitely many type (3) points.

We determine a bound B for the sumof the contributions of points of types (1)–(3)
to 1

2 ∑x Ix(ÂK ∩ Fp/q) that is independent of p and q. Note that this bound is not
immediate, because, while the number of points of types (1)–(3) is ûnite, they can
nevertheless lie on inûnitely many surgery curves. For example, consider the point
x = (e6πi/5 , e2πi/5), which satisûes m = ℓ3 and ℓ5 = 1. _en x lies on Fp/q whenever p
is not amultiple of 5. If x were a point of type (3), then it could possibly lie on inûnitely
many surgery curves Fp/q , for p ûxed and q →∞. Whether or not points of type (3)
exist at all is, to the best of our knowledge, an open question; see [8,Question 5.1] and
[6,_eorem 3.3]. (Note that those papers refer to type (3) points as holes.)

Now suppose x is a type (1), (2), or (3) point. Since the surgery curves Fp/q
are all non-singular and pairwise transverse, at most ûnitely many of them, say
Fp1/q1 , . . . , Fpk/qk , will intersect ÂK non-transversely at x. If such non-transverse in-
tersections exist, then for i = 1, . . . , k, let bx , i = 1

2 Ix(ÂK ∩ Fp i/q i ) and set Bx =
max{bx ,1 , . . . , bx ,k}. If every curve Fp/q thatmeets ÂK at x intersects ÂK transversely
at x, then set Bx = 1

2 Ix(ÂK ∩ Fp0/q0), where Fp0/q0 is an arbitrary surgery curve con-
taining x. _en for any surgery curve Fp/q , we have 1

2 Ix(ÂK ∩ Fp/q) ≤ Bx . Setting
B = ∑x Bx , with the sum taken over all type (1), (2), and (3) points, we see that

(2.5) 1
2∑

x
Ix(ÂK ∩ Fp/q) − λSL(2,C)(Mp/q) ≤ B.
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Combining equations (2.4) and (2.5) gives (2.3), and this completes the proof of the
claim and the proof of the theorem.

We conclude this subsection with two observations. First, note that the deûni-
tion of the knot invariant λ′SL(2,C)(K) is an important ûrst step in developing a Dehn
surgery formula for the SL(2,C)Casson invariant. However, as is clear from theproof
above, a complete surgery formulamust include correction terms measuring the dif-
ference λSL(2,C)(Mp/q)− 1

2 ∑x Ix(ÂK ∩Fp/q) at slopes p/q forwhich the intersection
ÂK ∩ Fp/q contains points of type (1), (2), and (3). Corrections for points of type (1)
may be made analogously to the corrections for small knots in [12]. In this case, the
correction terms will depend only on the parity of p. For points of type (2) and (3),
new arguments will be needed.

Let G be a compact group and suppose that the Casson invariant λG(Σ) has been
deûned for homology 3-spheres. _en the associated knot invariant is deûned as the
diòerence

λ′G(K) = λG(M1/(q+1)) − λG(M1/q),

which onemust show is independent of q. In that case, the limit limq→∞
1
q λG(M1/q)

exists and equals λ′G(K). In our case, we have seen that the limit (2.1) is independent
of p, and our proof shows that

λ′SL(2,C)(K) = 1
p ( λSL(2,C)(Mp/(q+p)) − λSL(2,C)(Mp/q))

provided q and p are relatively prime and Fp/(p+q) and Fp/q do not contain any points
of types (1), (2), or (3).

2.2 The Â-polynomial for Connected Sums

In the next result, we present a product formula for the Â-polynomial under con-
nected sumof two knots (cf. [8, Proposition 4.3],where a similar result for theA-poly-
nomial is established).

_eorem 2.5 If K1 and K2 are two oriented knots in S3, then

ÂK1#K2(m, ℓ) = ÂK1(m, ℓ) ⋅ ÂK2(m, ℓ).

Proof Let M1 = S3∖τ(K1) and M2 = S3∖τ(K2) be the complements of K1 and K2 ,
respectively. Further, let K = K1#K2 be the connected sum of the two knots and let
M = S3∖τ(K) be the complement. _en by Seifert–van Kampen, for appropriately
chosen meridians M1 andM2 for K1 and K2, we see that

π1(M) = π1(M1) ∗ϕ π1(M2)

is an amalgamated product under the homomorphism ϕ∶ ⟨M1⟩ → ⟨M2⟩ given by
ϕ(M1) = M2 . It follows that the representation space R(M) can be viewed as a subset
of the product R(M1) × R(M2), namely

R(M) = {(ρ1 , ρ2) ∈ R(M1) × R(M2) ∣ ρ1(M1) = ρ2(M2)} .
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Given ρ i ∈ R(M i) for i = 1, 2 such that ρ1(M1) = ρ2(M2), we denote the associated
point in R(M) by ρ1 ∗ ρ2. Let M be themeridian of K1#K2 corresponding to M1 and
M2 under this identiûcation.

Given a representation ρ1∶ π1(M1) → SL(2,C) such that ρ1(M1) is conjugate to a
diagonal matrix, we can pull it back along the surjection π1(M) → π1(M1) to get a
representation ρ∶ π1(M)→ SL(2,C), and in that case ρ = ρ1∗ρ2,where ρ2∶ π1(M2)→
SL(2,C) is abelian. _e meridians and longitudes of K1 ,K2 , and K = K1#K2 are
related by M = M1 = M2 and L = L1L2, and since ρ2 is abelian, we see that
ρ2(L2) = I. It follows that ρ(M ) = ρ1(M1) and ρ(L ) = ρ1(L1)ρ2(L2) = ρ1(L1).

Note that atmost ûnitelymany characters in X(∂M1) are characters of representa-
tions taking themeridian to amatrix of trace±2, and any representation ρ1∶ π1(M1)→
SL(2,C) that does not take the meridian to a matrix of trace ±2 can be conjugated
so that ρ1(M1) is diagonal. _us, using the correspondence from the previous para-
graph, for any one-dimensional component X′

j of X(M1), there is a corresponding
one-dimensional component X j of X(M) such that r′(X′

j) = r(X j). (Here,

r′∶X(M1)→ X(∂M1) and r∶X(M)→ X(∂M)

denote the two restriction maps.) _is implies that ÂK1 ,X′j(m, ℓ) and ÂK ,X j(m, ℓ)
contain the same factors.

We now argue that the multiplicities d′j and d j of the factors in ÂK1 ,X j(m, ℓ) and
ÂK ,X j(m, ℓ) agree. To see this, recall that the multiplicities are deûned in terms of
the degree of the restriction maps, which in turn are deûned as the cardinality of a
generic ûber. Choosing χ ∈ r′(X′

j) a generic point so that (r′)−1(χ) consists entirely
of irreducible characters, and noting that the pullback construction gives a one-to-
one correspondence between irreducible representations ρ1∶ π1(M1)→ SL(2,C) and
irreducible representations ρ = ρ1 ∗ ρ2∶ π1(M)→ SL(2,C) with ρ2 abelian, it follows
that

d′j = deg( r′∣X′j ∶X
′
j → X(∂M1)) = #((r′)−1(χ) ∩ X′

j)

= #( r−1(χ) ∩ X j) = deg( r∣X j ∶X j → X(∂M1)) = d j .

Since themultiplicities agree,we conclude that ÂK1 ,X′j(m, ℓ) = ÂK ,X j(m, ℓ).A similar
argument with the roles of K1 and K2 reversed shows that for any one-dimensional
component X′

j of X(M2), there is a one-dimensional component X j of X(M) such
that ÂK2 ,X′j(m, ℓ) = ÂK ,X j(m, ℓ).

We claim that this accounts for all one-dimensional components of X(M). _e
previous argument accounts for all characters of representations for which either ρ1
or ρ2 is abelian. Suppose then that X j is a component in the character variety X(M)
containing the character χρ of an irreducible representation ρ = ρ1 ∗ ρ2∶ π1(M) →
SL(2,C) such that neither ρ1 nor ρ2 is abelian. Suppose further that r(X j) is one-
dimensional, since otherwise it would not contribute to ÂK(m, ℓ).

Note that if both ρ1 and ρ2 are reducible, then by [7, Proposition 6.1], any eigen-
value µ of ρ(M ) = ρ i(Mi) satisûes the condition that µ2 is a root of both ∆K1(t)
and ∆K2(t), the Alexander polynomials of K1 and K2 . Further, ρ1(L1) = I = ρ2(L2)
since both representations are reducible. (_is step uses the fact that L1 and L2 lie
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in the second commutator subgroup of π1(M1) and π2(M2), respectively.) It follows
that ρ(L ) = ρ1(L1)ρ2(L2) = I. _us, under restriction, such representations ac-
count for at most ûnitely many points in r(X j). Hence, without loss of generality we
may assume that ρ1 is irreducible.

Since the meridian M normally generates π1(M), we see that ρ(M ) ≠ ±I. It
follows that Γρ(M), the stabilizer subgroup of ρ(M ), is one-dimensional. We use the
technique known as algebraic bending via the action of the group Γρ(M) to show that
dimX j > 1. (See [15, Section 5] for a thorough explanation of this technique.)

Set ρA = ρ1 ∗ (Aρ2A−1) for A ∈ Γρ(M). Notice that ρA is irreducible, and that it is
conjugate to ρ if and only if A = ±I. Allowing A to vary over Γρ(M), the family ρA of
irreducible representations gives rise to a one-dimensional family χρA of irreducible
characters in X j such that r(χρA) = r(χρ) under the restriction map r∶X(M) →
X(∂M). _us, the one-dimensional family of irreducible characters lies in the ûber
r−1(χρ), and since r(X j) isone-dimensional by assumption, it follows thatdimX j > 1.
_is completes the proof of the theorem.

Combining Corollary 2.2 and_eorem 2.5, we see that the Casson SL(2,C) knot
invariant is additive under connected sums in S3 provided the knots satisfy the con-
dition (∗).

Corollary 2.6 Let K1 and K2 be knots in S3 such that K1, K2, and K1#K2 satisfy (∗).
_en

λ′SL(2,C)(K1#K2) = λ′SL(2,C)(K1) + λ′SL(2,C)(K2).

2.3 Whitehead Doubles

In this subsection, we present a construction of knots K whose character variety has
no one-dimensional components other than the component of reducibles. A speciûc
example is provided by the untwistedWhitehead double of the trefoil. Note that ex-
amples of closed homology 3-spheres Σ whose character varieties X∗(Σ) do not con-
tain any zero-dimensional components were given in [3] using spliced sums. Similar
computations for the SU(2) character varietieswere developed byKlassen in [17], and
the idea of adapting his approach to the SL(2,C) setting was suggested by Michael
Heusener.

Given a knot J in S3, theWhitehead double of J is the knot obtained by gluing one
component of theWhitehead link L (shown in Figure 1) into the boundary of a tubu-
lar neighborhood of J. Alternatively, it is the knot whose complement is constructed
by gluing the complement of J to the complement W = S3∖τ(L) of L by a homeo-
morphism along the common 2-torus. _e speciûc homeomorphism may introduce
twists, and the resulting knot is denoted Kn and called the n-twisted double of J.
Before providing a detailed construction of Kn , we ûrst investigateW . _e funda-

mental group ofW admits the following presentation (cf. [8, Lemma 9.4]):

(2.6) π1(W) = ⟨x , y ∣ yxy−1x−1 yx−1 y−1x = xy−1x−1 yx−1 y−1xy⟩.
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If λx , λy denote the longitudes associatedwith the two components of L, then one can
further show that

(2.7) λx = y−1xyx−1 yxy−1x−1 , λy = y−1x−1 yxy−1xyx−1 .

Writing L = ℓ1 ∪ ℓ2 , notice that ℓ1 and ℓ2 are both unknotted, and so the comple-
ment V = S3∖τ(ℓ2) is just the solid torus. Wewill use y, λy to also denote themerid-
ian and longitude for ℓ2 in ∂V .

We now present several lemmas that describe the character variety X(W). _e
ûrst lemma identiûes the irreducible components of X(W).

Lemma 2.7 _e character variety X(W) of representations ρ∶ π1(W) → SL(2,C)
consists of two irreducible components X0 and X1, each of dimension two. _e com-
ponent X0 contains all the reducible characters, and the component X1 contains all the
irreducible characters.

Proof We begin by describing the component X1 that contains all the irreducible
characters. Since π1(W) admits a presentation with two generators and one relation,
any representation ρ∶ π1(W)→ SL(2,C) that is not parabolic (deûned below) can be
conjugated so that

(2.8) ρ(x) = (u s
0 u−1) and ρ(y) = (v 0

t v−1)

for u, v ∈ C∗ and s, t ∈ C. _en ρ satisûes the relation (2.6) whenever u, v , s, t satisfy
f (s, t, u, v) = 0, where

f (s, t, u, v) = u2v2(st)3 + uv(u2v2 − 2u2 − 2v2 + 1)(st)2

+ (u4 + v4 − u2(v2 − 1)2 − v2(u2 − 1)2)st + uv(u2 − 1)(v2 − 1).

_is leads to two components of solutions, and we start by describing the com-
ponent X1 that contains all the irreducible characters. Note that if ρ is irreducible,
then either s ≠ 0 or t ≠ 0. If s ≠ 0, then we can conjugate ρ so that s = 1, and since

y

x

Figure 1: _eWhitehead link.
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f (1, t, u, v) is irreducible, it follows that the set

U1 = {(t, u, v) ∈ C ×C∗ ×C∗ ∣ f (1, t, u, v) = 0}

is an irreducible aõne variety of dimension two. Note that for a point (t, u, v) ∈ U1,
the associated character χρ is reducible if and only if t = 0, and it is abelian if and only
if t = 0 and v = ±1.

Switching the roles of s and t,we obtain a second aõne varietyU2. Namely, assum-
ing t ≠ 0, we can conjugate ρ so that t = 1, and irreducibility of f (s, 1, u, v) implies
that

U2 = {(s, u, v) ∈ C ×C∗ ×C∗ ∣ f (s, 1, u, v) = 0}
is an irreducible aõne variety of dimension two. Note again that for (s, u, v) ∈ U2 ,
the associated character χρ is reducible if and only if s = 0, and it is abelian if and only
if s = 0 and u = ±1.

_e varieties U1 and U2 provide two aõne charts for the ûrst component X1 of
X(W), and by construction X1 contains all the irreducible characters.

To understand the remaining component X0 of X(W), note that any reducible
representation ρ∶ π1(W) → SL(2,C) (including parabolic representations) can be
conjugated to be upper triangular. However, if

ρ(x) = (u ∗
0 u−1) and ρ(y) = (v ∗

0 v−1) ,

then the character χρ is equivalent to the character of the abelian representation

ρ′(x) = (u 0
0 u−1) and ρ′(y) = (v 0

0 v−1) ,

_us, every reducible character χρ ∈ X(W) is equivalent to the character of a di-
agonal representation, and any diagonal representation automatically satisûes (2.6).
It follows that the component X0 of reducible characters can be parameterized by
(u, v) ∈ C∗ ×C∗, which is clearly an aõne variety of dimension two. Note further
that the reducible characters can be identiûed with the characters of the representa-
tions satisfying (2.8) with s = t = 0.

In thenext lemma,we examine the reduciblenonabelian representationsof π1(W).

Lemma 2.8 Suppose ρ∶ π1(W)→ SL(2,C) is a nonabelian reducible representation.
_en there are complex numbers u, v ≠ 0,±1 such that, up to conjugation, either

ρ(x) = (±1 1
0 ±1) and ρ(y) = (v 0

0 v−1)

or

ρ(x) = (u 0
0 u−1) and ρ(y) = (±1 0

1 ±1) .

For any nonabelian reducible representation ρ, its character χρ is in X0 ∩ X1 . _us,
nonabelian reducible characters χρ lie in the closure of the irreducible characters X∗(W).
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Proof If ρ(x) and ρ(y) are set equal to either of the pairs of matrices above, one
easily checks that (2.6) is satisûed. We will show that these are the only solutions
possible for nonabelian reducible representations.

Suppose that ρ is a nonabelian reducible representation and conjugate it to be up-
per triangular. _en we have

ρ(x) = (u s
0 u−1) and ρ(y) = (v t

0 v−1) ,

where u, v ∈ C∗ and s, t ∈ C. Note that if u = ±1 and v = ±1, then ρ is parabolic and
hence abelian. So either u ≠ ±1 or v ≠ ±1.
Assume ûrst of all that u ≠ ±1. _enwe can conjugate by upper triangularmatrices

to arrange that s = 0. Since t ≠ 0 (for otherwise ρ is abelian),we can further conjugate
by diagonal matrices and arrange that t = 1. _en (2.6) holds if and only if v = ±1.

If, instead, v ≠ ±1, then we can conjugate by upper triangular matrices to arrange
that t = 0. Since s ≠ 0 (for otherwise ρ is abelian),we can further conjugate bydiagonal
matrices and arrange that s = 1. _en (2.6) holds if and only if u = ±1.

Obviously, every nonabelian character χρ lies on X0, and it is equally clear by tak-
ing s = 0 or t = 0 in (2.8) that χρ also lies on X1. Further, X1 equals the closure of
X∗(W), and that completes the proof of the lemma.

In the following lemma, we describe the characters χρ in the intersection X0 ∩ X1
of the two components of X(W) as consisting of reducible nonabelian characters to-
gether with the four characters of central representations.

Lemma 2.9 Every character in the intersection X0 ∩X1 is either the character χρ of a
reducible nonabelian representation as in Lemma 2.8, or it is the character of a diagonal
abelian representation with ρ(x) = ±I or ρ(y) = ±I.

Proof _is follows immediately from Lemma 2.8 and from the description of the
abelian representations in U1 and U2 in the proof of Lemma 2.7

We now provide amore detailed construction of the knot Kn , the n-twisted double
of the knot J in S3. Denote the complement of J by M = S3∖τ(J). Let µJ , λJ be the
meridian and longitude for J. We can specify a homeomorphism ϕn ∶ ∂M → ∂V that is
unique up to isotopy by requiring ϕn(µJ) = λy and ϕn(λJ) = y+nλy . _e image of ℓ1
inM∪ϕnV is a knotKn in S3 thatwe call the n-twisted double of J. Let Zn = S3∖τ(Kn)
be the complement of the n-twisted double and note that Zn = M ∪ϕn W .

Using Seifert–van Kampen, we see that

π1(Zn) = π1(M) ∗(ϕn)∗ π1(W).
Given a representation ρ∶ π1(Zn) → SL(2,C), by restricting, we obtain representa-
tions ρ1∶ π1(M) → SL(2,C) and ρ2∶ π1(W) → SL(2,C). Note that the representa-
tions ρ1 , ρ2 satisfy

(2.9) ρ1(µJ) = ρ2(λy) and ρ1(λJ) = ρ2 (y(λy)n) ,
and that any pair (ρ1 , ρ2) ∈ R(M)×R(W) of representations satisfying (2.9) uniquely
determines a representation ρ∶ π1(Zn)→ SL(2,C). In this case, we write ρ = ρ1 ∗ ρ2.
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Lemma 2.10 If ρ∶ π1(Zn)→ SL(2,C) is nonabelian, then its restriction ρ2 = ρ∣π1(W)
to W is nonabelian. If ρ2 is reducible and nonabelian, then

χρ2(y) = ±2 and χρ2(λy) = 2.

Proof Suppose ρ2 is abelian. By (2.7)we see that λy is aproduct of commutators, and
it follows that ρ2(λy) = I. _us (2.9) implies that ρ1(µJ) = I, and since µJ normally
generates π1(M), it follows that ρ1 is trivial. But this implies that ρ = ρ1∗ρ2 is abelian,
a contradiction.

Now suppose ρ2 is reducible and nonabelian. Conjugating, we may assume that
ρ2 is upper triangular with

ρ2(x) = (u 1
0 u−1) and ρ2(y) = (v t

0 v−1) .

Using (2.7), one easily sees that ρ(λy) must be upper triangular with trace 2. Since
ρ2(y) commutes with ρ2(λy), either ρ2(λy) = I or v = ±1.

If ρ2(λy) = I, then (2.9) shows that ρ1(µJ) = I, which implies that ρ1 is trivial.
Further, ρ2(y) = ρ1(λJ)ρ2(λy)−n = I,which shows that ρ2 is abelian, a contradiction.
_us, v = ±1, and the lemma follows.

Recall that X∗(G) denotes the subset of characters χρ of irreducible representa-
tions ρ∶G → SL(2,C). For the character variety of the n-twisted doubleKn ,we deûne

X∗,ab(Zn) = { χρ ∈ X∗(Zn) ∣ ρ∣π1(M) is abelian}
X∗,na(Zn) = { χρ ∈ X∗(Zn) ∣ ρ∣π1(M) is nonabelian} .

Let Un be the n-twisted double of the unknot, and observe that Un is a twist knot.

Lemma 2.11 X∗,ab(Zn) ≅ X∗(Un).

Proof A representation ρ1∶ π1(M) → SL(2,C) is abelian if and only if it factors
through the abelianization map π1(M) → H1(M) ≅ Z. _us, irreducible representa-
tions ρ of π1(Zn) = π1(M)∗(ϕn)∗ π1(W) that are abelian on π1(M) are in one-to-one
correspondence with representations of Z ∗(ϕn)∗ π1(W) = π1(S3∖τ(Un)).

M W

Figure 2: _e complement Zn = S3∖τ(Kn) of the n-twistedWhitehead double.
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_e next result gives a slightly stronger statement for untwisted doubled knots K0.
Henceforth for such knots we omit the 0-subscripts, writing K rather than K0 for the
untwisted double and Z rather than Z0 for its complement.

Proposition 2.12 Let J be a knot in S3 and let M = S3∖τ(J) be its complement. Let
K be the untwisted double of J and let Z = S3∖τ(K) be its complement.
(i) If ρ∶ π1(Z)→ SL(2,C) is irreducible, then ρ1 = ρ∣π1(M) is irreducible.
(ii) If ρ∶ π1(Z)→ SL(2,C) is reducible, then ρ1 is trivial and ρ is abelian.

Proof Given a representation ρ∶ π1(Z) → SL(2,C) with ρ1 = ρ∣π1(M) reducible, we
show that ρ1 is trivial and ρ is abelian. _is will establish both claims of the proposi-
tion.

Suppose that ρ1 is reducible. Since λJ lies in the second commutator subgroup of
π1(M), it follows that ρ1(λJ) = I, and (2.9) shows that ρ2(y) = I. Equation (2.7)
implies that ρ2(λy) = I, and applying (2.9) again shows that ρ1(µJ) = I. Since µJ
normally generates π1(M), this implies ρ1 is trivial. Moreover, since ρ2(y) = I and
π1(W) is generated by x and y, the image of ρ = ρ1 ∗ ρ2 is generated by ρ2(x), and it
follows that ρ is abelian.

_e Alexander polynomial of the n-twisted Whitehead double Kn is given by
∆Kn(t) = nt2 + (1− 2n)t + n. By [7, Proposition 6.1], any reducible nonabelian repre-
sentation ρ∶ π1(Zn) → SL(2,C) has meridional eigenvalue equal to a square root of
∆Kn(t). Since the untwisted double K has trivial Alexander polynomial, this shows
that π1(Z) does not admit any nonabelian reducible SL(2,C) representations. In
particular, every nonabelian representation ρ∶ π1(Z) → SL(2,C) is automatically ir-
reducible, and the component Y0 ⊂ X(Z) of reducible characters is disjoint from the
other components Yj ⊂ X(Z).

_e next result shows that for most untwisted doubles, the variety of irreducible
characters has no one-dimensional components.

Proposition 2.13 Let J be a knot in S3 such that the A-polynomial is not divisible by
ℓ − 1, ℓ + 1, or ℓ2 + m, and let M = S3∖τ(K) and r∶X(M) → X(∂M). Suppose that
every component X j of X(M) has a one-dimensional image r(X j).

If K denotes the untwisted double of J and Z = S3∖τ(K) its complement, then every
component Yj of X(Z) of irreducible characters has dimYj > 1.

Note that most knots satisfy the above hypotheses; for a speciûc example, take J to
be the trefoil.

Proof We write Z = M ∪T W , where T is the 2-torus along which M and W are
identiûed, andwe use r1 and r2 to denote the restriction maps from R(M) and R(W)
to R(T), giving the diagram:

R(M)
r1

##

R(W)
r2

{{
R(T)
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We use this diagram to identify R(Z)with pairs (ρ1 , ρ2) ∈ R(M)×R(W) that satisfy
r1(ρ1) = r2(ρ2), and in that case we write ρ = ρ1 ∗ ρ2. Recall from the presentation
(2.6) of π1(W) and from the gluing equations (2.9) for the untwisted double that

r1(ρ1) = r2(ρ2) if and only if ρ1(µJ) = ρ2(λy) and ρ1(λJ) = ρ2(y).

Recall from Lemma 2.7 that X(W) = X0(W) ∪ X1(W). Further, by Lemma 2.8,
every nonabelian reducible representation ρ2∶ π1(W) → SL(2,C) is a limit of irre-
ducible representations.

In their proof of [8, Lemma 9.4], Cooper and Long show that the image of X∗
1 (W)

under restriction X(W)→ X(T) is theZariski-open subset given by the complement
of the forbidden curves m − 1,m + 1, ℓ + m2. Here, T ⊂ ∂W is the boundary of the
component ℓ2 of theWhitehead link L labelled y in Figure 1, and m is an eigenvalue
of ρ(y) and ℓ an eigenvalue of ρ(λy). In particular any curve of representations of
π1(T) with characters in the image of X∗

1 (W) extends continuously to a curve of
representations of π1(W). We use this to show that every component X j ⊂ X(M)
containing irreducible characters and with image r(X j) ⊂ X(T) not coincident with
a forbidden curve gives rise to a component Yj ⊂ X∗(Z) of dimension at least 2, and
that every component of X∗(Z) arises this way.

Let X j be a component of X(M) containing an irreducible character, and let R j
be the corresponding component in the space R(M) of SL(2,C) representations, so
that under t∶R(M)→ X(M), we have t(R j) = X j . By hypothesis, the image r(X j) is
one-dimensional and does not coincide with any of the forbidden curves ℓ − 1, ℓ + 1,
andm + ℓ2. (Note that themeridian and longitude of the knot J are opposite to those
of T ⊂ ∂W , and thus wemust exchange ℓ and m when viewing the forbidden curves
in X(∂M).) Consequently, the intersection of r(X j) with the three forbidden curves
consists of at most ûnitely many characters. Set

R′j = {ρ1 ∈ R j ∣ ρ1 is irreducible and r(χρ1) does not lie on a forbidden curve}.

Since X j contains only ûnitely many reducible characters, under the composition
R j

t→ X j
r→X(T), this excludes at most ûnitely many points from r(X j). Now the

image r(X j) is one-dimensional by hypothesis, and so it follows that R′j is non-empty
and Zariski-open in R j . Further, [8, Lemma 9.4] shows that every ρ1 ∈ R′j extends to
a representation ρ∶ π1(Z)→ SL(2,C) whose restriction ρ2 = ρ∣π1(W) is irreducible.

Let Yj ⊂ X(Z) be the component of irreducible characters χρ with ρ1 ∈ R j , and
let f ∶Yj → X(T) be the map given by χρ ↦ χρ0 , where ρ0 = ρ∣π1(T) is the restric-
tion of ρ to the splitting torus T . By the previous construction, we see that f (Yj)
contains (r ○ t)(R′j), which is a curve with at most ûnitely many points removed. In
fact, the construction shows that a Zariski-open subset of Yj consists of characters χρ
with ρ = ρ1 ∗ ρ2, where ρ1∶ π1(M) → SL(2,C) and ρ2∶ π1(W) → SL(2,C) are both
irreducible representations. By Lemma 2.10 and Proposition 2.12, every irreducible
character χρ ∈ X(Z) is the character of a representation ρ = ρ1 ∗ ρ2 with ρ1 irre-
ducible and ρ2 nonabelian. Let R j be the component of R(M) containing ρ1. If ρ2 is
irreducible, then χρ ∈ Yj for the component Yj ⊂ X(Z) constructed above. If instead
ρ2 is reducible and nonabelian, then it lies in the Zariski closure of R′j , and it follows
that ρ lies in the Zariski closure of Yj .
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Wenowuse algebraic bending [15] to show that dim(Yj) ≥ 2. Given ρ = ρ1∗ρ2 with
ρ1 and ρ2 irreducible, let Γ0 be the stabilizer subgroup of the restriction ρ0 = ρ∣π1(T) .
Since π1(T) is abelian and ρ1 is irreducible, it follows that Γ0 is one-dimensional.
(Indeed, Γ0 is isomorphic to either C∗ or C depending on whether ρ0 is diagonal
or parabolic.) For A ∈ Γ0, deûne ρA = ρ1 ∗ (Aρ2A−1). Clearly then ρA∶ π1(Z) →
SL(2,C) is irreducible and f (χρA) = f (χρ). On the other hand, for A ≠ ±I, one can
show that ρA is not conjugate to ρ. _is gives a one-dimensional family of irreducible
characters in the ûber f −1(χρ0), and since f (Yj) is one-dimensional, this implies that
dimYj > 1.

Corollary 2.14 If J is a knot in S3 satisfying the hypotheses of Proposition 2.13, then
its untwisted double K has ÂK(m, ℓ) = 1 and λ′SL(2,C)(K) = 0.

Proof Since ÂK(m, ℓ) is deûned using only components of X(Z) of dimension
one, we see immediately that ÂK(m, ℓ) = 1. _e assertion λ′SL(2,C)(K) = 0 follows
from Corollary 2.2 if K satisûes condition (∗). If, on the other hand, (∗) does not
hold, then no component Yj of X(Z) with dimension greater than one contributes
to λSL(2,C)(Zp/q) for any surgery p/q, as noted in the proof of _eorem 2.1. _us,
clearly, λ′SL(2,C)(K) = 0 in this case too.

Taking J tobe the trefoil, this implies that its untwisted doublehas trivial Â-polyno-
mial and vanishing SL(2,C)Casson knot invariant. In particular, neither the Â-poly-
nomial nor the SL(2,C) Casson knot invariant detect the unknot.

In conclusion, it would be interesting to ûnd a way to incorporate higher-dimen-
sional components of the SL(2,C) character variety X(Σ) into the deûnition of the
SL(2,C) Casson invariant for 3-manifolds Σ. _e resulting invariant would coincide
with λSL(2,C)(Σ) in the case where the character variety X(Σ) is zero-dimensional,
and an intriguing problem would then be to establish a surgery formula for the new
invariant and to deûne an associated invariant of knots. It is reasonable to believe
that the knot invariant would be related to an appropriately deûned generalization
of the A-polynomial in much the same way that λ′SL(2,C) is related to the Â-polyno-
mial. In particular, since them-degree of the A-polynomial is known to detect the un-
knot [1], one would expect that an SL(2,C) knot invariant that incorporates higher-
dimensional components of X(M) would be a powerful tool in low-dimensional
topology.
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