NOTES ON HYPERSURFACES IN A RIEMANNIAN
MANIFOLD

KENTARO YANO

1. Introduction. H. Liebmann (3) and W. Siiss (7) proved

THEOREM A. The only convex closed hypersurface with constant mean curvature
in o Euclidean space is a sphere.

Y. Katsurada (1;2) gave the following generalization.

THEOREM B. Let M be an orientable Einstein space which admits a proper
conformal Killing vector field, that is, a vector field generating a local one-parameter
group of conformal transformations which is not that of tsometries, and S a closed
orientable hypersurface in M whose first mean curvature is constant. If the inner
product of the conformal Killing vector field and the normal to the hypersurface
has fixed sign on S, then every pownt of S is umbilical.

The present author (9) proved

THEOREM C. Let M be an orientable Riemannian manifold which admits a
proper homothetic Killing vector field, that is, a vector field generating o local
one-parameter group of homothetic transformations which is not that of isometries,
and S a closed orientable hypersurface in M such that the first mean curvature s
constant and the Ricci curvature with respect to the normal ts non-negative along
it. If the inner product of the homothetic Killing vector field and the normal to
the hypersurface has fixed sign on S, then every point of S is umbilical.

To prove Theorem A, we need integral formulas of Minkowski for a hyper-
surface in a Euclidean space in which the position vector plays a very im-
portant role.

To prove Theorems B and C, we need integral formulas of Minkowski for
a hypersurface in a Riemannian manifold in which the conformal or homothetic
Killing vector field plays the same role as the position vector in a Euclidean
space.

Let M be an n-dimensional orientable Riemannian manifold covered by a
system of coordinate neighbourhoods (¢") and g4, Vi Kijim, Ky, and K, the
positive definite fundamental tensor, the operator of covariant differentiation

with respect to Christoffel symbols {ﬁ} formed with g;;, the curvature tensor,

the Ricci tensor, and the curvature scalar of M respectively, where here and
in the following the indices k, 7, j, ... run over the range 1, 2, ..., n.
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Suppose that 9” is a proper conformal Killing vector field; then we have
(1.1) Qg = Vv, 4+ Vivy = 2pg54

where € denotes the operator of Lie derivation with respect to v*, v; = g, 2%,
and p is a scalar function given by

p= (1/n)V,;vt

For a conformal Killing vector field #*, we have (8)

(1.2) QK" = =8V + 6"V ps — Vi o'gsi + Vi 0"8enr
(1.3) K ;i = —(n — 2)V;p; — Apgj

(1.4) eK = —2(n — 1)Ap — 20K,

where

pe=Vip, p"=g"y  Ap=g""V;V;p
When M is an Einstein space:
K= (K/n)gu, K = const.,
we have, for a conformal Killing vector field v”,
LK = (I/n)K¥g; = (2/n)Kpg ;s LK =0,
and consequently, from (1.3) and (1.4),

(2/n)Kpg;i = —(n — 2)V,p0 — Apgys,
0= —2(n— 1)Ap — 2pK,
respectively, from which
K

_ﬁ_—B ngi lf n > 2.

Vjpi = - n(ﬂ

Thus if an Einstein space of dimension # > 2 admits a proper conformal
vector field, then it admits a non-zero scalar function p which satisfies the
above equation.

So, to obtain a generalization of Theorem B, we assume in this paper the
existence of a non-constant scalar function v which satisfies similar partial
differential equations and prove

THEOREM 1. Let M be an orientable Riemannian manifold of dimension n
which admits a non-constant scalar field v such that

(1.5) V; Viv = f(v)g;s
where [ is a differentiable function of v and S a closed orientabdle hypersurface in
M such that

(1) 1ts first mean curvature 1is constant,
G1) [K;i4 (B — 1) (v)g;]CIC* > 0 on S, where C* is the unit normal to S,
(iii) the inmer product C'V ;v has fixed sign on S.
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Then every point of S is umbilical. (This generalization is due to the referee.)

We also prove the following Theorems 2 and 3, the first parts of which are
special cases of Theorem 1.

THEOREM 2. Let M be an orientable Riemannian manifold of dimension n
which admits a non-constant scalar field v such that

(1.6) V; Vv = kg, k = const.,

and S a closed orientable hypersurface in M such that
(1) 1ts first mean curvature is constant,
(i) [Kji+ (n — 1)kgu]CICT > 0 0n S,
(iii) the inner product C'V,;v has fixed sign on S.
Then every pownt of S is umbilical. If, moreover, v is not constant on S, then S is
isometric to a sphere.

THEOREM 3. Let M be an orientable Riemannian manifold of dimension n
which admits a non-constant scalar field v such that

(1.7) Vj Vﬂ) = kgjiy k= COnSt.,

and S a closed orientable hypersurface tn M such that
(1) dts first mean curvature is constant,
(i) K;; CiIC* > 0 on S,
(iii) the inner product C*V,v has fixed sign on S.
Then every point of S is umbilical. If, moreover,v # const. on .S, then S is isometric
to a sphere.

The first part of Theorem 3 is a special case of Theorem C.
To prove that the hypersurface under consideration is isometric to a sphere,
we use the following theorem of Obata (4).

THEOREM D. If a Riemannian manifold M is complete, of dimension n > 2,
and if there exists a non-null function v such that

(1.8) V; Vv = —chgj, ¢ = const.,
then M 1s isometric to a sphere of radius 1/c.

If the manifold M in Theorem 2 is complete and £ = —¢? < 0, then M is
isometric to a sphere according to this theorem of Obata and Theorem 2 refers
to a hypersurface in an #-dimensional sphere.

If the manifold M in Theorem 3 is complete and %2 7 0, then the holonomy
group of the complete Riemannian manifold M fixes a point and consequently,
according to a theorem of Sasaki and Goto (5), the manifold 3/ is a Euclidean
space. Thus Theorem 3 is identical with Theorem A.
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2. General formulas. We consider a closed orientable hypersurface .S in a
Riemannian manifold M whose local parametric equations are

(2.1) g = £,
7® being parameters on .S, where here and in the following the indices a, b, ¢, . . .
run over the range 1,2,...,n — 1.
If we put
(2'2) Bbh = ab Eh, ab = a/nbr

then B, are » — 1 linearly independent vectors tangent to .S and the first
fundamental tensor of S is given by

(2.3) € = g5 BBy

We assume thatn — 1vectors By*, By", ..., B,-1" give the positive orientation
on S and we denote by C"* the unit normal vector to S such that

Bi", B ..., Byt C*

give the positive orientation in M.

Denoting by V, the operator of van der Waerden—Bortolotti covariant
differentiation along S (cf. 6, p. 254), we have the following equations of Gauss
and of Weingarten:

(24) Vc Bbh = hcb Chv
(25) V. h= - hcaBahr

where %, is the second fundamental tensor of S and %% = & g% We also
obtain the equations of Gauss and those of Codazzi in the form

(2-6) Kkjih BdchijiBah = Kicpa — (hda hey — Rea hdb)y

Il

(27) Kkjih Bdk]3 chbiCh Vd hcb - Vc hdb)

where K., is the curvature tensor of the hypersurface S. From the equations
of Codazzi, we have, by a transvection with g,

(2.8) Kkh BdkC” = Vd hcc - VC hdv_

3. Formulas in M/ admitting a scalar field » such that v, vy = f(v)g;.
We now assume that the Riemannian manifold M admits a non-constant
scalar field » such that

(3.1) Vj V; = f('l))gji, Vv, = Vi‘v,
where f(v) is a differentiable function of v, and put

(3.2) " = B/v* 4+ «C”
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on the hypersurface .S. From (3.1), we obtain by transvection with B, B,?

(33) Veuy = f(v)gcb + ahcby
from which
(3.4) Av = (n — 1)f(v) + ah.S,

where A is the Laplacian operator on S: A = gV, V,.
From (3.1), we also obtain by transvection with B,’C?

(3.5) V};a = — hb"va.
On the other hand, substituting (3.1) into the Ricci identity

Vi Vv — V; Vivg = — Koy,
we find that
— Kiji'on = [ (v) i £50 — 05 €ra),
from which
Kol = — (n — 1)f (v)v,
and consequently
K;iv'Ct= — (n — 1)f'(0)e,

which can also be written as
K;i(B v+ aC)Cl = — (n — 1)f (0)e,
or, by virtue of (2.8),

(Vely? — Vb D)o 4+ aK; CCH = — (n — 1)f (0)a,
that is

(3.6) aK;; CC + (n — Df @a + vV by — Vy(h'c®)

+ f@h + ahlhy =
by virtue of (3.3).
We now assume that the hypersurface S is closed and apply Green’s formula
(10) to (3.4) and (3.6). We then obtain

(3.7) (n — 1) sf(@)dS + [sah, dS =0
and
(3.8) [slaK,;; CICt+ (n — 1)f (@)a + v°V, k> + f@)h’ + ahhyldS = 0

respectively, where dS denotes the surface element of S.
If we assume, moreover, that the first mean curvature of .S is constant:

[1/(m — 1))k, = const.,
then we obtain, from (3.7) and (3.8),
n—1)[sf@)dS + hfsadS =0
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and

JsaK;; CICHdS + (n — 1)[ s f @) dS + hy'[ s f(0) dS + [ s ah’hy* dS = 0,

respectively. Eliminating [ s f(») dS from these two equations, we find that
Jsal[K;i+ (n = 1)f @)glCICt + [hh® — [1/ (n — 1)]k Ry 1}dS =0

or

(3.9) J; a[(Kji + (n — 1)f @)g;1)C’C" + <h - *—1_:-1 h,’g”)

cb
n
><<h — L g )]dS—O
cd n__l sgcb - .
4. Proofs.

Proof of Theorem 1. Suppose that the three conditions of Theorem 1 are
satisfied. Then, in the integral formula (3.9), we have

[Kji+ (n — 1)f" (0)g;:]C7C* > 0,

¢ 1 c 1 s
(1 = 2 e) (b = g e0) >0
and o = C*'V, v has fixed sign on S; hence

he — [1/(n — D]hige = 0,

which shows that every point of S is umbilical.

Proof of Theorem 2. The first part of Theorem 2 is a special case of Theorem
1 with f(v) = kv, k being a constant.
We assume, moreover, that S is a hypersurface along which

(4.1) v # const.

Since .S is umbilical, we put

(4.2) heo = Ngeo, A = const.
Then from (3.3) with f(») = ko,

(4.3) VeVer = (kv 4+ Na)ges
and from (3.5)

(4.4) Vea = — \vp;
hence

(4.5) o + \v = ¢ = const.

Substituting this into (4.3), we find that
V.Vev = [kv 4+ A(c — \)]ge
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or
(4.6) VeVor = [— (A2 — RB)v 4+ Aclges

Here A\ — & # 0. Because, if A2 — k = 0, then (4.6) becomes V,V,v = \cge
from which Av = (z — 1)\¢, which is impossible unless v = const.
Thus, A\? — k being different from zero, we have, from (4.6),

_A )L _ M
(4:.7) Vc Vb<'U - }\2 _ k> = ()\ k)(” )\2 _ k>g0b1

from which
Y2 WO < _ _l\i_>
A( - k) = —m-1)\ rR)\v )

and consequently
AN —k > 0.

By Theorem D, equation (4.7) shows that the hypersurface .S is isometric
to a sphere. This completes the proof of Theorem 2.

Proof of Theorem 3. The first part of Theorem 3 is a special case of Theorem
1 with f(v) = & = const.
We assume that S is a hypersurface along which

(4.8) v % const.
Since S is umbilical, we put
4.9) Ry = Ngeo, A = const.
Then from (3.3) with f(v) = &,
(4.10) VeVoo = (B 4+ M)ge
and from (3.5)
“.11) Vya = — Ao,
from which
(4.12) a + \v = ¢ = const.
Substituting (4.12) into (4.10), we find that
(4.13) VeVev = (— AN 4+ k& + No)go

Here N # 0. Because if A = 0, then (4.13) becomes V,V,v = kg, from which
Av = (n — 1)k, which is impossible unless v = const.
Thus \ being different from zero, we have, from (4.13),

k 4+ A k+ X
(4:.].4) Vc Vb(” —_ )\2 ) = — )\2<'U - )\2 >gcb:

and consequently by Theorem D the hypersurface S is isometric to a sphere.
This completes the proof of Theorem 3.
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