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Abstract. We extend the concept of umbilicity to higher order umbilicity in
Riemannian manifolds saying that an isometric immersion is k-umbilical when
APk−1(A) is a multiple of the identity, where Pk(A) is the kth Newton polynomial
in the second fundamental form A with P0(A) being the identity. Thus, for k = 1, one-
umbilical coincides with umbilical. We determine the principal curvatures of the two-
umbilical isometric immersions in terms of the mean curvatures. We give a description
of the two-umbilical isometric immersions in space forms which includes the product
of spheres Sk( 1√

2
) × Sk( 1√

2
) embedded in the Euclidean sphere S2k+1 of radius 1. We

also introduce an operator φk which measures how an isometric immersion fails to
be k-umbilical, giving in particular that φ1 ≡ 0 if and only if the immersion is totally
umbilical. We characterize the two-umbilical hypersurfaces of a space form as images
of isometric immersions of Einstein manifolds.

2000 Mathematics Subject Classification. Primary 53C42, 53C40; Secondary
53B20, 53B25.

1. Introduction. Let x : Mn → M
n+1

, n ≥ 2, be an isometric immersion of a
Riemannian manifold Mn in a Riemannian manifold M

n+1
. We know that x is totally

umbilical if for each p ∈ Mn the second fundamental form Ap : TpM → TpM is a
multiple of the identity on TpM. That is, if λ1(p), . . . , λn(p) are the eigenvalues of Ap,
then S1 = ∑n

i=1 λi is constant and so

Ap = S1

n
I,

I the identity of TpM.
We extend the concept of umbilicity to higher order umbilicity, calling k-umbilicity,

for k = 1, . . . , n. We say that an isometric immersion x is k-umbilical (or has umbilicity
of order k) if, at each point p ∈ M, APk−1 is a multiple of the identity. Here, Pk is the
Newton polynomial in the second fundamental form A on TpM given, inductively, by
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P0 = I , Pk = SkI − Pk−1A. If APk−1 ≡ 0 we say that x is k-totally geodesic. Here,

Sk =
∑

1≤i1<i2<···<ik≤n

λi1λi2 . . . λik .

The kth mean curvature Hk is given by

Hk = 1(n
k

)Sk.

Thus, one-umbilical immersion is the known totally umbilical immersion. A k-
umbilical isometric immersion in a Riemannian manifold satisfies (cf. Theorem 5.5):
APk−1(A) is a Codazzi tensor if and only if Sk is constant (known for k = 1). An
interesting but different concept of k-umbilicity was introduced and developed in [2]
and [7]. To study k-umbilicity we define an operator φk on tangent spaces of the
immersion given by

φk(X) = k
n

Sk(A)X − APk−1(A)X.

We will prove that φk = 0 if and only if the immersion is k-umbilical (cf. Remark 5.7).
For k = 1 this was studied in [1].

An example of a two-umbilical embedding is given by Sk( 1√
2
) × Sk( 1√

2
) →

S2k+1(1).
We prove that if x is k-umbilical, then

Hk+1 = H1 Hk.

But there exist hypersurfaces satisfying the condition Hk+1 = H1 Hk that are not
k-umbilical. For example, consider

x : SO(3) −→ S4(r),

letting

g 	−→ g

⎛⎜⎝ r
√

2
2 0 0
0 −r

√
2

2 0
0 0 0

⎞⎟⎠ g−1,

where S4(r) is the Euclidean sphere. We see that λ1 = 0, λ2 =
√

3
2 and λ3 = −

√
3

2 and
so AP1 is not a multiple of the identity, hence x is not two-umbilical. Clearly, H3 =
H1H2, because S1 = 0 = S3. However, the condition H1Hk = Hk+1 characterizes the
k-umbilical isometric immersions whose principal curvatures never vanish (cf. Theorem
7.1).

We will show that for n ≥ 3, if x is k-umbilical in a space form Mn+1(c), then
Skis constant. For n = 2 this is not true because every immersion x of M3(c) is two-
umbilical, since the eigenvalues of AP1 are equal to the Gaussian curvature of x. This
should not be surprise, since it would happen with the concept of umbilicity extended
to one-dimensional immersion in M2(c): every curve would be umbilical.
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In this paper, we will study k-umbilical isometric immersions in Riemannian
manifolds. We concentrate mainly on two-umbilical isometric immersions. First, we
will prove the following theorem (cf. Theorem 8.1) on the determination of the principal
curvatures of the two-umbilical isometric immersions in a Riemannian manifold:

Let x : Mn −→ M
n+1

(n ≥ 3) be any two-umbilical isometric immersion.
(a) If its principal curvatures are distinct, then they are given by

λi1 = · · · = λir = ((n − (r + 1))/(n − 2r))S1

and

λir+1 = · · · = λin = −((r − 1)/(n − 2r))S1,

where r ∈ {0, 1, 2, . . . , [[ n
2 ]]1} or r ∈ {0, 1, 2, . . . , n

2 − 1}, according to whether n is odd or
even, respectively.

(b) If its principal curvatures are equal, then n is even and its principal curvatures are
given by

λi1 = · · · = λi n
2

=
√

2/n
√−S2

and

λi n
2 +1

= · · · = λin = −
√

2/n
√−S2 .

We give a description of an infinite family of two-umbilical hypersurfaces in the
sphere Sn+1(1) (cf. Theorem 9.3):

There exists a countably infinite family of two-umbilical hypersurfaces in the
Euclidean sphere Sn+1(1) : for any n ≥ 4 and for every m ∈ {2, . . . , n − 2}, the Clifford’s
hypersurface

Sn−m(r) × Sm(
√

1 − r2) ↪→ Sn+1(1) is two-umbilical if and only if r =
√

n − m − 1
n − 2

.

We will see that for r =
√

n−m−1
n−2 the hypersurface Sn−m(r) × Sm(

√
1 − r2) ↪→

Sn+1(1) with the metric induced from Sn+1(1) is an Einstein manifold. In fact, S2 = − n
2

and Ric(X, Y ) = (n − 1 + 2S2
n ) < X, Y >, when r =

√
n−m−1

n−2 . That is, for r =
√

n−m−1
n−2 ,

the two-umbilical Clifford hypersurfaces are examples of Einstein manifolds which
admit isometric immersion in Sn+1(1).

In [8], Fialkow gave a classification of the Einstein hypersurfaces in space forms.
By using our methods we reprove part of Theorem 7.1 of [8]:

Every connected Einstein hypersurface in a space form has at most two distinct
principal curvatures (cf. Theorem 4.1).

The classical reference [4] has characterizations of Einstein manifolds under many
distinct aspects.

Here, we will prove a characterization of Einstein hypersurfaces in space forms in
terms of the second-order umbilicity (cf. Theorem 8.3):

1[[x]] is the largest integer not exceeding x.
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Let Mn be a connected Riemannian manifold and x : Mn −→ M
n+1

(c), n ≥ 3, be
an isometric immersion. Then

Mn is Einstein if and only if x is two-umbilical.

Moreover, in this case Ric(X, Y ) = (c(n − 1) + 2S2
n ) < X, Y >, with S2 constant.

As a consequence, this yields φ2 as a measure of how much Mn fails to be an
Einstein hypersurface (cf. Remark 8.4).

Our methods offer the possibility of studying k-umbilical isometric immersions in
more general ambient spaces, as in Theorem 8.1.

By using Theorem 8.1, the paper ends with a description of the two-umbilical
hypersurfaces in a space form (cf. Theorem 9.6):

Let Mn be a two-umbilical hypersurface in M
n+1

(c), n > 2. Then

(a) M is two-totally geodesic or
(b) M is one-umbilical or
(c) if c > 0, then M is locally a standard product embedding of

Sn−m(r) × Sm(
√

1 − r2) ↪→ Sn+1(1),

where r =
√

n−m−1
n−2 . In particular, when the embedding is minimal we have

Sk
(

1√
2

)
× Sk

(
1√
2

)
↪→ S2k+1(1),

where n = 2k;
(d) if c < 0, then M is geodesic hyperspheres, horospheres, totally geodesic

hyperplanes and their equidistant hypersurfaces, tubes around totally geodesic
subspaces of dimension at least one (in another words, it is locally a standard
product embedding of Sk × �n−k);

(e) if c = 0, then M is locally hyperspheres, hyperplanes or a standard product
embedding given by Sk × �n−k.

2. Preliminaries. In this section, we fix notation and recall basic concepts that
will be extended to self-adjoint operators in the next section.

DEFINITION 2.1. Given any integer k, the function Sk : �n −→ � given by

Sk(x1, x2, . . . , xn) :=

⎧⎪⎪⎨⎪⎪⎩
1, k = 0,∑
1≤i1<i2<···<ik≤n

xi1 xi2 . . . xik , ∀k ∈ {1, 2, . . . , n} ,

0, ∀k ∈ � \ {0, · · · , n}
(2.1)

will be called an elementary k-symmetric polynomial.

DEFINITION 2.2. Given any integer k, let Sk be the k-symmetric polynomial as given
in Definition 2.1. We define the jth partial derivative of Sk by the following recurrence
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relations:

∂

∂xj
S0(x1, . . . , xn) = 0;

∂

∂xj
S1(x1, . . . , xn) = 1;

∂

∂xj
Sr(x1, . . . , xn) = Sr−1(x1, . . . , xn) − xj

∂

∂xj
Sr−1(x1, . . . , xn), ∀r ≥ 2. (2.2)

From these relations, we can show by induction that

∂

∂xj
Sr+1(x1, . . . , xn) =

r∑
i=0

(−1)iSr−i(x1, . . . , xn)
(
xj

)i
. (2.3)

PROPOSITION 2.3. Given any integer k, let Sk : �n −→ � be the elementary
k-symmetric polynomial. Then

Sk(x1, . . . , x̂j, . . . , xn) =
k∑

i=0

(−1)iSk−i(x1, . . . , xn)(xj)i, (2.4)

where x̂j indicates that xj has been excluded, that is,

Sk(x1, . . . , x̂j, . . . , xn) = Sk(x1, . . . , xj−1, 0, xj+1, . . . , xn).

Proof. By differentiation of Sk(x1, . . . , xn) with respect to xj we get

∂

∂xj
Sk(x1, . . . , xn) = Sk−1(x1, . . . , x̂j, . . . , xn), (2.5)

where x̂j denotes that xj has been excluded. The proof follows after comparing (2.3)
and (2.5). �

PROPOSITION 2.4 (Euler’s identity). Given any integer k, let Sk : �n −→ � be the
elementary k-symmetric polynomial. Then

n∑
j=1

xj
∂

∂xj
Sk+1(x1, . . . , xn) = (k + 1)Sk+1(x1, . . . , xn), (2.6)

or equivalently,

n∑
j=1

xjSk(x1, . . . , x̂j, . . . , xn) = (k + 1)Sk+1(x1, . . . , xn). (2.7)

Proof. See [11]. �

3. r-Newton Operators. Throughout what follows, V stands for an n-dimensional
real vector space equipped with an inner product.
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DEFINITION 3.1. We define the elementary r-symmetric polynomial by

Sr : L(V ) −→ �

B −→ Sr(B) := Sr(λ1, λ2, . . . , λn),

where B ∈ L(V ) is a self-adjoint linear operator and we let λ1, . . . , λn denote the set of
its associated eigenvalues.

DEFINITION 3.2. Let B ∈ L(V ) be a self-adjoint linear operator and we let {λi}i∈�

denote all its eigenvalues and let {vi}i∈� be its associated orthonormal eigenvectors,
i.e., Bvi = λivi. We make use of the convention that λi = 0 if i ∈ � \ {1, 2, . . . , n} and

vi

{
�= 0V , if i ∈ {1, 2, . . . , n};
= 0V , if i ∈ � \ {1, 2, . . . , n}.

We define

Bi :=
{

B, ∀i ∈ � \ {1, 2, . . . , n}
B|span{vi }⊥

, ∀i = 1, 2, . . . , n.

DEFINITION 3.3. Let B ∈ L(V ) be a self-adjoint linear operator. Denote by Bi the
operator defined in Definition 3.2. We define

Sr(Bi):=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if r ∈ � \ {0, 1, . . . , n} and i ∈ �;

1, if r = 0 and i ∈ �;

Sr(B), if r ∈ {1, . . . , n} and i ∈ � \ {1, 2, . . . , n};
Sr(λ1, . . . , λi−1, λ̂i, λi+1, . . . , λn), if r ∈ {1, . . . , n} and i ∈ {1, 2, . . . , n},

where λ̂i means that the term λi is excluded, that is,

Sr(λ1, . . . , λi−1, λ̂i, λi+1, . . . , λn) = Sr(λ1, . . . , λi−1, 0, λi+1, . . . , λn).

PROPOSITION 3.4. Let B ∈ L(V ) be a self-adjoint linear operator, {λi}, 1 ≤ i ≤ n, its
eigenvalues and let {vi}, 1 ≤ i ≤ n, be its associated orthonormal eigenvectors. Then,

(a) Sn(Bi) = 0 ; ∀i ∈ {1, . . . , n};
(b) Sr(Bi) = ∂

∂λi
Sr+1(B);

(c) Sr+1(Bi) = Sr+1(B) − λiSr(Bi);

(d)
∂

∂λj
Sr(Bi) = ∂

∂λi
Sr(Bj).

Proof.
(a) This is immediate from the fact that Sn(Bi) is a product of n terms where one

of them is zero.
(b) Immediate from Definition 3.3 and equations (2.3) and (2.4).
(c) In the expression (2.2), we apply Definition 3.3 and the above item (b).
(d) This is a consequence of the item (b).

�
DEFINITION 3.5. Given any integer r, an operator

Pr : {B ∈ L(V ); B is self-adjoint} −→ {B ∈ L(V ); B is self-adjoint}
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given by

Pr(B) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I, r = 0;

r∑
j=0

(−1)jSr−j(B)Bj, ∀r ∈ {1, 2, . . . , n − 1};
O, r ∈ � \ {0, 1, . . . , n}.

is called an r-Newton operator associated to B, where I and O are the identity and the
null operators, respectively.

PROPOSITION 3.6.

Pr+1(B) = Sr+1(B)I − BPr(B), (3.1)

or equivalently,

Pr+1(B) = Sr+1(B)I − Pr(B)B, (3.2)

for each r = 0, 1, 2, . . . , n − 1.

Proof. The proof of (3.1) is by induction on r and (3.2) is justified by the fact that
Pr(B) is a polynomial and Pr(B)B = BPr(B). �

The next proposition is a summary of important relations about Pr(B) and Sr(B).

PROPOSITION 3.7. Let B ∈ L(V ) be a self-adjoint operator. Then

(a) Pn(B) = O, where O is the null operator in V;
(b) trace (BPr(B)) = nSr+1(B) − trace (Pr+1(B));
(c) trace (B2Pr(B)) = trace (Sr+1(B)B) − trace (BPr+1(B));
(d)

(d.1) trace (Pr(B)) = (n − r)Sr(B);
(d.2) trace (Pr(B)) = ∑r

j=0(−1)jSr−j(B)trace (Bj);
(e) trace (BPr(B)) = (r + 1)Sr+1(B) (Newton’s formula);
(f) trace (B2Pr(B)) = S1(B)Sr+1(B) − (r + 2)Sr+2(B);
(g) Pr(B) and B have the same eigenvectors;

(h) The eigenvalues of Pr(B) are
∂

∂λj
Sr(B), where λj is an eigenvalue of B;

(i) Pr(B)vi = Sr(Bi)vi, where vi is an eigenvector of B;

(j) trace (Pr(B)) =
n∑

i=1

Sr(Bi);

(k) trace (BPr(B)) =
n∑

i=1

λiSr(Bi);

(l) trace (B2Pr(B)) =
n∑

i=1

λ2
i Sr(Bi).

Proof. See [3]. �
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DEFINITION 3.8. Let B ∈ L(V ) be a self-adjoint linear operator. Denote by Bi the
operator given in Definition 3.2. We define

Sr(Bi, Bj) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r ∈ � \ {0, 1, . . . , n}, ∀ i, j ∈ �;

1 if r = 0, ∀ i, j ∈ �;

Sr(B) if r ∈ {1, . . . , n}, ∀ i, j ∈ � \ {1, 2, . . . , n};
Sr(Bi) if r, i ∈ {1, . . . , n}, j ∈ � \ {1, 2, . . . , n};
Sr(Bj) if r, j ∈ {1, . . . , n}, i ∈ � \ {1, 2, . . . , n};
Sr(Bi) if r ∈ {1, . . . , n}, j = i ∈ {1, 2, . . . , n};
Sr(λ1, . . . , λ̂i, . . . , λ̂j, . . . , λn) if r ∈ {1, . . . , n}, j �= i ∈ {1, 2, . . . , n}.

where λ̂i means that the term λi is excluded and we are denoting

Sr(Bi, Bj) := Sr

(
B∣∣

span{vi , vj }⊥

)
.

Note that Sr(Bi, Bj) is an extension of Definition 3.3. We next show a few relations
involving Sr(Bi, Bj).

PROPOSITION 3.9. Let B ∈ L(V ) be a self-adjoint operator, λ1, . . . , λn the eigenvalues
of B and let v1, . . . , vn be its associated orthonormal eigenvectors. Then

(a) Sr(Bi, Bj) = Sr(Bj, Bi);

(b) Sr(Bi, Bj) = ∂2

∂λi∂λj
Sr+2(B), ∀i, j ∈ {1, . . . , n};

(c) Sn−1(Bi, Bj) = 0 = Sn(Bi, Bj), ∀i, j ∈ {1, . . . , n};
(d)

Sr+1(Bi, Bj) = Sr+1(Bi) − λjSr(Bi, Bj)

and

Sr+1(Bi, Bj) = Sr+1(Bj) − λiSr(Bi, Bj);

(e) Sr+1(Bi) − Sr+1(Bj) = (λj − λi)Sr(Bi, Bj);
(f)

∑n
i=1
i �=k

λiSr(Bi, Bk) = (r + 1)Sr+1(Bk) (Euler’s identity);2

(g) With the definition of Sr(Bi, Bj, Bk), we have (analogous to part (d)):

Sr+1(Bi, Bj, Bk) = Sr+1(Bi, Bj) − λkSr(Bi, Bj, Bk),

Sr+1(Bi, Bj, Bk) = Sr+1(Bi, Bk) − λjSr(Bi, Bj, Bk),

Sr+1(Bi, Bj, Bk) = Sr+1(Bj, Bk) − λiSr(Bi, Bj, Bk);

(h) Sr+1(Bi, Bk) − Sr+1(Bk, Bj) = (λj − λi)Sr(Bi, Bj, Bk);

2It should be noted that if we make k = 0 in this expression we get Proposition 2.4.
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(i) For any j ∈ {1, . . . , n}, r ∈ {0, . . . , n} we have 3

[(n − 1) − r] Sr(Bj) =
n∑

i=1
i �=j

Sr(Bi, Bj).

Proof.
(a) Direct from the equality

Sr(Bi, Bj) = Sr

⎛⎝(
B∣∣

span {vi }⊥

)∣∣
span {vj }⊥

⎞⎠ = Sr

⎛⎜⎝(
B∣∣

span {vj }⊥

)
∣∣

span {vi }⊥

⎞⎟⎠ .

(b) We have

∂2

∂λi∂λj
Sr+2(B) = ∂

∂λi

(
∂

∂λj
Sr+2(B)

)
,

= ∂

∂λi

(
Sr+1

(
B|span{ej }⊥

))
= Sr

((
B|span{ei }⊥

)
|span{ej }⊥

)
.

The last equality comes from Proposition 3.4(b) and Definition 3.2.
(c) It is immediate from part (b) and Proposition 3.4(b).
(d) Use that the statement of Proposition 3.4(c) remains valid if we replace B by

B|span{vj }⊥
.

(e) Immediate from part (d).
(f) First use notation of Definition 3.3 in relation (2.7) and finally replace B by

B|span{vj }⊥
.

(g) We obtain our result by replacing B by B|span{vi ,vj }⊥
, B|span{vi ,vk}⊥ and B|span{vj ,vk}⊥ ,

successively, in Proposition 3.4(c).
(h) Immediate from part (g).
(i) Only replace B by B|span{vj }⊥

in Proposition 3.7(e) and (k).

�

4. First Applications. Here, we give some applications of the result obtained in
Section 3, including another proof of a result of Fialkow in [8] about Einstein manifolds.
A Riemannian manifold Mn is an Einstein manifold if its Ricci tensor satisfies: for any
X, Y tangent to Mn, Ric(X, Y ) = λ〈X, Y〉, where λ is a real function.

THEOREM 4.1 ([8] part of Theorem 7.1). Let Mn be a connected Riemannian
manifold and x : Mn −→ M

n+1
(c), n ≥ 3, an isometric immersion. If Mn is an Einstein

manifold, then the maximum number of distinct principal curvatures of x is two.

Proof. From Gauss equation

Ric(X, Y ) = c(n − 1)〈X, Y〉 + 〈AP1(A)X, Y〉,

3This is a version of Proposition 3.7 (d.1).
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where A is the shape operator. Let {e1, . . . , en} be an orthonormal basis which
diagonalizes A at a point (that is, Aei = λiei). Since Mn is Einstein we get

λ = c(n − 1) + λiS1(Ai), for i = 1, 2, . . . , n. (4.1)

If λ1 = · · · = λn = ρ, clearly λiS1(Ai) = (n − 1)ρ2. From (4.1) we get ρ2 = λ

n − 1
− c.

Since ρ ∈ � it follows that
(a) λ > c(n − 1) or
(b) λ = c(n − 1).

If x has at least two distinct principal curvatures λi �= λj, from (4.1) we have that
λiS1(Ai) = λjS1(Aj); from Proposition 3.4(c) we get S2(Aj) − S2(Ai) = 0. From Pro-
position 3.9(d) we get (λi − λj)S1(Ai, Aj) = S2(Aj) − S2(Ai) = 0. Then S1(Ai, Aj) = 0.
By Proposition 3.9(d) we get S1(Ai) = S1(Ai, Aj) + λj and hence λiS1(Ai) =
λiS1(Ai, Aj) + λi λj. But we see that S1(Ai, Aj) = 0 and so λiS1(Ai) = λi λj. In other
words, from (4.1) we get λi λj = λ − c(n − 1).
Now, for any principal curvature λk with k �= i, j, by (4.1) we have

λkS1(Ak) = λ − c(n − 1).

From Proposition 3.4(c) we get

λk(S1(A) − λk) = λ − c(n − 1).

We have seen that λi λj = λ − c(n − 1). Thus

λ2
k − S1(A)λk + λi λj = 0.

Since S1(A) = S1(Ai, Aj) + λi λj, and S1(Ai, Aj) = 0 we get

λ2
k − (λi + λj)λk + λi λj = 0.

Therefore, the above equality shows that each λk must be λi or λj. �
THEOREM 4.2. Let B ∈ L(V ) be a self-adjoint linear operator. For any r, k ∈ � we

have

trace[Pr−1(B) B Pk(B)] =
k∑

j=0

(r + k − 2j) Sr+k−j(B) Sj(B).

Proof. Multiply relation (3.2) on both sides by Pk(B) to get

Pr(B)Pk(B) = Sr(B)Pk(B) − Pr−1(B) B Pk(B).

Next, taking trace and by Proposition 3.7(d.1) we get

trace(Pr(B) Pk(B)) =(n − k) Sr(B) Sk(B) − trace(Pr−1(B) B Pk(B)).

It follows, by interchanging the roles of r and k, that

trace(Pk(B) Pr(B)) =(n − r) Sk(B) Sr(B) − trace(Pk−1(B) B Pr(B)).
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Hence,

(r − k)Sr(B)Sk(B) = trace(Pr−1(B) B Pk(B)) − trace(Pk−1(B) B Pr(B)). (4.2)

For fixed r, the proof is by induction on k.
Taking k = 1 in (4.2), by Proposition 3.7(d.1) we get

trace(Pr−1(B) B P1(B)) = (r + 1)Sr+1(B) + (r − 1)S1(B)Sr(B).

By the induction hypothesis, we then have

trace[Pr−1(B) B Pk(B)] =
k∑

j=0

(r + k − 2j) Sr+k−j(B) Sj(B).

Replacing k for k + 1 in (4.2) we get

trace[Pr−1(B) B Pk+1(B)] = (r − k − 1)Sr(B)Sk+1(B) + trace[Pk(B) B Pr(B)].

Again by the induction hypothesis, we then have

trace[Pr−1(B) B Pk+1(B)] =

(r − k − 1)Sr(B)Sk+1(B) +
k∑

j=0

(r + 1 + k − 2j) Sr+1+k−j(B) Sj(B).

Therefore,

trace[Pr−1(B) B Pk+1(B)] =
k+1∑
j=0

(r + 1 + k − 2j) Sr+1+k−j(B) Sj(B). �

From now onwards ‖ · ‖ means the Hilbert–Schmidt norm, that is, if B is any linear
operator

‖B‖ :=
√

trace (B∗ ◦ B),

where B∗ means the adjoint to the operator B.

COROLLARY 4.3. Let B ∈ L(V ) be a self-adjoint linear operator. For any r ∈ � we
have

‖Pr(B)‖2 = (n − r) Sr(B)2 − 2
r−1∑
j=0

(r − j) Sj(B) S2r−j(B) .

Proof. Multiply relation (3.2) on the right by Pr(B) to get

Pr(B)Pr(B) = Sr(B)Pr(B) − Pr−1(B) B Pr(B).

Now the proof follows as a consequence of taking the trace and also by Propo-
sition 3.7(d.1) and by Theorem 4.2. �
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COROLLARY 4.4. Let B ∈ L(V ) be a self-adjoint linear operator. For any r ∈ � we
have

‖B Pr−1(B)‖2 = r Sr(B)2 − 2
r−1∑
j=0

(r − j) Sj(B) S2r−j(B).

Proof. By (3.1),

Pr(B)2 = BPr−1(B)BPr−1(B) − 2Sr(B) BPr−1(B) + Sr(B)2I.

Now take the trace of this expression. Then, by Proposition 3.7(e) and since BPr−1(B) =
Pr−1(B)B, we have

‖Pr(B)‖2 = ‖B Pr−1(B)‖2 + (n − 2r)Sr(B)2. (4.3)

Corollary 4.3 finishes the proof. �

5. k-umbilicity in Riemannian Manifolds. Let Mn and M
n+1

be Riemannian

manifolds of dimension n and n + 1, respectively. Let x : Mn −→ M
n+1

be an isometric
immersion and denote its shape operator at a point q in Mn by A : TqM → TqM (by
abuse of language A is also called the second fundamental form).

DEFINITION 5.1. An isometric immersion x : Mn −→ M
n+1

is said to be
k-umbilical at q ∈ Mn , k = 1, . . . , n − 1, if

APk−1 (A) = λI, (5.1)

where λ = λ(k) is a real function and I is the identity map of TqM.

Even though we do not know any term in (5.1), by Proposition 3.7(e) we can show
that λ(k) = k

n Sk(A). Hence, another way to define k-umbilicity is

APk−1 (A) = k
n

Sk(A) I. (5.2)

By Proposition 3.6, we can get an equivalent definition of k-umbilicity:

Pk (A) =
(

1 − k
n

)
Sk(A) I. (5.3)

DEFINITION 5.2. We say that an isometric immersion x : Mn −→ M
n+1

is
k-umbilical when it is k-umbilical at every point of M.

DEFINITION 5.3. An isometric immersion x : Mn −→ M
n+1

is said to be k-totally
geodesic if

A Pk−1(A) = 0.

PROPOSITION 5.4. Let x : Mn −→ M
n+1

be an isometric immersion.

x is k-totally geodesic if and only if x is k-umbilical with Sk(A) = 0.

https://doi.org/10.1017/S0017089508004643 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004643


CONSTANT SCALAR CURVATURE HYPERSURFACES 231

Proof. Let x be k-umbilical such that Sk(A) = 0. Then by (5.2) x is k-totally
geodesic.

Conversely, let x be k-totally geodesic. Then APk−1(A) = 0 = 0 I . Thus every
k-totally geodesic is k-umbilical. By Proposition 3.7(e) we have that Sk(A) = 0. �

It is known that the second fundamental form A of a totally umbilical isometric

immersion x : Mn −→ M
n+1

satisfies the Codazzi equation if and only if S1 is constant.
We generalize this fact for k-umbilical isometric immersions with APk−1(A) in place of
A. As a (1, 1) symmetric tensor, APk−1(A) is said to be Codazzi if (∇X APk−1(A))Y =
(∇Y APk−1(A))X , where

(∇X APk−1(A))(Y ) = ∇Y (APk−1(A)(X)) − APk−1(A)(∇X Y ),

for any X ,Y tangents to M.

THEOREM 5.5. Let Mn be a connected Riemannian manifold and x : Mn −→ M
n+1

a k-umbilical isometric immersion. Then

APk−1(A) is Codazzi if and only if Sk(A) is constant.

Proof. For any X, Y tangents to Mn

(∇X APk−1(A))(Y ) = ∇Y (APk−1(A)(X)) − APk−1(A)(∇X Y ).

Since the immersion is k-umbilical

(∇X APk−1(A))(Y ) − (∇Y APk−1(A))(X) = X
(

k
n

Sk(A)
)

Y − Y
(

k
n

Sk(A)
)

X. (5.4)

If APk−1(A) is Codazzi, then the left-hand side of (5.4) is zero. Hence,

X
(

k
n

Sk(A)
)

Y − Y
(

k
n

Sk(A)
)

X = 0.

Now if X and Y are chosen to be linearly independent, we get

X
(

k
n

Sk(A)
)

= 0 = Y
(

k
n

Sk(A)
)

;

thus, k
n Sk(A) is constant at every point of Mn and by the connectedness of Mn it follows

that k
n Sk(A) is constant in Mn.

Conversely, if k
n Sk(A) is constant in Mn, then the right-hand side of (5.4) is zero.

Thus,

(∇X APk−1(A))(Y ) − (∇Y APk−1(A))(X) = 0.

Hence, APk−1 (A) is Codazzi. �

Now we are going to introduce an operator, defined on tangent spaces, which
measures how much an isometric immersion fails to be k-umbilical.
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DEFINITION 5.6. Let x : Mn −→ M
n+1

be an isometric immersion and A its shape
operator. For each p ∈ M, the k-umbilicity operator

φk : TpM −→ TpM

is defined by

φk(X) := k
n

Sk(A) X − APk−1(A) X, ∀X ∈ TpM,

where Pi is the ith Newton operator and Sj(A) is the jth symmetric function associated
to A.

REMARK 5.7. We must note that when k = 1 the operator φ1(X) = φ(X) = HX −
AX was used in [1], where φ1 ≡ 0 if and only if the immersion is totally umbilical. This
fact extends to k-umbilical immersions: by (5.2) φk ≡ 0 if and only if the immersion
is k-umbilical; in another words, the operator φk gives a measure of how much an
isometric immersion fails to be k-umbilical.

PROPOSITION 5.8. Let x : Mn −→ M
n+1

be an isometric immersion and let A be its
shape operator. Then the map φk satisfies the following:

(a) φk is self-adjoint;
(b) φk is simultaneously diagonalizable with A and if {e1, . . . , en} is an orthonormal

basis which diagonalizes A we have φk(ei) = μiei, where

μi = Sk(Ai) −
(

1 − k
n

)
Sk.

Proof.
(a) Since A is self-adjoint, it follows that φk is self-adjoint, too.
(b) The proof follows by using that Aei = λi ei, i = 1, 2, . . . , n and Proposition

3.7(i). �

PROPOSITION 5.9. Let x : Mn −→ M
n+1

be an isometric immersion and let A be its
shape operator. Let φk be given by the Definition 5.6 and ‖.‖ denotes the Hilbert–Schmidt
norm. Then

1. ‖φk‖2 =
n∑

i=1

μ2
i , where μi was defined in Proposition 5.8(b);

2. ‖φk‖2 = k(n − k)
n

Sk(A)2 − 2
k−1∑
j=0

(k − j) Sj(A)S2k−j(A);

3. ‖φk‖2 = 1
n

∑
1≤i<j≤n

(λi Sk−1(Ai) − λj Sk−1(Aj))2.

Proof. Let {e1, . . . , en} be an orthonormal basis such that Aei = λi ei for i =
1, . . . , n. Here,

‖φk‖2 = trace
(
φ∗

k ◦ φk
)
,

where φ∗
k is the adjoint of φk.
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1. The proof follows from Proposition 5.8(a) and (b).
2. By part (1), Proposition 5.8(b) and Proposition 3.7(j) and (d.1) we get

‖φk‖2 =
n∑

i=1

Sk(Ai)2 − (n − k)2

n
Sk(A)2 ;

in another words,

‖φk‖2 = trace
(

Pk(A)2 − (n − k)2

n2
Sk(A)2 I

)
.

From Propositions 3.6 and 3.7 we get

‖φk‖2 =((n − k)Sk(A)2 − trace(Pk−1(A) A Pk(A))) − (n − k)2

n
Sk(A)2.

Finally use Theorem 4.2.
3. We can see that 2S2

(
APk−1(A)

) = S1 (APk−1(A))2 − ‖APk−1(A)‖2. Our result
then follows from Proposition 3.7(e) and Corollary 4.4. �

6. Characterizations of k-umbilical immersions. Here, M
n+1

will be a Riemannian
manifold.

PROPOSITION 6.1. Let x : Mn −→ M
n+1

be an isometric immersion, A its shape
operator and {e1, . . . , en} an orthonormal basis which diagonalizes A at a point q ∈ M.
The immersion is k-umbilical at q if and only if in Newton’s Formula,

∑n
j=1 λjSk−1(Aj) =

kSk(A), each term in the sum is equal to k
n Sk(A) at q.

Proof. The proof follows by using (5.2) and Proposition 3.7(i). �

REMARK 6.2. We see from above that an isometric immersion x : Mn −→ M
n+1

is k-umbilical if and only if

λj Sk−1(Aj) = k
n

Sk(A) ,∀j.

COROLLARY 6.3. Let x : Mn −→ M
n+1

be an isometric immersion, A its shape
operator and {e1, . . . , en} an orthonormal basis which diagonalizes A at q ∈ M. The
immersion is k-umbilical if and only if

k−1∑
j=0

(−1)j Sj(A) λk−j
i + (−1)k k

n
Sk(A) = 0 at q ∈ M. (6.1)

Proof. From definition of Ai and (2.4) we get

Sk(Ai) =
k∑

j=0

(−1)j Sk−j(A) (λi)j. (6.2)

The proof now follows from identity (6.2) and Remark 6.2. �
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REMARK 6.4. Let x : Mn −→ M
n+1

be an isometric immersion. Then
x is one-umbilical if and only if λi = 1

n S1;
x is two-umbilical if and only if λ2

i − S1λi + 2
n S2 = 0;

x is three-umbilical if and only if λ3
i − S1λ

2
i + S2λi − 3

n S3 = 0.

7. Consequences of the k-umbilicity. It is clear that every one-umbilical
immersion is a k-umbilical immersion, but the converse is not true.

THEOREM 7.1. Let x : Mn −→ M
n+1

be an isometric immersion and let A be its
shape operator. If x is k-umbilical at q ∈ M, then

Hk+1 = H1 Hk at q.

The converse is true if all its principal curvatures are different from zero. Moreover, we
have the following identity

S1(A)Sk+1(A) − (k + 2)Sk+2(A) =
(

n − k
n

)
Sk(A) ‖A‖2. (7.1)

Proof. Let {e1, . . . , en} be an orthonormal basis which diagonalizes A at q and
λi the eigenvalue corresponding to ei. From the k-umbilicity of x and Remark 6.2
we have λ2

j Sk−1(Aj) = k
n Sk(A) λj. By summing on j we have

∑n
j=1 λ2

j Sk−1(A) =
k
n Sk(A)(

∑n
j=1 λj). Using Proposition 3.7(f) and (l) we get

S1(A)Sk(A) − (k + 1)Sk+1(A) =k
n

S1(A)Sk(A);

or equivalently

(
n

k + 1

)
Sk+1(A)( n

k+1

) =n − k
k + 1

(
S1(A)

n

)
Sk(A)(n

k

) (
n
k

)
.

Hence,

Hk+1 =H1Hk.

For the converse, suppose that there is a point q ∈ M such that Hk+1 = H1 Hk and
λi �= 0 for each i at q. Thus,

(k + 1)Sk+1(A) =
(

n − k
n

)
S1(A)Sk(A);

reordering the last equality and making use of Proposition 3.7(f) we can rewrite it as

trace (A2Pk−1(A)) =k
n

S1(A)Sk(A);
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by Proposition 3.7(l), we get

n∑
j=1

(
λ2

j Sk−1(Aj) − λj
k
n

Sk(A)
)

= 0.

Now, let {v1, . . . , vn} be a basis of TqM and consider the following linear combination:

n∑
j=1

(
λ2

j Sk−1(Aj) − λj
k
n

Sk(A)
)

vj = 0.

Thus, λj(λjSk−1(Aj) − k
n

Sk(A)) = 0, for each j. The proof now follows from

Remark 6.2. �
PROPOSITION 7.2. Every k-umbilical isometric immersion x : Mn −→ M

n+1
with a

zero principal curvature at a point p is k-totally geodesic at p and has at least n − k + 1
principal curvatures equal to zero at p.

Proof. First we will prove that at p

Sj(A) = 0, ∀j ≥ k and Sj(Ai) = 0, ∀j ≥ k,∀i. (7.2)

By hypothesis we can suppose λα = 0, for some α. Substitute λi for λα = 0 into (6.1)
to obtain Sk(A) = 0. Since Hk+1 = H1Hk, it follows that Sk+1(A) = 0. From (7.1) we
have Sk+2(A) = 0. Now, by Propositions 6.1 and 3.4(c) we get Sk(Ai) = 0, ∀i; again by
Proposition 3.4(c), we have Sk+1(Ai) = 0,∀i and thus Sk+2(Ai) = 0, ∀i. The proof of
(7.2) follows from a recursive process using the same arguments.

Now, we are going to show that there exist at least n − k + 1 principal curvatures
equal to zero. We had seen that Sn(A) = 0; then at least one principal curvature is null;
denote it by λj1 = λα = 0. We also had seen that Sn−1(Aj) = 0, for any j. Thus

Sn−1(Aj1 ) =
n∏

i=1
i �=j1

λi = 0,

and hence there exists another null principal curvature and we denote it by λj2 = 0.
Now, by Proposition 3.9(d) one gets Sr(Aj1 , Aθ ) = 0. Taking r = n − 2 and θ = j2 we
get

Sn−2(Aj1 , Aj2 ) =
n∏

i=1
i �=j1, j2

λi = 0;

therefore, there exists another null principal curvature which we will denote by λj3 = 0.
Again, by Proposition 3.9(g), one gets Sr(Aj1 , Aj2 , Aθ ) = 0. Taking r = n − 3 and θ = j3
we get

Sn−3(Aj1 , Aj2 , Aj3 ) =
n∏

i=1
i �=j1, j2, j3

λi = 0.
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Therefore, there exists another null principal curvature which we will denote by λj4 = 0.
Continuing in this fashion, we will show that there exist n − k + 1 null principal

curvatures. �
COROLLARY 7.3. Let x : Mn −→ M

n+1
, n ≥ 3 be a k-umbilical isometric immersion.

If Hn = 0 at one point, then Hj = 0 at the same point, ∀j ≥ k.

8. Two-umbilical Isometric Immersions. Here, we obtain the principal curvatures

λ1, . . . , λn, of a two-umbilical isometric immersion in a Riemannian manifold M
n+1

,
in terms of S1 and S2, as roots of λ2

i − S1λi + 2
n S2 = 0 (cf. Remark 6.4).

THEOREM 8.1 (Determination of the principal curvatures of the two-umbilical

isometric immersions). Let x : Mn −→ M
n+1

(n ≥ 3) be any two-umbilical isometric
immersion.

(a) If its principal curvatures are distinct, then they are given by

λi1 = · · · = λir = ((n − (r + 1))/(n − 2r))S1

and

λir+1 = · · · = λin = −((r − 1)/(n − 2r))S1,

where r ∈ {0, 1, 2, . . . , [[ n
2 ]]4} or r ∈ {0, 1, 2, . . . , n

2 − 1}, according to whether n is odd or
even, respectively.

(b) If its principal curvatures are equal, then n is even and its principal curvatures are
given by

λi1 = · · · = λi n
2

=
√

2/n
√−S2

and

λi n
2 +1

= · · · = λin = −
√

2/n
√−S2 .

Proof. Let {e1, . . . , en} be an orthonormal basis which diagonalizes A. Since x is
two-umbilical, by Remark 6.4 each λi satisfies λ2

i − S1(A)λi + 2
n S2(A) = 0; then each

λi has at most two distinct principal curvatures:

λi1 = λi2 = · · · = λir =
S1(A) +

√
S1(A)2 − 8

n S2(A)

2
;

λir+1 = λir+2 = · · · = λin =
S1(A) −

√
S1(A)2 − 8

n S2(A)

2
.

We then obtain

S1(A) =
nS1(A) + (2r − n)

√
S1(A)2 − 8

n S2(A)

2
.

4[[x]] is the largest integer not exceeding x.
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Suppose that r �= n
2 . Then

√
S1(A)2 − 8

n S2 = (n−2)S1(A)
n−2r . Now we have

(i) If n ≥ 2, S1 ≥ 0 and r < n
2 , then the principal curvatures are given by

λi1 = · · · = λir =
[

n − (r + 1)
n − 2r

]
S1(A),

λir+1 = · · · = λin = −
(

r − 1
n − 2r

)
S1(A).

(ii) If n ≥ 2, S1(A) ≤ 0 and r > n
2 , then the principal curvatures are given by

λi1 = · · · = λir =
[

n − (r + 1)
n − 2r

]
(−S1(A)),

λir+1 = · · · = λin = −
(

r − 1
n − 2r

)
(−S1(A)).

Now suppose that r = n
2 and n ≥ 4. Then (n − 2)S1(A) = 0 and we obtain

λi1 = · · · = λi n
2

=
√

2
n

√
−S2(A),

λi n
2 +1

= · · · = λin = −
√

2
n

√
−S2(A).

�
COROLLARY 8.2. For any odd integer n, every minimal two-umbilical isometric

immersion of Mn is one-totally geodesic.

From Remark 6.4 we can see that any two-umbilical immersion has no more
that two principal curvatures, and Theorem 4.1 says that the maximum number of
principal curvatures of any Einstein hypersurface immersed in a space form is two.
Then arise a question: Is any two-umbilical manifold immersed in a space form an
Einstein manifold? The answer is yes and it will be proved in the next theorem.

THEOREM 8.3 (A characterization of Einstein hypersurfaces). Let Mn be
a connected Riemannian manifold and x : Mn −→ M

n+1
(c), n ≥ 3, an isometric

immersion. Then

Mn is Einstein if and only if x is two-umbilical.

Moreover, in this case Ric(X, Y ) = (c(n − 1) + 2S2
n ) < X, Y >, with S2 constant.

Proof. Suppose Mn is Einstein. From Gauss equation

Ric(X, Y ) − c(n − 1) 〈X, Y〉 = 〈AP1(A)X, Y〉;

since Mn is Einstein, then Ric(X, Y ) = λ〈X, Y〉, hence

〈AP1(A)X, Y〉 = (λ − c(n − 1)) 〈X, Y〉.

Thus, AP1(A) = (λ − c(n − 1)) I and the proof follows by using (5.1).
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Now suppose x is two-umbilical. By Gauss equation

Ric(X, Y ) = (c(n − 1) + 2S2(A)
n

) 〈X, Y〉;

therefore, Mn is an Einstein manifold. Moreover, because Mn is connected (c(n − 1) +
2S2(A)

n ) is constant, hence S2 is constant. �

REMARK 8.4. Let x : Mn −→ M
n+1

, n ≥ 2 be an isometric immersion and X, Y ∈
TM . The Gauss equation and the definition of φ2 (Definition 5.6, for k = 2) give that

Ric(X, Y ) − Ric (X, Y ) = 2S2(A)
n

〈X, Y〉 − 〈φ2X, Y〉.

From this we can see that the operator φ2 gives a measure of how much a manifold M
immersed isometrically in a space form M

n+1
(c) fails to be an Einstein hypersurface.

9. Examples and Description of two-umbilical Hypersurfaces. An example of two-
totally geodesic immersion which is not one-totally geodesic is given by

S1(r) × �n−1 ⊂ �n+1.

EXAMPLE 9.1 (Clifford’s hypersurfaces). Given n1, n2 ∈ � and r1, r2 > 0. Consider

Sn1 (r1) ={u ∈ �n1+1 : ‖u‖ = r1},
Sn2 (r2) ={u ∈ �n2+1 : ‖u‖ = r2}

and

Sn1 (r1) × Sn2 (r2) ={(u, v) ∈ �n1+n2+2 : u ∈ Sn1 (r1), v ∈ Sn2 (r2)}.

Sn1 (r1) × Sn2 (r2) is a hypersurface of Sn1+n2+1(1) ⊂ �n1+n2+2 with r2
1 + r2

2 = 1 and it is
called a Clifford’s hypersurface.

PROPOSITION 9.2. For any n ∈ �, 0 < r < 1 and fixed m ∈ {1, . . . , n − 1}, the
Clifford’s hypersurface Sn−m(r) × Sm(

√
1 − r2) −→ Sn+1(1) has its principal curvatures

given by

λ1 = · · · = λn−m =
√

1 − r2

r
,

λn−m+1 = · · · = λn = −r√
1 − r2

.

THEOREM 9.3 (Examples of two-umbilical hypersurfaces in Sn+1(1)). There exists
a countably infinite family of two-umbilical hypersurfaces in the Euclidean sphere
Sn+1(1). More precisely: for any n ≥ 4 and for every m ∈ {2, . . . , n − 2}, the Clifford’s
hypersurface

Sn−m(r) × Sm(
√

1 − r2) ↪→ Sn+1(1) is two-umbilical if and only if r =
√

n − m − 1
n − 2

.
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Furthermore, the norm of its second fundamental form A, the associated polynomial Sk

and its Ricci curvature are given by

Sk =
(

m − 1
n − m − 1

) k
2

k∑
i=0

(−1)i
(

n − m − 1
m − 1

)i (
n − m
k − i

) (
m
i

)
;

‖A‖2 = n + m(n − 4)(n − m)
(n − m − 1)(m − 1)

;

Ric(ej) = n − 2, j = 1, 2, . . . , n.

Proof. By Proposition 5.9(2) we obtain

‖φ2‖2 =
(n − 2

n

)
S2(Aη)2 − S1(Aη) S3(Aη) − 2S4(Aη);

a short calculation shows that

‖φ2‖2 = −m(m − n)
2nr4(r2 − 1)2

((n − 2)r2 − (n − m − 1)).

The radius r is obtained as a consequence of Remark 5.7 and we then conclude the
proof. �

REMARK 9.4. A straightforward computation shows that the Clifford’s
hypersurface with the above radius r has

S1 =2m − n
m − 1

√
m − 1

n − m − 1
,

S2 =−n
2!

,

S3 =−(n − 2)(2m − n)
3!(m − 1)

√
m − 1

n − m − 1
;

we then show that the hypersurfaces in Theorem 9.3 satisfy the condition H3 = H1H2

given in Theorem 7.1.

REMARK 9.5. If in Theorem 9.3 we make n = 2η and m = η + j, we obtain a family
of two-umbilical embedding:

Sη−j(r) × Sη+j(
√

1 − r2) ↪→ S2η+1(1),

where r =
√

η−j−1
2η−2 , η ≥ 2 and j ∈ {0, 1, 2, . . . , η − 2}.

In this case, S1(A) = 2j
η+j−1

√
η+j−1
η−j−1 .

It is worth noting that S1(A) = 0 ⇐⇒ j = 0 ⇐⇒ r =
√

1
2 . Therefore, for every

η ∈ [2,∞) ∩ � we have a minimal two-umbilical embedding

Sη

(
1√
2

)
× Sη

(
1√
2

)
−→ S2η+1(1).
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Thus, we have obtained a countably infinite family of minimal two-umbilical
embeddings in the Euclidean sphere. Furthermore, for each j = 1, 2, . . . , η

S2j−1(A) = 0;

S2j(A) = (−1)j
(

η

j

)
.

THEOREM 9.6 (Description of the two-umbilical hypersurfaces in a space form).

Let Mn be a two-umbilical hypersurface in M
n+1

(c), n > 2. Then
(a) M is two-totally geodesic or
(b) M is one-umbilical or
(c) if c > 0, then M is locally a standard product embedding of

Sn−m(r) × Sm(
√

1 − r2) ↪→ Sn+1(1),

where r =
√

n−m−1
n−2 . In particular, when the embedding is minimal we have

Sk
(

1√
2

)
× Sk

(
1√
2

)
↪→ S2k+1(1),

where n = 2k;
(d) If c < 0, then M is geodesic hyperspheres, horospheres, totally geodesic

hyperplanes and their equidistant hypersurfaces, tubes around totally geodesic
subspaces of dimension at least one (in another words, it is locally a standard
product embedding given by Sk × �n−k);

(e) if c = 0, then M is locally hyperspheres, hyperplanes or a standard product
embedding given by Sk × �n−k.

Proof. Theorem 8.1 on the determination of principal curvatures of two-umbilical
hypersurfaces says that to know any two-umbilical hypersurface we need only to know
S1(A) or S2(A). There are two cases to consider:

S1(A) S2(A) = 0 or S1(A) S2(A) �= 0,

where A is the shape operator of x. We proceed with the study of each case.
(a) Suppose S1(A) S2(A) = 0, with S2 = 0 at one point. Since S2 is constant

(Theorem 8.3) then S2 ≡ 0. By Proposition 5.4 we have that M is two-totally
geodesic. Now, we will show that S1 ≡ 0; in fact if Theorem 8.1(b) is valid then
we get S1 ≡ 0; if Theorem 8.1(a) is valid then we obtain S2 = −n(r−1)[n−(r+1)]

2(n−2r)2 S2
1,

which implies either S1 ≡ 0 or r = 1. In the first case we obtain one-totally
geodesic hypersurfaces, in the other case we obtain two-totally geodesic
hypersurfaces (only one mean curvature is non-null).

(b) Suppose S1(A)S2(A) �= 0. Trivially any one-umbilical hypersurface (so it is two-
umbilical and not minimal) satisfies this condition. Thus (b) is satisfied.

(c) Suppose S1(A)S2(A) �= 0 and M is not one-umbilical. Theorem 8.1(b) cannot
hold, because M would be minimal which is a contradiction. Since Theorem
8.1(a) is valid we can see that S2 = −n(r−1)[n−(r+1)]

2(n−2r)2 S2
1 and by Theorem 8.3 we get

that S1(A) is constant. In this case the immersion is isoparametric. By using
the Gauss–Codazzi equations, Cartan [5] proved that M is locally a standard
product embedding of two spheres with appropriate radii. By Theorem 9.3 we
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get the radii. If S2 �= 0 but S1 = 0, we can see that only Theorem 8.1(b) can
hold, and so S2(A) < 0. If you suppose that S1 = 0 and Theorem 8.1(a) is valid,
then all its principal curvatures are equal to zero, and it follows that S2(A) =
0, a contradiction. Hence, our hypersurface is minimal with two principal
curvatures of multiplicity greater than two; the proof follows as a consequence
of the corollary given in [9, Page 153] and Theorem 9.3.

(d) Using the Gauss–Codazzi equations, Cartan [5] proved that an isoparametric
hypersurface x : Mn → Mn+1(−1) is either one-umbilical or has exactly two
constant principal curvatures (see also [6]). This leads to the above classification.

As a consequence, all two-umbilical hypersurfaces in hyperbolic spaces are
open parts of homogeneous hypersurfaces.

(e) By the same argument as given in (d). (See another proof in [10]). �
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