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Abstract 

The numerous complexities underlying large tables of thermodynamic quan­
tities act as a deterrent to a careful evaluation of their reliability. As a 
consequence, equations of state are often used as black boxes. To clarify 
this situation, some of the more critical issues of equation of state physics 
are discussed from the point of view of the user. They are illustrated by 
a comparison of four equations of state for hydrogen. The flaws and dis­
agreements thus brought into light are explained and evaluated with simple 
physical arguments. 

Les tables d'equations d'etat utilisees en astrophysique decoulent de modeles 
d'une complexity telle qu'il est souvent difficile d'en evaluer la fiabilite. 
II en resulte une situation ou les equations d'etat sont souvent utilisees 
sans une analyse critique de leur contenu physique ni de leur precision. 
Dans le but de remedier a cette situation, une discussion des principaux 
elements physiques des equations d'etat est presentee dans I'optique de 
l'utilisateur. Quatre equations d'etat de l'hydrogene developpees pour etre 
appliquees a des problemes d'astrophysique stellaire sont comparees de fagon 
critique. Cette comparaison illustre l ' importance de certains elements cles 
des equations d'etat et la nature des problemes qui subsistent. Les defauts 
et les differences observes entre ces quatre equations d'etat sont elucides en 
termes de physique de base. 
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14.1 Introduct ion 

The richness of stellar phenomena exposed by modern observational tech­
niques calls for a quantitative understanding of more subtle, "second order" 
effects in stellar structure. Examples of phenomena requiring accurate mod­
eling of the underlying physics include the solar oscillation spectrum, the 
solar neutrino problem, stellar pulsations, and the origin of the abundance 
of elements in photospheres of white dwarfs. 

The equation of state (EOS) t constitutes one of the properties of matter , 
along with transport coefficients, which enter the equations of stellar struc­
ture (Clayton 1983, p. 436ff). The pressure P(p,T) and the entropy S(p,T) 
appear explicitly in these equations and dictate the mechanical and thermal 
equilibria of the star, respectively. Beyond the fact that an equation of state 
is necessary to compute a stellar model, the quantitative understanding of 
"subtle" stellar phenomena does depend, sometimes sensitively, on the as­
sumed EOS (see for example, the review by Dappen 1994). The importance 
of this point is not always realized. 

The astrophysicist interested in EOS as an input to solve a particular 
problem is faced with a number of difficult choices. Most applications re­
quire such complex EOS that it is not practical to compute one locally. 
This raises a number of questions which are often overlooked. Which of 
the available EOS is most appropriate for a particular problem? Does it 
include the proper physics? Which one is the most reliable? How does it 
compare with other EOS? Because EOS calculations usually involve a large 
number of approximations and assumptions as well as some level of internal 
inconsistency, it is very difficult to answer these questions from published 
literature alone. In this context, a direct comparison of several EOS ta­
bles and of the underlying assumptions becomes a powerful tool to reveal 
flaws and poor approximations and to develop a healthy appreciation of the 
uncertainties which persist in some physical regimes. 

The complexity of an EOS calculation increases considerably when non-
ideal effects are introduced. In fact, such calculations can only be performed 
numerically, and the results usually presented in tabular form. Historically, 
the Lawrence Livermore National Laboratory and the Los Alamos Scien­
tific Laboratory have invested much effort in the development of tabular 
equations of state which are frequently used in astrophysical applications. 
Significant progress in the computation of realistic equations of state under 

t Strictly speaking, the equation of state is the relation between pressure, temperature and 
density, P(p,T). In the context of this work, we loosely apply the term to the ensemble 
of equilibrium thermodynamic properties of matter, such as the entropy, internal energy, 
specific heat, etc. 
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stellar conditions was made by Graboske, Harwood and Rogers (1969), Ker-
ley (1972), Fontaine, Graboske and Van Horn (1977), Lamb (1974), Lamb 
and Van Horn (1975), Magni and Mazzitelli (1979) and more recently, by 
Rogers (1981), Hummer, Mihalas and Dappen (Hummer and Mihalas 1988; 
Mihalas, Dappen and Hummer 1988; Dappen et al. 1988) and under condi­
tions typical of the interior of giant planets by Stevenson (1975), Stevenson 
and Salpeter (1977), Hubbard and DeWitt (1985, and references therein), 
and Marley and Hubbard (1988). 

The past decade has seen tremendous progress in our understanding of 
dense matter physics, on both the experimental and theoretical fronts. 
Equations of state for dense plasmas are now becoming well understood, 
thanks in part to progress in computer technology, which has permitted sim­
ulations of ever increasing complexity. These studies have demonstrated the 
great utility of a variety of approximations for the computation of plasma 
properties. In particular, when a sample of any substance is sufficiently 
compressed, atoms (or molecules) are so closely packed that the exclusion 
principle promotes bound electrons into conducting states (for hydrogen, 
this occurs near lg/cm3) . This "pressure ionization" represents a thorny 
problem in the calculation of an equation of state. It is often avoided by sim­
ply interpolating between atomic and fully ionized limits. Recent advances 
in statistical physics offer the opportunity for significant improvements in 
our understanding of this poorly understood phenomenon. 

Although great progress is being made in the laboratory, most astrophys-
ically interesting regimes are still weakly constrained by experimental data. 
Thus the validity of an EOS can only be established in an indirect fash­
ion. It should, of course, reproduce known asymptotic limits. Computer 
simulations also provide useful but limited tests for theoretical equations of 
state. In addition, the EOS is subject to the fundamental thermodynamic 
constraints of mechanical and thermal stability, 

>0, 
dv T < °' and df v 

respectively, and of thermodynamic consistency, 

8P_ 
dT 

- 21 
v~ dV T 

where P and S represent the total pressure and entropy of a system occu­
pying a volume V at temperature T. 

Equations of state which satisfies these constraints is not necessarily accu­
rate. In regimes dominated by non-ideal effects, and where neither experi­
ments nor computer simulations are available, it is very difficult to establish 
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their validity. Nevertheless, the magnitude of uncertainties and their rel­
ative merit can be estimated by comparing independent EOS calculations 
and understanding the effects of the respective underlying assumptions. 

In this review, we have chosen four hydrogen EOS for a detailed com­
parison of their respective thermodynamic variables. Hydrogen has a rich 
phase diagram and illustrates most of the situations encountered under as-
trophysical conditions. It is the most abundant element in the universe 
and constitutes 75% of the mass of the majority of stars. It is therefore 
representative of the bulk of stellar matter. The choice of a pure composi­
tion, as opposed to a cosmic mixture of hydrogen and helium, for example, 
greatly simplifies the discussion of the underlying physics. One of these 
EOS (Saumon and Chabrier 1991, 1992) is not fully published and a few 
remarks relevant to this comparison are given below. But first, we briefly 
review the phase diagram of hydrogen in an astrophysical context as well 
as the most frequently used method for computing EOS, the free energy 
minimization technique, on which all four EOS discussed here are based. 

14.2 The phase diagram of hydrogen 

Phase diagrams play an essential role in illuminating the EOS physics rel­
evant to a particular problem. The simplified phase diagram for hydro­
gen of Fig. 1 helps to make a few basic points. In the low-density, low-
temperature region, hydrogen is essentially neutral and forms atoms and 
molecules. Molecules dominate at low temperatures (logT < 3.5) t and 
they dissociate into atoms as the temperature is raised. At still higher 
temperatures, atoms ionize to form a low-density plasma of protons and 
electrons. The dashed curve delimiting these three regions indicate a de­
gree of dissociation (or ionization) of 50% and is based on detailed chemical 
equilibrium calculations for a non-ideal mixture of H2, H, H + and e. At 
densities above log/9 « —2, atoms and molecules interact strongly and form 
a non-ideal fluid. In addition, the Saha equations become inappropriate for 
log/) > —1, so that it is not possible to estimate the chemical equilibrium in 
this dense fluid with simple theories. At even higher densities, near logp = 0 
for hydrogen, the mean distance between H atoms becomes comparable to 
twice the value of the Bohr radius and the electronic wave functions of 
neighboring atoms overlap. The electrons are forced into unbound states 
and the fluid becomes a pressure ionized plasma. A calculation of pressure 
ionization by Saumon and Chabrier (1992) reveals that pressure ionization 

t Throughout this work, log T is the logarithm of the temperature in K, and logp is the 
logarithm of the mass density in { / cm 3 . 

https://doi.org/10.1017/S0252921100026427 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026427


Saumon: Hydrogen equations of state 

5 

CO 

a 
o 

\ 

(3D 
O 

- 1 0 

2 3 4 5 6 7 8 
log T (K) 

Fig. 14.1 Phase diagram for hydrogen. Heavy solid lines separate various 
physical regimes. Below the Prad = Pg a s line, the pressure of the photon 
gas exceeds that of the matter (H+ and e). Electrons are degenerate above 
the 0 = 1 line, and protons form a strongly coupled plasma above the 
T = 1 line. The thick curve labeled PPT shows the metastable region of 
the Plasma Phase Transition. The abundance of atomic hydrogen, H, is 
50% along the dashed curve which indicates regimes of partial dissociation 
and ionization. The dotted curves are interior models for a) Jupiter, b) 
0.3 M0 main sequence star, c) the Sun, d) the outer hydrogen layer of a 
Teff = 12 500 K DA white dwarf and e) a 15 MQ main sequence star. 

of hydrogen may not be a gradual process at all temperatures but could 
occur discontinuously through a first order phase transition, the so-called 
plasma phase transition ( P P T ) . The metastable region of this transition is 
shown by the curved labeled " P P T " and ends at a critical temperature of 
logTc = 4.185. 

Two important issues pertaining to the plasma are the degree of elec­
tron degeneracy and the strength of the Coulomb coupling between the 
charged particles. Above the solid line labeled 0 = 1, where B = eF/kT, 
the Fermi energy of the electrons cF is larger than kT, and they are there­
fore degenerate. Protons, on the other hand, remain classical over most of 
this diagram and in all astrophysical conditions (except in neutron stars). 
Above the line T = 1, non-ideal Coulomb effects play an important role as 
the electrostatic potential energy between two protons, e 2 /a , where e is the 
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charge quantum and a is the mean interparticle distance, becomes larger 
than their kinetic energy, kT. At intermediate temperatures ( logT « 5) 
and densities of log/) « 0, temperature and pressure ionization are of com­
parable importance. In this regime, thermal excitation of hydrogen atoms is 
significant and they are immersed in a moderately coupled plasma ( r « 1) 
where electrons are partially degenerate (9 « 1). This regime is particularly 
difficult to treat as the internal levels of the atoms are strongly perturbed 
by the surrounding plasma. For most elements, this is, along with pressure 
ionization, the regime where equations of state are most unreliable. 

At low densities and high temperatures, radiation pressure Prad becomes 
larger than the gas pressure, -PKas. Finally, the upper left part of Fig. 1 
represents conditions which are not realized in astrophysical contexts, where 
hydrogen is a high-T molecular solid or possibly forms a Coulomb lattice. 

Interior models of various hydrogen-rich objects are shown by dotted 
curves in the density-temperature plane of Fig. 1. The gaseous envelope 
of Jupiter is shown by the curve labeled 'a . ' The envelope is dominated by 
molecular hydrogen and it goes through the region of pressure ionization. 
If the P P T calculated by Saumon and Chabrier (1992) occurs in nature, 
it should also be found in the envelope of Jupiter. Just below the P P T , 
the dense molecular fluid becomes strongly non-ideal due to the strongly 
repulsive intermolecular forces. 

Curves 'b ' , 'c ' , and 'e ' represent main sequence stars with masses of 0 3 , 
1 and 15 M©, respectively, where M© is the mass of the Sun. The 15 M© 
star has the simplest EOS physics. It is fully ionized throughout its interior 
and the plasma is very weakly coupled (T << 1). Electron degeneracy is 
also weak (9 << 1). The contribution of radiation pressure is significant, 
however and the ratio Prad/^gas is roughly constant in the interior. The 
solar model (c) is both cooler and denser. Accurate modeling requires at­
tention to relatively weak non-ideal effects ( r « 0.1) and partial electron 
degeneracy near the center. Recombination of the plasma into H atoms 
affects the structure near the surface. Low-mass stars, such as the 0.3 M© 
model shown, probe more complex areas of the phase diagram. Electrons 
are partially degenerate throughout most of the star and the electrostatic 
interactions in the plasma become significant. The model crosses the diffi­
cult regime where T and 9 are of order unity. In the outer part of the model, 
recombination forms atoms in a non-ideal regime and finally molecules form 
at the very surface. 

The curve labeled 'd ' is a 12 500 K DA white dwarf envelope, stratified into 
hydrogen-rich and helium-rich layers surrounding a carbon core (H, He and 
C, respectively). Only the outermost layer, consisting of pure hydrogen, is 
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shown here. In this layer, hydrogen forms a weakly coupled, non-degenerate 
plasma. Atomic hydrogen is found at the very surface of the star. The 
relatively low densities and high temperatures characteristic of this layer 
indicate that non-ideal effects in the EOS are of moderate importance. 

14.3 The Free Energy Minimization method 

Nearly all EOS involving chemical equilibrium, i.e. molecular dissociation 
or ionization of atoms and ions, are based on the free energy minimization 
technique (FMIN). One major exception is the EOS of Rogers (1981) which 
is based on an activity expansion. It is briefly discussed in § 4. 

The FMIN method is well described in Graboske, Harwood and Rogers 
(1969 and references therein), Fontaine, Graboske and Van Horn (1977) and 
Hummer and Mihalas (1988). The approach is particularly simple. Given 
a mathematical model for the Helmholtz free energy of the system as a 
function of total volume, temperature and particle numbers, F(V,T,{Ni}), 
the chemical equilibrium of the mixture is obtained by minimizing of F at 
fixed V and T, subject to the stoichiometric constraints imposed by the 
chemical reactions taking place in the system. This fixes the {iV,}, and the 
pressure and entropy can then be calculated by differentiation of the free 
energy with respect to V and T, respectively, at fixed {N{}. These so-called 
first derivatives of the free energy are given by: 

dv and S = - — 
T,{TV,} ol V,{N;} 

The specific heats, compressibility, thermal expansion coefficients, adia-
batic gradients are obtained by further differentiating P and S with respect 
to V and T and are second derivatives of the free energy. Differentiation 
amplifies the features and defects in F and since the second derivatives are 
usually obtained numerically, they are also prone to numerical noise. 

The FMIN method becomes truly useful when the grand partition func­
tion of the system Z is written as the product of kinetic, internal and 
configuration contributions: 

Z — ^kin^int^conf-

Fontaine, Graboske and Van Horn (1977) give an excellent discussion of 
the four approximations leading to this factorizability. In practice, small 
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deviations from exact factorizability are usually accommodated by correc­
tions based on expansions in terms of a small parameter. However, when 
the particles of the system interact strongly, the spectrum of bound states 
is affected and Zjnt and Zcon{ are not factorizable anymore. Similarly, the 
bound state configuration determines the interaction potentials and modi­
fies Zconf. The total partition function is nevertheless factorized, with some 
modification of the spectrum of bound states entering the internal partition 
function Zi„t (IPF) based on the interaction potentials. A great variety 
of treatments of this problem have been used, some very crude and with 
very low internal consistency, some quite sophisticated. However, there is 
no formally exact treatment and this is the source of many disagreements 
between EOS computed with this method. 

Despite this shortcoming, the FMIN technique has several powerful ad­
vantages. In principle, it ensures thermodynamic consistency of the result­
ing equation of state. All the physics and approximations appear at the 
outset in the free energy model and are therefore quite visible. No ad­
ditional approximations are required. Contrary to expansion techniques, 
contributions with strongly non-linear dependence on density or tempera­
ture can be included with no additional effort. Under the assumption of 
factorizability, the free energy model becomes a sum of terms, each involv­
ing a different physical contribution. This is extremely convenient, as each 
term becomes a subroutine in the EOS code. Terms can be added, removed 
and modified with great ease. Hummer and Mihalas (1988) point out that 
this method will work for any free energy model. However, because the 
validity of the resulting EOS is hard to test, unless it violates fundamental 
constraints or known limits, great care must be taken in constructing the 
free energy model to ensure internal consistency. 

14.4 Choice of equat ions of s ta te 

In the spirit of clarity and conciseness, the comparison is limited to four 
hydrogen equations of state: the table of Fontaine, Graboske and Van Horn 
(1977), the pure H case of the H/He EOS of Magni and Mazzitelli (1979), 
f a pure hydrogen calculation based on the model developed by Mihalas, 
Hummer and Dappen (Dappen et al. 1988 and references therein), and the 
EOS of Saumon and Chabrier (1991, 1992). Hereafter, these four equations 
of state will be referred to as FGVH, MM, MHD and SC, respectively. 

These EOS span over 15 years of effort in developing reliable EOS for 

| A study of the MM EOS table which we obtained in 1987 shows that it is much improved 
over the version published in Magni and Mazzitelli (1979). 
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Fig. 14.2 Density-temperature domain covered by the four EOS considered. 
MHD.dashed line (note the extension above \ogp = -2); FGVH, dotted 
line; SC, solid line; MM, dot-dashed line. The MM EOS extends beyond 
the limits of the figure. Pairs of triangles show the isotherms selected for 
the EOS comparison. 

stellar envelopes and interiors and they are representative of the better EOS 
currently in use by the community. Except for the SC EOS, they have been 
used extensively in a variety of astrophysical contexts. All four equations 
of state are based on the FMIN technique. While they have a number of 
features in common, they differ greatly in detail, in the level of internal 
consistency of the model and in the accuracy of the various contributions 
to the free energy. 

The (p, T) domain covered by each EOS is shown in Fig. 2. Two contigu­
ous domains are shown for the MHD EOS. While the free energy model was 
developed for logp < - 2 , the calculation was pushed to higher densities, 
as shown by the figures in Mihalas, Dappen and Hummer (1988) and in 
Dappen et al. (1988). This "extension" of the MHD EOS above logp = - 2 
is shown in Fig. 2 and is discussed further in § 6. 

Additional comparisons between the SC EOS and other equations of state 
used in astrophysical problems have also been performed. The H/He EOS 
of Marley and Hubbard (1988) was developed for modeling the interior of 
giant planets. It shares many similarities with the model of SC and under 

https://doi.org/10.1017/S0252921100026427 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026427


Saumon: Hydrogen equations of state 315 

the low-temperature conditions relevant to giant planets (logT < 4), the 
two EOS are nearly identical. Differences arise in a narrow density domain 
centered on pressure ionization, where Marley and Hubbard simply inter­
polated between the dense molecular fluid and the fully pressure-ionized 
plasma. For logT > 4, their approximate treatment of temperature ioniza­
tion leads to substantial disagreement. A more detailed discussion is given 
in Chabrier et al. (1992). 

The hydrogen EOS developed at the Los Alamos National Laboratory, 
known as the SESAME 5251 EOS, was developed by Kerley (1972). A 
comparison of pressures P and internal energies U (second derivatives are 
not directly available) from an EOS table obtained in 1984 with the SC 
EOS shows a relatively good agreement for logT > 3.7. This is somewhat 
surprising if we consider that the SESAME 5251 hydrogen EOS is actually a 
deuterium EOS scaled in density. Differences in pressure reach a maximum 
of 25% in the regime of pressure ionization. In the regime of temperature 
ionization differences are as high as 40%. At the lower temperatures where 
molecules dominate the EOS, systematic differences of « 6% are found 
in U (Saumon and Van Horn 1987). This arises from the density scaling 
procedure which is not appropriate in the molecular phase. The energy 
levels of the molecule depends on the moment of inertia and the reduced 
mass of D2 which are twice as large as for H2. 

Rogers (1981) has developed an EOS with an approach entirely different 
from FMIN, using an activity expansion which considers only protons and 
electrons interacting with the Coulomb potential. Bound states (atoms) 
arise naturally in this approach and are not treated as a separate chemi­
cal species, as in the FMIN method. This approach is very rigorous and 
fundamental (Rogers 1994). Over the (/>,T) domain where this complex 
method can be presently solved, it leads to a most accurate EOS. While we 
have not yet compared it with the SC EOS, it has been compared with the 
MHD EOS under the conditions found in the solar envelope (see Dappen 
1994 and Rogers 1994). The two equations of state are in extremely good 
agreement, with differences of less than 0.1% in the second derivatives of 
the free energy. While such differences are important when comparing the 
computed solar oscillation spectrum to the wealth of extremely precise data, 
they are completely negligible in all other astrophysical situations. It is very 
satisfying that two equations of state based on entirely different approaches 
should agree so well. This indicates that our understanding of the EOS 
of normal stellar material is now excellent, at least over some parts of the 
phase diagram. 
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14.5 About the Saumon-Chabrier EOS 

The free energy model underlying the SC EOS is described in details in 
Saumon and Chabrier (1991, 1992) but the EOS itself is not yet available 
(Saumon, Chabrier and Van Horn 1993). The model is summarized in the 
review by Chabrier (1994) and a few additional remarks relevant to the 
present comparison follow. 

Pressure ionization received particular attention in the SC EOS calcula­
tion. It was found that the adopted free energy model (and a number of 
variants) becomes thermodynamically unstable and predicts the existence 
of a first order phase transition between a mostly molecular phase and a 
dense, partially ionized phase. This plasma phase transition (PPT) is shown 
in Fig. 1. It terminates at high temperature at a critical point located at 
Tc = 15300K, Pc = 6.14 x 10ndyn/cm2, and pc = 0.35g/cm3. Pressure 
ionization is a most difficult problem in EOS calculations and much remains 
to be said on this challenging topic. There is currently no experimental re­
sult which bears on the existence of the PPT. 

To allow for the possibility that the PPT is not realized in nature, there 
is an "interpolated" version of the SC EOS where the discontinuities asso­
ciated with the PPT have been smoothed by interpolation. It is otherwise 
identical to the SC EOS with PPT. This interpolated version used for the 
comparisons in § 6. The interpolated region has an irregular shape but it ex­
tends roughly over 3.50 < logT < 4.78 and -0 .5 < logp < 0.5. Ideally, the 
interpolation of P and the entropy S (or P and U) should be constrained 
by the requirement of thermodynamic consistency, which reflects that P 
and S are not independent quantities but derive from the same thermody­
namic potential, in this case the Helmholtz free energy. Fontaine, Graboske 
and Van Horn (1977) applied this constraint when interpolating across the 
regime of pressure ionization. In the case of the SC EOS, however, it was 
found that the requirements of 1) continuity of P , S and their derivatives 
at the boundaries of the interpolation region and of 2) thermodynamic con­
sistency overconstrain the interpolation. This difficulty can be avoided by 
widening the density range of the interpolation but only to an unaccept­
able degree where parts of the EOS table believed to be reliable (based on 
experimental data and an assessment of the model) would be replaced by 
less accurate, interpolated values. This suggests that while there may not 
be a PPT in hydrogen, pressure ionization probably occurs rather suddenly. 
Reliable EOS values were preserved at the cost of losing thermodynamic 
consistency and P and S were interpolated separately along isotherms over 
as narrow a density range as possible. 
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The free energy model underlying the SC EOS can be improved upon and 
ameliorations are being considered. The most important of which involves 
the effect of charged particles on the bound states of hydrogen atoms. Inter­
actions with neighboring particles, charged and neutral, affect the number of 
bound states, or the internal partition function, of atoms and molecules. A 
proper treatment of this effect is essential for an accurate description of par­
tial dissociation and ionization, particularly at larger densities (logp > — 3). 
While the activity expansion of Rogers (1981) accounts for this naturally 
and rigorously, the FMIN method is only weakly constrained in this respect. 

In its current form, the free energy model developed by Saumon and 
Chabrier (1992) accounts only for the effect of neutral particles on bound 
states (by an excluded volume effect). In reality, neighboring charged parti­
cles also affect the bound states by inelastic collisions with bound electrons 
and also through the fluctuation micro-electric field induced by their ther­
mal motion. This microfield has the effect of a time dependent perturbation 
on the Coulomb potential of the nucleus and can induce Stark ionization of 
the upper levels of an atom. Collisions and microfield effects on hydrogenic 
atoms are discussed in great details in Hummer and Mihalas (1988) who 
conclude that for logp < —1.5, the microfield is the dominant mechanism. 
Being caused by random thermal motions, the fluctuating microfield is de­
scribed by a statistical distribution. Hummer and Mihalas have adopted 
the T = 0 Holtzmark distribution. We have found that this distribution, 
which does not account for the correlations which arise between charged 
particles at T > 0, has much too strong an effect on the IPF and leads to 
spurious results for T « 1. Generating microfield distributions for finite 
T is computationally involved and a suitable, parametrized form was not 
available when the SC EOS was computed. As a consequence, the effect of 
the microfield is ignored altogether until an adequate distribution function 
becomes available. The net effect of this omission is that as the gas becomes 
mostly ionized by temperature, the IPF is less affected by the neighboring 
particles than when it was surrounded by neutral particles. This creates a 
long tail of residual atoms in the partial ionization zone. We will return to 
this point in § 6. 

Two thermodynamic surfaces from the SC EOS are show in Figs. 3 and 4. 
Only second derivatives of the free energy are shown because they display 
the various physical regimes more clearly than first derivatives such as P 
and S. They also amplify defects in F they are very useful to reveal flaws 
in an EOS as well as its degree of smoothness. Note that the MHD free 
energy model is sufficiently simple to allow for analytic differentiation of F 
and their EOS is consequently very smooth. As emphasized in the reviews 
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Fig. 14.3 Inverse compressibility, \p = dlogP/dlogpfo, for the (p,T) 
range covered by the Saumon-Chabrier EOS (interpolated version). The 
(p, T) grid shown is that of the original tabular data and no smoothing has 
been applied. 

by Fontaine (1994) and Dappen (1994), smoothness of the EOS can be more 

desirable than accuracy in the context of non-adiabatic stellar pulsations. 

Figure 3 shows Xp — d l o g P / d l o g / ) | y , which measures the stillness of 
the EOS. For an ideal gas, Xp — 1> as can be seen over most of the low-
density part of the figure. The photon gas pressure depends only on T and 
XP = 0 in that limit. The degenerate electron gas is less compressible than 
the Maxwell-Boltzmann ideal gas and XP r i s e s *° a plateau at 5 /3 . The 
two shallow "valleys" seen on either side of log T — 4 are due to molecular 
dissociation and ionization. They clearly separate the regions dominated 
by H2, H and H + , respectively. The very steep rise seen at low-T and high-
p is caused by the repulsive core of the H2-H2 interaction potential. Like 
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Fig. 14.4 Adiabatic gradient, V ^ = d\ogT/dlogP\s for the (p,T) range 
covered by the Saumon-Chabrier EOS (interpolated version). The (p, T) 
grid shown is that of the original tabular data and no smoothing has been 
applied. 

all liquids, dense fluid H2 is relatively incompressible, a property reflected 
by the high value of Xp- There are a few spurious features caused by the 
interpolation procedure at intermediate T and high p. As indicated in Fig. 2, 
the EOS does not extend to the low-T and high-p limit where Xp = 0. Figure 
3 is best interpreted in reference to the phase diagram shown in Fig. 1. 

Most of the physical regimes discussed above can be identified in Fig. 4 
which shows the adiabatic temperature gradient, V^d = dlogT/dlogP\s. 
When expressed in terms of p and T, V ^ is a function of the four second 
derivatives of F: dP/dp\T, dP/dT\p, dS/dp\x and dS/dT\p. It therefore 
combines all the defects and noise found in the second derivatives. This is 
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the origin of the several spikes seen in the interpolation region. Other peaks 
and oscillations found along the high-/> border of the EOS are caused by 
edge effects in the table. 

14.6 T h e EOS comparison 

Even by limiting the comparison to four EOS, it is not possible to do justice 
to the great efforts which went in their development or to review the merits 
of each one of them. The discussion will be limited to the areas were the 
largest differences arise. 

The introduction of spurious errors was kept to a minimum by avoiding 
numerical interpolation in the tables as much as possible. For that pur­
pose, six isotherms common to all four EOS were selected: logT = 3.70, 
4.10, 4.50, 5.30, 6.10, and 6.90 (Fig. 2). The last three isotherms are not 
tabulated by MM and the necessary T-interpolation was performed with 
a program provided with the table. The figures show the density points 
of the original tables connected by a straight line. The EOS were not 
"smoothed", however, it has been remarked before that the FGVH EOS 
has a number of "bad points" where the second derivatives of the free en­
ergy show anomalous behavior. Since these points are isolated, they must 
not arise from deficiencies in the underlying thermodynamic description but 
represent some localized numerical quirk. A few of these points are found 
in the six isotherms under consideration and the discordant values were 
corrected by a simple interpolation in density. These points are located at 
( logT, logp) : (4.10, -5 .667) , (4.50, -3 .667) , (5.30, -2 .333) for Vad. 

The quantities compared are l o g P , logJ7 and V^d for all six isotherms. 
Exceptions are the MHD EOS which is not shown for logT = 6.10 and 
6.90, the table available being limited to logT < 6, and the MM EOS 
which gives only l o g P , Vad and C p , the specific heat. This last quantity 
is not used in the present comparison. Note that all quantities shown here 
are taken directly from the EOS tables and are not constructed from other 
quantities by using thermodynamic identities, for example. This avoids 
introducing potential errors due to thermodynamic inconsistency in the EOS 
or numerical inaccuracies in the procedure. In all four cases, the zero of 
energy is chosen as the ground state of the H2 molecule and the contribution 
of the photon gas is included. 

The four EOS are compared in Figures 5-9 where it is readily apparent 
that the differences can be substantial. As a point of reference, the SC EOS 
indicates that P and U are within 1% of their ideal gas value for log/9 < —2. 
It is easy to verify that the non-ideal terms are very small at this density 
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Fig. 14.5 Comparison of pressure isotherms from the four equations of 
state. The isotherms are (from top to bottom): logT = 6.90, 6.10, 5.30, 
4.50, 4.10 and 3.70. 

by comparing the volume occupied by atoms (or molecules) to the total 
volume. Surprisingly, significant differences are found even for densities 
below logp = - 2 . 

14-6.1 The pressure 

Figure 5 shows the pressure from the four EOS along the six isotherms. 
At lower and at higher densities than shown in this figure, the agreement 
is satisfactory. The two hottest isotherms correspond to a fully ionized gas 
of H + and e interacting weakly in the Debye-Hiickel limit. The photon 
pressure dominates gas pressure when P becomes independent of p along 
the log T = 6.90 curve. The agreement is excellent in this relatively simple 
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regime but severe divergences are found at lower temperatures. Curiously, 
the MM EOS systematically overestimates P at low densities, where the gas 
is ideal for all practical purposes. This is most likely due to an overestimate 
of the degree of dissociation and perhaps ionization which arises from their 
treatment of the IPF of H and of H2. Their IPF for H2 has been corrected 
since we obtained the MM table in 1987 (Mazzitelli 1993). 

For the three lowest isotherms, the MHD and FGVH EOS predict much 
higher pressures than either the SC or the MM EOS at moderate densities. 
For temperatures up to logT = 3.6, the SC EOS reproduces experimental 
results and can be considered as a reference for this comparison. The high 
pressures of FGVH and MHD are caused by the hard sphere potential used 
to model the interactions between neutral particles. This potential qualita­
tively models the strongly repulsive cores of the actual potentials, but being 
infinitely repulsive, it fails to describe the softness of the repulsion. This 
feature of neutral-neutral interactions becomes important at high densities. 
The hard sphere potential is too repulsive at high densities and leads to 
overestimated pressures even in a regime where the gas should be nearly 
ideal. The authors of the MHD EOS point out that their EOS should be 
used for logp < — 2, a safe limit at low-T in view of the above observation. 

In the regime of pressure ionization (—0.5 < logp < 0.5), the SC, MM 
and FGVH EOS can differ by up to a factor of 2. In all three cases, thermo­
dynamic quantities were smoothly interpolated between a low-density and 
a high-density regime where the authors felt that their respective EOS were 
reliable. 

H.6.2 The internal energy 

Most of the features discussed above can also be seen in the internal energy 
U, shown in Fig. 6. Again, we see that for logT < 4.50 and logp > —2, 
the hard sphere model used by FGVH and MHD leads to an overestimate 
of U. The log/) = —2 limit recommended by MHD is a sensible choice for 
U as well as for P. 

The two intermediate isotherms illustrate the importance of a careful 
treatment of the influence of neighboring particles on the IPF. For the 
logT = 4.50 isotherm, SC lies above MHD and the reverse is true for 
logT = 5.30. At these low densities, characteristic of the ideal gas, this 
arises from differences in the degree of ionization, which is directly affected 
by the IPF of atomic hydrogen. At these temperatures, thermal excita­
tion of H becomes significant and the chemical equilibrium depends on how 
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Fig. 14.6 Comparison of internal energy isotherms. The isotherms are 
(from top to bottom): logT = 6.90, 6.10, 5.30, 4.50, 4.10 and 3.70. 

many states are allowed in the IPF sum.t This effect was not visible in the 
pressure because it is relatively insensitive to excitation energies of bound 
species. 

At log T = 4.50, the degree of ionization is sufficiently low for the finite 
"size" of atoms to be the main non-ideal contribution. This, in effect, is 
an excluded volume interaction which removes the upper levels of the IPF 
to ensure that the atoms do not "overlap." MHD adopted a fixed and 
somewhat arbitrary diameter for the H atom in its ground state (1.06 A) 
while SC use a thermodynamic criterion (Saumon and Chabrier 1991) to 
compute a temperature and density dependent value ranging from 1.1 to 

t The SC and MHD EOS do not use a cut off in the IPF sum but & gradual removal 
of bound states based on the occu pation probability formalism presented in Hummer 
and Mihalas (1988). It is nevertheless useful to think in terms of a sharp cut off in the 
present context. 
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about 1.6 A. Fewer states are retained in the IPF when the hard sphere 
diameter is larger, favoring a higher degree of ionization in the SC EOS and 
a larger U. Because the SC EOS uses more realistic interaction potentials 
between neutral particles and a thermodynamic criterion to obtain the hard 
sphere diameters of H and H2, it is more reliable in this regime than the 
MHD EOS. 

The situation is quite different along the log T = 5.30 isotherm where the 
degree of ionization is high and atoms are surrounded mostly by charged 
particles. As discussed in § 5, the motion of the ions and electrons induces a 
fluctuating micro-electric field which can cause Stark ionization of the upper 
levels of the atom, thereby removing them from the IPF. Since this effect is 
missing in the SC EOS, the IPF retains too many states and the degree of 
ionization as well as the internal energy are underestimated. According to 
Fig. 6, this effect is not very large, but the MHD EOS is nevertheless more 
accurate in this regime. 

Along the logT = 5.30 isotherm, the MHD and the SC EOS differ most 
notably for —1 < logp < 1. Under these conditions, pressure ionization 
occurs where thermal excitation of the atoms is large. We discussed this 
regime in § 2. While the MHD model is well beyond its limit of validity 
(log/9 < — 2), none of the EOS presented here can be considered reliable in 
this difficult regime. 

14-6.3 The adiabatic gradient 

As discussed above, the second derivatives of the free energy are very sensi­
tive to the choice of thermodynamic model and display its flaws prominently. 
The adiabatic temperature gradient is particularly interesting since it forms 
the basis of the Schwarzschild criterion for convective instability in stars. 
The six isotherms for the adiabatic gradient are shown on Figs. 7-9. Ex­
cept in a few well known limits, figures of Vad are particularly difficult to 
interpret physically. We will limit the analysis to listing the failures and 
problems with each EOS. 

Figure 7 shows the two lower isotherms over a wide density range. The 
overall wavy structure is caused by partial dissociation and ionization. A 
number of features are immediately apparent: 

• Even at very low densities where the gas is ideal, the agreement is not 
perfect. Differences of 10% are commonplace. 

• The FGVH EOS can be very noisy. 
• The MHD EOS shows pathological behavior for logp > —2, once again 

reinforcing their warning about not using their EOS above this limit. 
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Fig. 14.7 Comparison of adiabatic gradient isotherms showing the logT = 
3.70 and 4.10 isotherms. 

• The SC EOS is not very smooth in the regime of the fully ionized plasma 
( logp>0.5) . 

The next two isotherms are displayed on Fig. 8. Again, the wavy struc­
ture seen for l o g T = 4.50 is due to partial ionization. Hydrogen is nearly 
fully ionized everywhere along the logT = 5.30 isotherm and the drop to 
Vad = 0.25 at very low densities is due to the photon gas. We find that : 

• There are still differences in the ideal gas regime, but they are below the 
10% level. 

• The FGVH EOS appears smoother in this regime 

• Above log/) = —1.5, the MHD EOS shows pathological behavior along both 
isotherms. 
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Fig. 14.8 Comparison of adiabatic gradient isotherms showing the log T = 
4.50 and 5-30 isotherms. 

• For the logT = 4.50 isotherm, the MM EOS shows a "phase lag." This 
indicates an ionization zone which is displaced to comparatively higher 
densities. This originates in their treatment of the IPF. 

• At the high-density end of these isotherms, T > 10 and 0 < 1, conditions 
under which the Coulomb interactions are strong. In FGVH and MM, these 
are described with a Thomas-Fermi-Dirac model and both show V«d rising 
as the density is increased. On the other hand, SC use a screened one-
component plasma model (SOCP, Chabrier 1994), a much more accurate 
description of the plasma, and find that Vad decreases along the isotherm. 
The SC EOS remains rather noisy in this regime. 

Finally, Figure 9 shows the two hottest isotherms. For a pure photon gas, 
Vad = 0.25 and it approaches 0.4, the value for a non-interacting (ideal), 
classical, monoatomic gas, as the pressure of the plasma comes into play. 
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Fig. 14.9 Comparison of adiabatic gradient isotherms showing the log T = 
6.10 and 6.90 isotherms. 

Both of these limits are readily apparent on this figure. The adiabatic gra­
dient of a mixture of photons and non-interacting protons and electrons can 
be calculated analytically (Cox and Giuli 1968, § 9.17), a result accurately 
reproduced by FGVH and SC. The divergence of the MM curves from the 
analytic expression cannot be explained on physical grounds. At high den­
sities, V ^ drops below 0.4 due to relatively weak to moderate Coulomb 
interactions ( r < 1). Both the FGVH and SC EOS show a downward trend 
in Vad and agree quite well while the MM EOS displays an increase similar 
to that observed in Fig. 8. 

Because of its strong connection with convective instability, Vad plays an 
important role in models of stellar interiors and envelopes. Figures 7-9 show 
differences of the order of 10% in the ideal gas regime of partial dissociation 
and ionization, underscoring the sensitivity of Vad to the treatment of the 
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states in the IPF. When strong non-ideal effects come into play, it appears 
that the adiabatic gradient remains a rather poorly determined quantity. 

14.7 Concluding remarks 

This exercise of comparing several equations of state developed for appli­
cations to astrophysical problems (mainly stellar interiors) reveals that the 
situation is not as satisfactory as is commonly assumed. Much progress has 
been accomplished over the time span represented by these EOS: the SC and 
the MHD EOS represent considerable improvement over the older FGVH 
and MM EOS. This is due in part to new high-pressure experiments which 
probe the H2-H2 potential to smaller interparticle separations, the develop­
ment of a solid knowledge of dense plasmas through numerical simulation 
and a more acute awareness of the importance of consistency between the 
treatment of the internal partition function and the interactions between 
particles. 

It also shows that each of these EOS has flaws or limitations, most of 
which can be addressed in the near future. The most challenging areas re­
main associated with partial dissociation and ionization for hydrogen. The 
treatment of temperature ionization with the FMIN method has improved 
considerably in the last few years but we have seen that none of the EOS 
presented here is truly satisfactory in this respect. The more rigorous activ­
ity expansion technique may provide a definitive treatment of temperature 
ionization. On the other hand, pressure ionization remains by far the most 
poorly understood phenomenon and maintains a shroud of uncertainty over 
a part of the phase diagram which is important for low-mass stars, brown 
dwarfs and most critically, the jovian planets. 

The calculation of such equations of state is a complex problem. Those 
presented here each required a few man-years of effort, and still they display 
flaws and problems of various importance. This raises strong doubts about 
the validity of the much simpler and often crude equations of state used in 
many astrophysical problems. Any problem calling for an equation of state 
should first be cast in a phase diagram (Fig. 1) to determine the relevant 
physical regimes, the magnitude of non-ideal effects and whether partial 
ionization and dissociation are expected. In numerous cases, the EOS is 
sufficiently simple for semi-analytic treatments to be adequate. However, if 
non-ideal effects are expected and the accuracy of the final result is impor­
tant, there is no justification for not using the appropriate tabular equation 
of state. In conclusion, astrophysicists should be more critical of the equa­
tions of state they use. 

https://doi.org/10.1017/S0252921100026427 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026427


Saumon: Hydrogen equations of state 329 

I am very grateful to F. D'Antona, and to D. G. Hummer, who kindly 
provided the MM and the pure hydrogen MHD EOS tables, respectively. 
I thank G. Fontaine who generated Figs. 3 and 4 and provided the white 
dwarf model shown in Fig. 1, and F . J. Swenson for sending me the 0.3 M© 
main sequence star model (Fig. 1.). This research was supported in part 
by NSF grant AST-8910780 and by NASA grant HF-1051.01-93A from the 
Space Telescope Science Insti tute, which is operated by the Association of 
Universities for Research in Astronomy, Inc., under NASA contract NAS5-
26555. 

References 
Chabrier, G., these proceedings (1994) 
Chabrier, G., Saumon, D., Hubbard, W.B., and Lunine, J. Ap. J., 391, 817 (1992) 
Clayton, D. D., Principles of Stellar Evolution and Nucleosynthesis, 2nd Ed., 

(Chicago: University of Chicago Press) (1983). 
Cox, J.P., and Giuli, R.T. Principles of Stellar Structure, Vol. 1, (Gordon and 

Breach: New York) (1968) 
Dappen, W., these proceedings (1994) 
Dappen, W., Mihalas, D., Hummer, D.G., Mihalas, B.W. Ap. J., 332, 261 (1988) 
Fontaine, G. these proceedings (1994) 
Fontaine, G., Graboske, H.C., Jr., and Van Horn, H.M. Ap. J. Supp., 35, 293 

(1977) 
Graboske, H.C., Jr., Harwood, D. J., and Rogers, F. J. Phys. Rev., 186, 210 

(1969) 
Hubbard, W.B., and DeWitt, H.E. Ap. J., 290, 388 (1985) 
Hummer, D.G., and Mihalas, D. Ap. J., 331, 794 (1988) 
Kerley, G.I. Phys. Earth Planet. Inter., 6, 78 (1972) 
Lamb, D.Q. PhD Thesis, University of Rochester (1974) 
Lamb, D.Q., and Van Horn, H.M. Ap. J., 200, 306 (1975) 
Magni, G., and Mazzitelli, I. Astron. Astrophys., 72, 134 (1979) 
Marley, M.S., and Hubbard, W.B. /earns, 73, 536 (1988) 
Mazzitelli, I. private communication (1993) 
Mihalas, D., Dappen, W., and Hummer, D.G. Ap. J., 331, 815 (1988) 
Rogers, F.J., Phys. Rev., A24, 1531 (1981) 
Rogers, F.J., these proceedings (1994) 
Saumon, D., and Chabrier, G. Phys. Rev. A, 44, 5122 (1991) 
Saumon, D., and Chabrier, G. Phys. Rev. A, 46, 2084 (1992) 
Saumon, D., Chabrier, G., and Van Horn, H.M. in preparation for Ap. J. (1993) 
Saumon, D., and Van Horn, H.M. in Strongly Coupled Plasma Physics, F.J. 

Rogers and H. E. DeWitt, Eds. (Plenum: New York), p. 173 (1987) 
Stevenson, D.J. Phys. Rev. B, 12, 3999 (1975) 
Stevenson, D.J., and Salpeter, E.E. Ap. J. Suppl., 35, 229 (1977) 

https://doi.org/10.1017/S0252921100026427 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026427



