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1. Let R denote the rectangle: Jt—t { £ a, 

|x-x0| £ b (a,b > 0) in the (t,x) plane and let f(t,x) 

be a function of two real variables t and x, defined 

and continuous on R. If I is the interval |t—t | £ d 

with d « min(a,b/M), where M » max(|f(t,x)J, (t,x) € R), 

then every solution x « x(t) of the differential equa­

tion xf « f(t,x) defined on I and which satisfies the 

initial condition x(t ) « xQ, satisfies the integral 

equation 

(1.1) x(t) » xQ • <J f(s,x(s))ds, 

and conversely. In some cases, in order to prove the 

existence and uniqueness of the solutions of (1.1) on 

I, one forms the successive approximations 

rt 
(1.2) xn(t) = xQ + ^ f(s,xn--1(s))ds, n ̂  2 

and x1(t) is a continuous function on I such that 

x1(t()) « xQ and jx^t) - xQ j < b for all t e l , then 

by the choice of I the functions xn(t) can be defined 

recursively by (1*2)» If the sequence x (t), n * 1,2,.. 

converges uniformly on I then its limit is a solution 

of (1.1) on I. One knows that the condition that f is 

continuous and the equation (1.1) is uniquely solvable, 

is not sufficient to guarantee the convergence of the 

successive approximations [see 1, II, 3]. 

However, it was shown by E. R. van Kampen [4] 
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that the continuity of f together with the Nagumo-Perron 

uniqueness condition* 

(N-P) |f(t,x1) - f(t,x2)| £k\t^tor
1\xrx2\) 

(t,x1),(t,x2) € R and k i 1, 

are sufficient conditions for the uniform convergence 

of the successive approximations, but this is no longer 

true if k > 1 ([3]). In this case M.A. Krasnoselskii 

and S.G. Krein [5 3 recently showed that if the function 

f moreover satisfies a Lipschitz condition of order 

<* (0 < o( < i), i.e., 

jf(t,x1) - f(t,x2) J £ A|xx - x2j , {t,xx), (t,x2) €R 

and A a constant (independent of t), then the equation 

(1.1) is uniquely solvable if k(l - *) < 1. With an 

example they also showed that this does not hold if 

k(l -«<) 2 1, The purpose of this note is to show that 

if f is continuous and satisfies the Krasnoselskii-

Krein uniqueness condition 

|f(t,xx) - f(t,x2)| £k|t - t j " 1 ^ - x2| 

if(t,xx) - f(t,x2)| £ k\xx - x2|^ 

(t,xx),(t,x2) € R, o <<* < 1 and k(l -*) < 1, 

the successive approximations are uniformly convergent. 

We will present two proofs of this fact, which we think 

are both of interest. The method of the proof we give 

in section 2 is related to one which was used for 

similar purposes in [2]. The other proof, which is 

given in section 3, is quite different,and proves the 

uniqueness at the same time. At the end of the paper 

we give an example to show that our theorem is no lon­

ger true if k(l -*) i !• 

(K-K) 
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2. Let R, f, a, b, M and d be as in 1, As we 
have to use the fact that the Krasnoselskii-£rein con­
dition implies uniqueness we shall, for the sake of 
completeness, first present a proof of this fact. 

THEOREM (M.A. Krasnoselskii-S.G. Krein[5])s 

If f(t,x) satisfies the condition (K-K) (see see.l), 
then there exists at most one solution x « x(t) of 
(1#1) on I for which x(tQ) * x , 

PROOF: First we remark that, if xx(t) and 
Xp(t) are two solutions of (!•!) on I, then 

Indeed, as + 
Ix^t) -x 2(t)|i | j jf(s,x1(s)) - f(s,x2(s))|dsj 

we obtain 
Jx^t) -x 2 ( t ) | £2M|t - tQ|, 

and hence, by the fact that f satisfies a IApschitz 
condition of order <* , we have 

Ix^t) - x 2 ( t ) | £ A | J Ix^s) -x 2(s)|* ds| £ 

£ A(2M)* ( l + ^ r 1 ^ - ^ |1+*< A(2M)« Jt-t0 I1** 

and by repeating this, we obtain 

|Xl(t) -x^tj^A^^'-^^aM^lt-^J
1^--^111*1 

for all m. Hence we have 

(2.1) \xx(t) - x2(t)| < A^^jt-tQl
1/1-0'. 

And k(l --i) <1 implies 

lim|t-t j-k|x (t)-x2(t)| l lim A
1/1-oL|t-tof

1/l-'0-k = 

If we assume now that x^t) f x2(t) on I, then 
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there exists a t e I such that 
i t l - t o l~ k l x l ( t l ) - ^ V = «iax( | t- t0rk |X ; L(t)-x2(t) | , 

| t - t 0 | i d ) - p. 

But then by the first part of the condition (K-K) we 

obtain the following contradiction 

p £ It^-tJ-^l ( 1 |f(S,x1(s))-f(s,x2(s))|dsU IVtol'
1" 

| Ç1 k|s-t0|
k-1|s-tûr

k|x1(s)-x2(S)|dSJ 
'fco 

and the proof is finished. 

THEOREM. Let the function f(t,x) be defined on 

R and continuous there. If f satisfies the condition 

(K-K), then the successive approximations (x (t)) 

(n - 1,2,...) defined by (1.2) converge uniformly on I 

to the solution x(t) of (1.1) on I. 

PROOF: It follows from the definition (1.2) of 

the successive approximations that they satisfy the 

inequality 

(2.2) lxn(tl} ~ xn ( t2 }i ^ M l V ^ I 

for any t.,t2 in the interval I. This implies that 

the set (xn(t)) (n « 1,2,...) is a set of equicon-

tinuous functions on I. Moreover, letting t = t 

and t2 a t in (2.2) we obtain 

|xn(t)| £Mjt-t0| + |xn(t0)| ̂ b + x0 

and hence the set (xn(t)) is uniformly bounded on I. 

From Ascolifs theorem (see[l, Ch.l, seel]) it follows 

that there exists a subsequence (x ) (k « 1,2,...) 
nk 
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which is uniformly convergent to a continuous function 

x(t) on I as k ->oo , The subsequence (x Al(t)) 

which satisfies 

nk+1 ° Jt0
 nk 

is uniformly convergent on I to a function x(t) defined 

by x(t) = xQ + \ f(s,x(s))ds 

for f is uniformly continuous on R. We shall show below 

however, that under the given conditions 

llmn-Wxn+l
(t> - V * » s ° onI-

If we assume this for a moment then we have also 

l l nWv i ( t ) "Vfc)) *° 
and this implies x®s x(t) on I, that is, x(t) is a 

solution of (1*1), Because of the uniqueness, every 

subsequence of (x ) which is convergent will tend to 

the same solution x(t). This together with Ascoli's 

theorem implies that every subsequence of (x (t)) 

contains a subsequence which converges uniformly to 

x(t) and this in its turn implies that the sequence 

(x (t)) itself is uniformly convergent to x(t) on I. 

To complete our proof we have to show that 

<2-3) llmn^Jxn+l{t) - xn ( t ) ) s ° on L 

Because of the facts that Jx^tJ-x^t) j £ 2M|t-t J 

on I and f satisfies a Lipschitz condition of order 

we have , 

|x3(t)-x2(t)j <; |f |f(s,x2(s))-f(s,x1(s))|dsj 

£ A(2M)°C(l^)-1Jt-t0|
1+o'< A(2M)ût|t-t0|

1+°l 
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and by repeating 

(2.4) |xm + 1( t)-X j B( t) | i A 1 / 1 - \ 8 M f ' " " 1 | t - t 0 | 1 + " , t - - + ' , - , ° " 1 

< c | t - t 0 | 1 + - ^ 

where C * A ^ ^ m a x ^ M , ! ) . As k < (!-<*) ~1 we can find 

a positive integer N(k) such that l+*+ +<*n~ > k 

for all n ̂  N(k). Then (2,3) shows that for all 

n ̂  N(k) we have 

(2.5) |t-tQr
k|xn+1(t) -* n<^i <C|t-t0|* 

where C has the same meaning as in (2.4) and 

B « 1+ +yn~~fc> o. Hence if n 2 N we have 

(2.6) l i m w t | t - t o r k | x n + 1 ( t ) - x n ( t ) | . 0. 

In the remaining part of the proof we shall re­

strict ourselves to the case that t < t < t_ + d, as 
the reasoning is similar for the case t - d £ t £ t . 

Put yx(t) = (t-t0)
kmax((s-t0)-

k|xN+1(s) -x N(s)|, 

(2.7) y1jpl(t) . f k(s-tn)~
1y1(s)ds (J = 1,2,...). 

Then we have 

and 

(2.8) 0 * yj+l(t) * y j ( t ) (J - 1,2, ). 

(2.9) |xN+j(t) - xN+J_1(t;> 1 iyj(t) (J = 1,2...), 

(2.10) lim(t-t0)~
,ky1(t) = o. 

To prove (2.8) we remark that by definition of 

y1(t) we have y£(t) ̂  k(t-t())~
1y1(t) and hence 

y{(t) 2 y2(t) or y1(t) 2 y2(t) and this implies 

y3(t) . f k(s-t0)
_:Ly2(s)ds £ f k(s-t0)~

1y1(s)ds = ̂ (t) 
t ~ J ^ r\ 
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and induction will prove (2.8). 

For (2.9) we observe that yx(t) 2 (xN+1(t)-xN(t)|, 

and this implies that 

lxN+2
(t)-xN+l

(t)l ^ |fU,xN+1(s))-f(S,XN(s))|ds <: 
Jfc0 

f kU-toT^x^UJ-x^sJIds £ f k(s-t0)~
1y1(s)ds » y^t) 

J t0 Jto 
and again induction will prove (2.9). 

(2.10) follows from (2.5), because (2.5) implies 

(t-t0)-
k
yi(t) = max((s-t0)-

k|xN+1(s)-xN(s)|, tQ £ s £ t) 

i c(t-tQ)', p > o. 

Prom (2.8) it follows that the sequence y^(t) is 

decreasing, and hence it has a limit y(t) ̂  o, and by 

Lebesgue's theorem on dominated convergence we have 

t 
(2.ii) y(t) = ( k(s-t r1y(s)ds. 

Hence y(t) is an integral of the equation 

(2.12) y'(t) = k(t-t0)"
1y(t), tQ < t £ tQ + d. 

As y(t) ̂  y1(t) we see by (2.10) that 

(2.13) llm
t->t (t"to^ky(t) " °-

Now the only solution of (2.12) which satisfies (2.13) 

is the zero solution; hence y(t) » 0. Then (2.9) 

implies (2.3) and the proof is completed. 

3. Before giving another proof of our theorem 

we make the following preliminary remarks: 

Let C(I) be the set of all continuous functions 

on the interval I (|t—tQ| £ d). We define 

(3.1)p^(x1>x2) * maxdt-t^r^ttJ-Xgtt)!,!^^! ̂  d, 

À 2 0 , XX,X2 € C(I)), 
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and we put P =f> which is the metric of uniform con­
vergence in C(I). If À > 0 thenpx is not necessarily 
finite for every pair of functions 2 ^ ^ € C(I); 
however, we shall prove thatp^ has the following 
properties: 

(3.2) p (x1#x2) «^(x 2 >x 1) and^(x1,x3) £ft0v* 2) 
+ PA(x2,x3); 

that is,P is a metric. 

(3.3) d"">Jo(x;L,x2) £ f^Ui'^) for all x^Xg 6 C(I) 

and hence /°x(x
1>x2) s 0 if xx(t) « x2(t) for all t e l , 

( 3 . 4 ) l ini m . p ( x v , , x m ) « 0 

Implies there ex is t s an x € C(I) such that 

l i m ~ v p ( x ^ > x ) • 0* n—>ooi>: n ' ' 

We need only to prove (3*4) as (3.3) and (3.2) 
are evident. From 

n,m—>oo |x n* m' 
it follows that there exists a subsequence, which we 
denote by yn, such that p x (yn+l'

yn^ < 2~n« Jt is 

easy to see that the sequence ynis uniformly convergent 
on I, and let its limit be x(t). Then as 

x(t) - yn(t) - 2_Kin (yk+1 - yk) 
we obtain that œ 

f x (x ,y n ) i I K m n f x ( y k + 1 , y k ) * 21 n 

and hence l i n ^ ^ p (x,yn) = 0. 

By (3.2) we have 

llmn->« P*(X'V * l l r an->^^x ( x^n) + P^Vxn» = °' 
which proves (3.4). 

Let now f, R, M and d again be as in l. p > 1 
is a number such that pk(l-<*) < 1 (such a p exists 
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as k(l-*) < 1). By (2.5) we see that there exists 
an index N(pk) such that for all n %. N(pk), 

(3.5) it-t0|-
pk|xn+1(t) - x n ( t ) | iC|t-tQ|

r, 

where y » 1+ +<<n~ - pk > o. 

This implies that for all n ̂  N(pk), /\(x
n+i>

xn^ ls 

finite with À - pk. 
f * Let A(x) = x + \ f(s,x(s))ds, and assume that 
fc0 

xltx2 e C(I) such that Px^
xl,x2^ ^<3° wittl ^ = Pk« 

Then, by the first part of the condition (K-K) we have 

|A(xx) - A(x2)| £ | I |f(s,x1(s)) - f(s,x2(s))|ds| 

i | J k | s - t o r 1 j x 1 ( s ) - x 2 ( s ) | d s | 

» I ( ^ I s - t j P ^ l s - t J ^ J x ^ s ) - x 2 ( s ) | d s | 
J t o 

^ px(xx ,x2) | J k l s - t j P ^ d s l » k(pk)-1 | t~t0 |p kp^(x1 ,x^. 

Hence |t-tQr
pk|A(Xl) - A(x2)| ^p~

1^(x]L,x2) with A « pk 
or 
(3.6) p>(A(x1),A(x2)) £ q fx(x1,x2), A= pk, q = p"

1 < 1, 

which shows that the operator A with respect to the 
metricf, A = pk, behaves like a contraction. If now 
1 is a positive integer and n ̂  N(pk) we have 

Px( W ' V * l+:î P^xn+i'xn+i-^ 
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X- Pk or 0 <; l%^00^n+P
xn) 

Hence by (3.4) there exists a x e C(I) such that 

n—><»rx n' 
px(A(x),x) ̂ Px(A(x),xn)H.f^(x,xn) < q^(x,xn-1) + p(x,xn) 

for all n, implies p(A(x),x) = 0, and A(x) = x by (3.3), 

which means that x is a solution of (1.1). Here we have 

proved now that the successive approximations (1.2) 

converge not only uniformly to the solution of (1.1), 

but even in the stronger sense of the metric P. That 

the solution is unique follows from (3.6). Indeed if 

x.,x0 are two different solutions of (l.l) then we have 

by (2.1) that|o(x,x2) <a>for^« pk, and then (3.6) 

gives rise to the following contradiction: 

0 < px(x1,x2) « pJL(A(x1),A(x2)) < q pxUx,x2) (q < 1), 

which proves x. s x2. 

4* Example; Let f(t,x) be defined by 

0 ( O ^ t i l , t1/1""^ x < +oo 

f(t,x) « \ kt*/1""*- kx/t ( O i t i i , 0 £ x ̂  t1/1"-*) 

kt°yi-< ( o ^ t i i , -oD < x < o 

on the domain 0 £ t <̂  1, -oo <x < +oo , where k > o, 

0 <<* < 1. This function?is continuous and bounded by 

the constant k, and it is not very hard to see that 

f satisfies the following inequalities: 

(i) |f(t,x1) - f(t,x2)| ^(k/t)|x1-x2 j (0 < t £ 1), 

(ii) |f(t,Xl) - f(t,x2)| i k|xrx2|^ (0 i t i l, 
-oo < X X , X 2 < +oo ) . 

Let k(l-«x) =p and consider the differential equation 

x1 - f(t,x) ( O i t i l , - < P < X < + » ) with the initial 
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point (0,0), The successive approximations (1.2) 

become, for 0 < t < 1 if xx(t) » 0 (0 i t i 1), if 

p < 1 and£> 1, 

*n(t) » ii-pZ • . . . . • ( - l ) n + 1 p n ) t 1 / 1 - a l 

and if ^ - 1 

x 2n- l ( t ) s ° ( n " 1 > 2 ' - - ^ a n d x2n ( t ) a t 1 ^ * 

(n * 1,2, . . . ) • 

This shows that if j3 « k(l-«i) < 1 the successive 

approximations converge uniformly to the unique solution 

If p = k(l~o() « i, there is no convergence at all; 
moreover, the functions x(t) « 0 and x(t) « t ' 
are not solutions of the equation, since 

0 i f(t,o) « kt1/1""^ and (l-^^t1/1""-*/ f(t^1/1"*) « 0; 

if p « k(l-*) > 1, then the sequence *n(t) is obviously-

divergent ( the equation however has also in this case 

the (unique) solution ^(l+/3)~ t ' "" ). Summing up, 

this example shows that if k(l—«0 2. 1 o u r theorem is 
no longer true even if the equation is uniquely solv­

able . 
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