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SEM/EDS observations of impurities in polar ice:
artifacts or not?
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ABSTRACT. A series of experiments was undertaken to determine the origin of fila-
ments found in grain boundaries and impurity spots found in grain interiors of polar ice
during observation in the scanning electron microscope. It is shown that although the
filaments are artifacts, they demonstrate the presence of impurities segregated to the grain
boundary planes. It is also demonstrated that the impurities observed in the grain interior
reside there and were not transported from the grain boundaries during specimen prep-

aration or observation.

INTRODUCTION

In a number of recent papers (Cullen and Baker, 2000, 2001,
2002; Baker and Cullen, 2002; Iliescu and others, 2002;
Baker and others, in press; Obbard and others, in press), we
have used secondary electron (SE) imaging and energy-dis-
persive (X-ray) spectroscopy (EDS) in a low-vacuum scan-

ning electron microscope (LVSEM) to examine the types
and microstructural locations of impurities in polar ice-core
specimens held at 158 K. Specimen preparation involved
shaving the surface flat in a cold room at 253 K and then
allowing the ice to sublimate in the LVSEM at temperatures
of 158-213 K. The sublimation caused the impurities to be
concentrated, after which the elements present could be

Ing. 1. SE image showing NaCl filaments (arrowed) which arose from the grain boundaries (GB) in 214 m GISP2 ice after
1 hour at 253 K. Note that some of the filaments are no longer fully attached to the grain boundaries since they move due to heating

from the electron beam. From Cullen and Baker (2000).
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Iig. 2. (a,b) SE images showing an inclusion (a) and white spots (b) at the apexes of facets in 700 m Byrd Station ice after 20 and
75 min, respectively, at 175 K. (¢, d ) EDS spectra from the inclusion (¢ ) and impurity spot (d ). The spectrum in (¢) is typical of that
Jfrom inclusions, in that it contains Al and St and several other elements: St and Al are not typically observed in X-ray spectra from

impurity white spots. Inclusions are typically larger than impurity spots: note the scale change between (a) and (b).

identified using EDS. It is worth noting that Barnes and
others (2002a,b) have used essentially the same technique
to examine ice from a few depths at both Dome C and Dron-
ning Maud Land in Antarctica, and from the Greenland
Icecore Project.

Two significant observations have been made with this
technique. First, filaments, consisting of Na and CI in
Greenland Ice Sheet Project 2 (GISP2) ice, and Mg and S
in Byrd Station (Antarctica) ice, are present along most
grain boundaries (Fig. 1). Second, contrary to some previous
suggestions (Mulvaney and others, 1988; Wolff and others,
1988; Fukazawa and others, 1998), impurities are located
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throughout the grain interiors both in the lattice (Fig. 2a)
and in inclusions (Fig. 2b) in GISP2 ice and Byrd Station
ice. These observations have significance for understanding
the mechanical and the electrical properties of ice (Paren
and Walker, 1971; Wolft and Paren, 1984) and possibly for
considerations of the post-depositional movement of impu-
rities in polar ice (Rempel and others, 2001). However, it is
pertinent to question whether these observations are arti-
facts of either the specimen preparation or observation
methods, or whether they give us a true picture of the im-
purity locations in ice. In particular, we can ask:
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Fig. 3. Continued overleaf:
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Fig. 3. (a) SE image after sublimation for 20 min at 183 K in the SEM (ice sublimated is approximately 0.Imm); (b) typical
X-ray spectrum _from the grain boundary; (c) SE image of ribbon-like NaCl filament (arrowed) from grain boundary (GB)
indicated in (a) after sublimation for ~40 min at 183 K (ice sublimated is approximately 0.15 mm ).

1. Do the NaCl filaments present in the grain boundaries
in GISP2 ice form in situ, or are they frozen water veins?

2. If the filaments form in situ, does the specimen prepara-
tion at 253 K spread the impurity—water eutectic films at
the grain boundaries throughout the ice?

This paper attempts to answer these two questions.

ORIGIN OF THE FILAMENTS

Water veins exist along the triple junctions in high-purity
ice close to its melting point (Steinemann, 1957; Ketcham
and Hobbs, 1969; Nye and Irank, 1973). Dissolved impurities
increase the diameters of the water veins and decrease their
freezing temperatures (Mader, 1992). Thus, an obvious ques-
tion regarding our observations is: are the filaments frozen
impurity-containing water veins that remain after the ice
has sublimated away in the SEM? This seems unlikely since
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we know the positions of both the triple junctions and the
grain boundaries from optical microscope observation of
each specimen before SEM examination, and filaments
have been found along grainboundaries in which there were
no nearby triple junctions from which they could have origi-
nated. Further, it is very unlikely that we could section hor-
izontally through several triple junctions simultaneously to
produce images such as that shown in Figure 1 (Cullen and
Baker, 2000).

In order to investigate this further, an ice-core specimen
from 150 m depth at GISP2 was examined after it was shaved
to a thickness of 0.2 mm. The average grain-size in the ice,
determined using the linear intercept method, is 2.6 mm. Thus,
the specimen is significantly less than one grain diameter
thick, and no obvious (non-vertical) triple junctions, from
which frozen water veins could be produced, were observed.
Figure 3a shows a SE image of a typical 1 -2 mm grain (labeled
“A”) from this specimen. A representative X-ray spectrum
from the grain boundary (Fig. 3b) shows largely Na and CI,
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Iig. 4. X-ray spectra_from impurities in an ice specimen from
1504 m Byrd Station ice after 15 min at 183 K. The grain bound-
artes were removed prior to specimen preparation to preclude any
possible impurity migration from the grain boundaries.

with small amounts of K and Ca. Figure 3¢ shows a ribbon-like
Na(Cl filament which “grew” out of the grain boundary during
sublimation of the specimen in the SEM for 40 min at 183 K.
An X-ray spectrum from the filament again showed that it
contained Na and CI. It was quite clear that this filament came
from the grain boundary and that there was no triple junction
from which it could have emerged.

Thus, it appears that formation of the grain-boundary
filaments occurs as a result of the preferential sublimation
of the ice that surrounds the impurities, which had segre-
gated to the grain boundary prior to examination. The
examination temperature in the SEM was well below the
eutectic temperature of the HyO—impurity systems for the
observed impurities, and it is therefore likely that the fila-
ments are hydrated' salts, which coalesced (to reduce sur-
face energy) after the surrounding ice sublimated away:

Thus, it appears that the filaments are artifacts. How-
ever, they indicate the presence of water—impurity eutectics
at the grain boundary.

DO IMPURITIES EXIST WITHIN GRAINS?

If, as indicated above, a water—NaCl eutectic exists at the
grain boundaries of GISP2 ice, then one concern is that speci-
men preparation at 253 K could have spread the impurities
over the grains since the eutectic temperature is ~250 K, i.e.
there would have been a liquid film at the grain boundaries
(personal communication from A. Rempel, 2001). To exam-
ine whether specimen preparation introduced impurities

'Oxygen is always observed on the spectra since the electron
interaction volume is greater than the filament size.
Hydrogen cannot be detected with EDS.
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Iig. 5. EDS spectrum from an impurity spot in a 1102 m Byrd
Station ice specimen shaved under liquid nitrogen. Sublima-
tion time is 105 min at 173 K (ice sublimated is approximately
0.4 mm ).

into the grains, several experiments, as outlined below, were
performed.

l. A specimen was shaved in one direction only, with the
blade being cleaned after each pass. If the impurities
were spread into the grain from the grain boundary,
then a higher concentration of impurities would be
observed in the grain shaved after the grain boundary.
Experimentally, it was found that there was no evidence
of more impurities in the grain on one side of the grain
boundary than on the other.

2. All the grainboundary regions were cut off a single large
grain before the surface was shaved and examined in the
SEM. Impurity spots were still observed in the grain in-
teriors (see X-ray spectrum in Fig. 4), even though no
grain boundary films were present.

3. A specimen was shaved under liquid nitrogen, when all
water—impurity eutectics would be frozen and immedi-
ately placed in the SEM. Upon SEM examination at
173 K, impurity spots were found straightaway on the
ice. Although the spots could immediately be seen, they
had to “grow” before the EDS system could detect the
impurities present, hence the 105 min sublimation indi-
cated in Figure 5. It is worth noting that specimen pre-
paration was not routinely performed under liquid
nitrogen since the specimen is much harder at this tem-
perature and hence is much more difficult to shave.

4. A specimen was cleaved under liquid nitrogen and, after
sublimation in the SEM, impurities could still clearly be
observed on the cleaved surface within the grains (see
Fig. 6).

5. Ionchromatography was performed on melt from pairs of
large-grained specimens from Byrd Station and GISP2.
In each pair, one specimen had the grain boundary
region removed and the other was analyzed with the
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Fig. 6. (a) SE image of 1102 m Byrd Station ice cleaved under liquid nitrogen, after 190 min at 173 K in the SEM; (b) X-ray
spectrum _from the point indicated within the grain (ice sublimated is approximately 0.7 mm).

grain boundaries intact. The results (Table 1) showed that
while the specimens which contained grain boundaries
generally had slightly higher impurity concentrations
than the grain interiors, indicating that there was some
concentration of impurities in the grain boundary region,
the grain interiors contained comparable impurity levels.

It is also worth noting that for Byrd Station ice, where
EDS identified mostly Mg and S at the grain boundaries,
the specimen preparation temperature was below the
MgSO,—water eutectic temperature of ~270 K. Hence, no
liquid film would be present to spread Mg and S over the
grain interiors.

We also addressed the concern that the impurities arose
in the grain interior by diffusion from the grain boundary
during examination (Rempel and others, 2001) through the
following experiments and observations:

(1) In (3) above, we noted that impurity spots could immedi-
ately be observed on the specimen surface after shaving at

(iii)

liquid-nitrogen temperatures and examination in the
SEM at 158 K (again, the impurity spots had to “grow”
before the impurities could be detected), suggesting that
no diffusion of impurities was necessary to form them.

We examined the possibility that vapor transport
could produce the impurities in the grain interior, by
placing a specimen containing ~1 ppm Hy,SO, next to
a high-purity ice specimen in the SEM, and examined
whether impurity spots formed on the surface of the
undoped ice. They did not.

In specimens cleaved under liquid nitrogen and exam-
ined immediately in the SEM, impurity spots were
immediately present, although, as noted above, they
had to“grow” before the EDS system could detect them,
indicating that the impurities were present in the lattice.

Many elements were detected in impurity spots in grain
interiors, while the grain boundaries in the GISP2 ice
contained largely Na and Cl and those in Byrd Station

Table 1. Soluble ion concentrations (in ppb) in ice from Byrd Station and GISP2 measured by ton chromatography

Location Depth Wor gi Grain-size Na NH, K Mg Ca Cl NO; N o»
m mm

GISP2 2950 W 60 158 11 20 14 28 269 68 61
GISP2 2950 gi 60 67 5 13 6 13 113 52 40
Byrd 1992 W 50 92 9 34 7 28 148 63 38
Byrd 1992 gi 50 76 6 22 6 22 120 68 40
Byrd 2090 W 80 52 2 7 8 9 94 45 50
Byrd 2090 gi 80 50 4 8 5 17 91 51 33

Notes: “gi” refers to specimens in which the grain boundaries were removed prior to measurement and, thus, only the grain interior concentrations were

measured. “W” refers to specimens that contained both grain boundaries and grain interiors. The grain-sizes of the GISP2 and Byrd Station ice are from

Gow and others (1997) and Gow and Williamson (1976), respectively.
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ice contained largely Mg and S. Thus, the impurities
within the grains could not all come from the grain
boundaries.

Therefore, our observations indicate that the impurity
spots in the grain interiors arise from impurities within the
grains and are not artifacts. It is not wholly clear whether
these impurities are present as precipitates or solutes (or a
combination of both). However, it is worth noting that the
longer a specimen was allowed to sublimate, the larger the
white spots became, and the more likely the spots were to
contain detectable impurities (since larger spots provide a
larger interaction volume for X-ray production, which
occurs from a region of the order of 1 um in diameter). Thus,
one possibility is that some impurities were present as
precipitates and other impurities coalesced on them, mov-
ing there by localized surface diffusion.

CONCLUSIONS

1. Filaments observed in the grain boundaries of polar ice
are artifacts formed during SEM observation by sublima-
tion of the surrounding ice. The filaments show that these
impurities are concentrated in the grain boundary plane.

2. Impurities observed in the grain interiors are not artifacts
from specimen preparation or observation. However, it is
unclear whether these impurities are all originally in
solution or whether some are present as precipitates.

ACKNOWLEDGEMENTS

This research was supported by the U.S. National Science
Foundation grants OPP-9980379 and OPP-0221120 and Army
Research Office (ARO) grant DAAD 19-00-1-0444. The
ARO provided funds for the SEM/EDS through grants
DAAH 04-96-1-0292 and DAAD 19-99-10068. M. Twickler
is gratefully acknowledged for use of the ion chromatography
facility at the Earth, Oceans, and Space Institute at the Uni-
versity of New Hampshire. E. Wolff made useful comments as
areferee. S. J. Jones was the Scientific Editor.

REFERENCES

Baker, I. and D. Cullen. 2002. The structure and chemistry of 94 m Green-
land Ice Sheet Project 2 ice. Ann. Glaciol., 35, 224—230.

Baker, 1., D. Cullen, D. Iliescu and R. Obbard. In press. Scanning electron
microscopy of natural ice. In Proceedings of the Mike Meshii Symposium.
Warrendale, PA, The Metals, Minerals and Materials Society.

Barnes, P. R. F., R. Mulvaney, K. Robinson and E.W. Wolff. 2002a. Obser-
vations of polar ice from the Holocene and the glacial period using the
scanning electron microscope. Ann. Glaciol., 35, 559—566.

Barnes, P R.F., R. Mulvaney, E.W. Wolff and K. Robinson. 2002h. A tech-
nique for the examination of polar ice using the scanning electron micro-
scope. J. Microsc., 205(2), 118—124.

Cullen, D. and L. Baker. 2000. Correspondence. The chemistry of grain
boundaries in Greenland ice. 7. Glaciol., 46(155), 703—706.

Cullen, D. and I. Baker. 2001. Observation of impurities in ice. Microscopy
Res. Technique, 55,198—207.

Cullen, D. and I. Baker. 2002. Observation of sulfate crystallites in Vostok
accretion ice. Materials Characterization, 48(4), 263—269.

Fukazawa, H., K. Sugiyama, S. Mae, H. Narita and T. Hondoh. 1998. Acid
ions at triple junction of Antarctic ice observed by Raman scattering.
Geophys. Res. Lett., 25(15), 2845-2848.

Gow, A. J. and T. Williamson. 1976. Rheological implications of the internal
structure and crystal fabrics of the West Antarctic ice sheet as revealed by
deep core drilling at Byrd Station. Geol. Soc. Am. Bull., 87(12),1665—1677.

Gow, A. J. and 6 others. 1997. Physical and structural properties of the Green-
land Ice Sheet Project 2 ice cores: a review. J. Geophys. Res., 102(C12),
26,559-26,5/5.

Iliescu, D., I. Baker and D. Cullen. 2002. Preliminary microstructural and
microchemical observations of pond and river accretion ice. Cold Reg.
Sci. Technol., 35(2), 81-99.

Ketcham, W. M. and P.V. Hobbs. 1969. An experimental determination of
the surface energies of ice. Philos. Mag., 19(162), 1161-1173.

Mader, H. M. 1992. The thermal behaviour of the water-vein system in
polycrystalline ice. 7. Glaciol., 38(130), 3593 7.

Mulvaney, R., EEW. Wolff and K. Oates. 1988. Sulphuric acid at grain
boundaries in Antarctic ice. Nature, 331(6153), 247—249.

Nye, J. F. and F. C. Frank. 1973. Hydrology of the intergranular veins in a
temperate glacier. International Association of Scientific Hydrology Publication
95 (Symposium at Cambridge 1969 — Hydrology of Glaciers), 157—161.

Obbard, R., D. Iliescu, D. Cullen and I. Baker. In press. SEM/EDS compari-
son of polar and seasonal temperate ice. Microsc. Res. Techn.

Paren, J. G. and J. C. F. Walker. 1971. Influence of limited solubility on the
electrical and mechanical properties of ice. Nature, 230(12), 77—79.

Rempel, A.W., E. D. Waddington, J. S. Wettlaufer and M. G. Worster. 2001.
Possible displacement of the climate signal in ancient ice by premelting
and anomalous diffusion. Nature, 411(6837), 568—571.

Steinemann, A. 1957. Dielektrische Eigenschaften von Eiskristallen IT. Teil
Dielektrische Untersuchungen an Eiskristallen mit Eingelagerten
Fremdatomen. Helv. Phys. Acta, 30, 553—610.

Wolff, E.W. and J. G. Paren. 1984. A two-phase model of electrical conduc-
tion in polar ice sheets. J Geophys. Res., 89(Bl11), 9433-9438.

Wolff, E.W., R. Mulvaney and K. Oates. 1988.The location of impurities in
Antarctic ice. Ann. Glaciol., 11,194—-197.

MS received 28 October 2002 and accepted in revised form 17 March 2003

190

https://doi.org/10.3189/172756503781830773 Published online by Cambridge University Press


https://doi.org/10.3189/172756503781830773

