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T H E S E C O N D D U A L O F A C * - T E R N A R Y R I N G 

BY 

E. M. L A N D E S M A N A N D B E R N A R D R U S S O 

ABSTRACT. The Arens extension of the triple product of an 
associative triple system is studied. Using a representation theorem 
for C*-ternary rings due to Zettl, it is shown that the second dual of 
a C*-ternary ring is itself a C*-ternary ring 

§1 Introduction. The fact that the second dual of a Banach algebra can be 
made into a Banach algebra has played a useful role in the general theory of 
Banach algebras (Bonsall-Duncan [3]). 

In particular the study of C*-algebras has been partially reduced to the study 
of W*-algebras by the following: 

THEOREM A. (Sherman, Takeda, Tomita). The second dual of a C*-algebra is 
a C*-algebra. 

The original proof of Theorem A was based on the universal representation 
and Gelfand-Naimark-Segal constructions. A later proof was based on the 
numerical range (Bonsall-Duncan [2]). 

A (concrete) C*-algebra is a norm-closed self-adjoint sub-algebra of 38(H), 
the bounded linear operators on a complex Hilbert space H. Recently there has 
been interest in considering subspaces of 33 (H, K), the bounded linear 
operators from one Hilbert space H to another K, which are closed under a 
triple product of its elements, e.g. (1) (A, B, C) -> AB*C, (2) A - • AA^A. In 
the literature these spaces have been called ternary algebras (Hestenes [8]), 
and J*-algebras (Harris [7]), respectively. 

J*-algebras are related to the study of infinite dimensional bounded symmet­
ric domains, and ternary algebras provide an appropriate setting for the 
spectral theory of certain differential operators (Hestenes [9]). These spaces 
have also appeared naturally as the range of contractive projections on 
C*-algebras (Friedman-Russo [6]). 

A detailed study of the structure of ternary subalgebras of 38 (H, K) which 
are closed in the norm topology or in the weak operator topology has been 
undertaken by Zettl [12]. His main results are analogs of the representation 
theorems of Gelfand-Naimark and Sakai. 
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The purpose of this paper is to develop an analog of Theorem A for a 
C*-ternary ring, which is the abstract version of a norm closed ternary algebra 
of operators. In §2 we use a general construction to show how the second dual 
of an associative triple system can itself be made into an associative triple 
system. In §3 we prove that the second dual of a C*-ternary ring is itself a 
C*-ternary ring. 

§2. The second dual of an associative triple system. Let M be a complex 
linear space endowed with a mapping [ . , . , . ] : M x M x M —» M which is linear 
in the first and third variables and conjugate linear in the second variable. M is 
called an associative triple system (ATS) of the second kind (AT2) if the 
following is satisfied: 

(2.1) [UD[XVZ]] = [w[yxi;]z] = [[uux]yz]. 

Associative triple systems of the second kind have been studied by Loos [11] 
and Hestenes [8]. An associative triple system of the first kind (ATI) is a pair 
(M, [. , . , .]) in which [ . , . , . ] is trilinear and in which (2.1) is replaced by 

(2.2) [ui;[xyz]] = [u[uxy]z] = [[uw;]yz]. 

These have been studied by Lister [10]. 
Any complex associative algebra A (resp. associative involutive algebra B) 

becomes an ATI (resp. AT2) if we define [xyz] = xyz (resp xy*z). More 
generally any linear subspace of A (resp. B) which is closed under the triple 
product [xyz] just defined is an ATI (resp. AT2). We shall say that an ATI 
(resp. AT2) (M, [. . .]) is embedded in A (resp. B) if there is a linear isomorph­
ism (f> of M into A (resp. B) satisfying <f>([jcyz]) = <£(x)<£>(y)<£(z) (resp 
<£(x)<My)*<Mz)) for x, y, z in M 

lit is known that an ATI can be embedded in an associative algebra (Lister 
[10]) and that an AT2 can be embedded in an associative involutive algebra 
(Loos [11]). 

Suppose an ATI M is embedded in an associative algebra A. Then an 
elementary argument shows that M", the second dual of M, considered as a 
subspace of A", is closed under the triple product F°G°H where ° denotes 
the Arens product on A". Similarly, if an AT2 M is embedded in an associative 
involutive algebra B and the Arens multiplication on B" is regular so that B" is 
involutive [2; p. 107], then M" is closed under the triple product F ° G* ° H. 

More generally, we have the following. 

THEOREM 1. Let M be an associative triple system. Then the triple product [ ] 
on M extends to a triple product [ ]" on M" with the following properties: 

(a) if [M,[ ]) is ATI, then (M", [ ]") is ATI. 
(b) if (M, [ ]) is ATI and is embedded in an associative algebra A, then 

(M", [ JO is embedded in A" 
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(c) if (M, [ ]) is AT2 and is embedded in an involutive associative algebra B 
with regular Arens multiplication on B'\ then (M", [ ]") is an AT2 which is 
embedded in B". 

REMARK. Although we believe it to be true we are unable to verify: 
(d) if (M, [ ]) is AT2, then (M", [ ]") is AT2. 

This seems to require very deep properties of the Arens multiplication. The 
statements in Theorem 1 suffice for our purposes in this paper, i.e. Theorem 2. 

Proof. Identifying M with its canonical image in M", we shall extend the 
triple product on M to a function JLL3 : M" x M" x M" -» M". Assume first that M 
is ATI. 

The function fx3 is obtained inductively by the following construction which 
is due to R. Arens [1]. Define: 

jLi0 :M'xMxM-^M';< iuio(/ ,x,y),z) = (/,[xyz]) 

for / e M', x, y, z e M. 

f x 1 :M"xM'xM-^M';< i Li 1 (F, / ,x) ,y) = <F,iLt0(/,x,y)) 

for FeM\ feM', x , y e M 

f i , 2 :Af"xAf 'xM'^Af;< f i 2 (F ,G, / ) ,x> = <F,^1(G,/,x)> 

for F,GeM\ feM', xeM. 

to : M" x M" x M" -> M"; {^(F, G, H), /) = <F, n2(G, H, /)) 

for F,G,HeM", feM'. 

Clearly, fx3 is an extension of [ . , . , .] which is linear in each variable. To 
prove (a), it remains to verify (2.2) for JLL3 i.e., 

( 2 3 ) ji3(F, G, /i3(H, K, L)) = pt3(F, pt3(G, H, K), L) 

= jUL3(jLL3(F, G, H), K, L) for F, G, H,K,Le M". 

This is a straightforward but tedious application of the definition of JLL3. 

The proof of (b) is entirely similar to that of (c). To prove (c) we define 
inductively functions n*, JUL̂ , JUL|, ^i% as before except that the formulas for fxf 
and JLL| are complex conjugates of the corresponding formulas for /ULX and JLL2-
This makes JUL| an extension of [ ] which is linear in the first and third positions 
and conjugate linear in the second position. Suppose now that M is embedded 
in an associative involutive algebra B so that M" is included in B". To 
complete the proof of Theorem 1, it must be shown that 

(2.4) jxf(F,G,H) = F o G * ° H , f o r F,G,HeM" 

where F°G and G* denote the usual Arens multiplication and involution 
respectively on A". 
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The usual Arens multiplication F°G on A" can be defined inductively as 
follows [1]: 

i v A ' x A - ^ A ' ; (v0(f,x)9y) = <f,xy) 

for feA1, x, y G A. 

v1:A"xA'-+A';(v1(F9f),x) = (F9v0(f,x)) 

for FeA", feA', xeA. 

v2 : A" x A" -+ A"; (v2(F, G), /> = (F, ^ ( G , /)) 

for F , G e A " , / e A ' . 

Then F ° G = i/2(F, G); and G*eA" is defined by 

<G*,/> = <07*> 
where 

We proceed to the proof of (2.4). Let / G M ' . We must show 

(2.5) < M * ( F , G , H ) , / ) = < F O G * O H , / ) 

By the above definitions, (2.5) is equivalent to each of the following 
statements: 

<F ,^ (G ,H , / )> = <F,v1(G*oH,f)>; 

( ^ ( G , H , / ) , x ) = W G * o H , / ) , x ) for x e M ; 

<G, n î (H, /, x)> = <G, V!(H, v0(/, x))*>; 
</Li*(H,/,x),y) = <v1(H,v0(/,x)),y*) for y e M ; 

(H, M x, y)) = (H, v0(v0(f, x), y*)); 

<jbtg(/, x, y), z) = (v0(vQ(f,x), y*), z> for zeM; 

(2.6) </,[xyz]> = </,xy*z>. 

Since M is embedded in B, (2.6) holds, so that (2.4) is proved. This completes 
the proof of Theorem 1. 

§3. C*-ternary rings. In this section we show that the second dual of a 
C*-ternary ring is itself a C*-ternary ring. 

If an ATS M has a norm satisfying 

(3-D ll[xyz]||<||x||||y||||z|| for x , y , z e M , 

it is called a normed ATS. It is clear from Theorem 1 that the second normed 
dual of a normed ATS satisfies the norm inequality (3.1). 

A C*-ternary ring is a complete normed AT2 M satisfying ||[xxx]|| = ||x||3 for 
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each x in M. If in addition M is the dual of a Banach space it is called a 
W*-ternary ring. H. Zettl [12] has proved the following: 

REPRESENTATION THEOREM (Zettl). Let M be a C*-ternary ring. Then there 
exists a linear map T:M^>M with T2 = I and T([xyz]) = [Tx, y, z] = 
[x, Ty, z] = [x, y, Tz] and there exist Hubert spaces H, K and a linear isometry 
U:M^>M(H,K) such that U(T[xyz]) = U(x)U(y)*U(z). 

In the proof of this theorem, it is shown that a C*-ternary ring M can be 
made into a Hilbert module over a C*-algebra si with ^-valued inner product 
given by 

<x | y) = a(Tx, y) 

for some conjugate bilinear form a:MxM^>si with | | a | |< l . Therefore, for 
x e M , 

||x|P = ||<x|x)|| = | |a(Tx,x)||<||Tx||W. 

And so, ||x||<||Tx||. Since T2 = I, T is an isometry. 
It follows immediately from the representation theorem that if we equip a 

C*-ternary ring M with a new ternary product [xyz]T = T[xyz] then U is a 
linear isometry of M into S8(H, K) which is a ternary isomorphism i.e. 

U([xyz]T)=U(x)U(yrU(z). 

Let a:Sft(H, K)-> S8(H©K) be the map which takes the element a into the 

operator matrix ( I. Then a is a linear isometry satisfying cr(aft*c) = 
\a 0/ 

o-(a)a(b)*or(c) for a, b, c in 38(H, K). Therefore the composition a° U is an 
isometric embedding of M with ternary product [., . , . ] T into the C*-algebra 
A = SS(H© K). It follows that M" with the ternary product [. , . , .]£ given by 
Theorem 1 is isometrically embedded in the C*-algebra A". Therefore by part 
(c) of Theorem 1, for FtM'\ 

| | [ F ,F ,F^h | |FoF*oF |H | |F | | 3 . 

It is easy to show that 

[F,G,H]?.= r ' ( [F,G,H]") for F,G,HeM\ 

where [F, G, H]" is the triple product on M". Since T is an isometry, ||F]|3 = 
||[F, F, FJîll = ||T"[F, F, FJ'II = ||[F, F, F]"||. We have proved: 

THEOREM 2. The second dual of a C*-ternary ring is a C*-ternary ring. 

We conclude by giving an alternative proof of Theorem 2 which avoids the 
Arens product but uses the universal representation of a C*-algebra. This 
proof is based on the following Lemma. 
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LEMMA. Let 01 be a norm closed ternary subalgebra of 3ft (H), let A be the 
C*-algebra generated by 01 and let IT be the universal representation of A. Then, 
identifying 0t with its canonical image in <3C', the map ir/01 extends to an isometry 
IT" of 01" onto the closure if of TT(01) in the weak operator topology. The map IT" 

is a homeomorphism in the weak * topology of 01" and the weak operator 
topology of if. 

Proof. As noted by Zettl, if is a weakly closed ternary algebra and a 
Kaplansky density theorem holds: the unit ball of ir(0t) is weakly dense in the unit 
ball of if [12]. By the Hahn Banach theorem and the properties of IT each 
fc.Tr{0t)' is ultraweakly continuous so extends uniquely to an ultraweakly 
continuous functional / on if, which by the Kaplansky density theorem satisfies 
11/11 = |I/U- The map / - > / is an isometry of ir(0l)' onto the set if* of all 
ultraweakly continuous linear functional on if. Its adjoint then gives an 
isometry of if onto TT(01)" which carries n(01) onto the canonical image of 
TT(01) in TT(01)". We have used Dixmier [4: p. 41] and [5: §12.1]. This now 
yields the following: 

Second Proof of Theorem 2. If M is a C*-ternary ring and U and o~ are as 
defined previously in this section, then M is isometric to the norm closed 
ternary subalgebra 0t=a(U(M)) of 0l(H®K). It follows that M" is isometric 
to 01", which by the lemma is a C*-ternary ring. 
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