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An emerging technique in image segmentation, semi-supervised learning and general classification
problems concerns the use of phase-separating flows defined on finite graphs. This technique was
pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation 10(3), 1090-1118),
which used the Allen—Cahn flow on a graph, and was then extended in Merkurjev et al. (2013,
SIAM J. Imaging Sci. 6(4), 1903—1930) using instead the Merriman—Bence—Osher (MBO) scheme
on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.
52(5), 4101-4139), we gave a theoretical justification for this use of the MBO scheme in place of
Allen—Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical
scheme for Allen—Cahn flow. In this paper, we extend this earlier work, showing that this link via
the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein
and Sternberg (1992, IMA J. Appl. Math. 48, 249-264), we define a mass-conserving Allen—Cahn
equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier
machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case
of a semi-discrete scheme for mass-conserving Allen—-Cahn. We give a theoretical analysis of this
flow and scheme, proving various desired properties like existence and uniqueness of the flow and
convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for
solutions to the mass-conserving MBO scheme.
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1 Introduction

In this paper, we will investigate variants of the Allen—Cahn equation and Merriman—Bence—
Osher (MBO) scheme on a graph, modified to ensure that mass is conserved along trajectories.
First, we formulate on a graph the mass-conserving Allen—Cahn flow devised by Rubinstein
and Sternberg [34], noticing that mass conservation continues to hold in the discrete setting.
Next, following our earlier work in [14] and drawing on work in Van Gennip [37], we show
that formulation of a mass-conserving MBO scheme arises naturally as a special case of a semi-
discrete scheme for the mass-conserving Allen—-Cahn flow with the double-obstacle potential.
We then examine various theoretical properties of this mass-conserving semi-discrete scheme.
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424 J. M. Budd and Y. van Gennip
1.1 Contributions of this work
In this paper, we have:

(i) Following [34], defined a mass-conserving graph Allen—Cahn flow with double-obstacle
potential (Definition 3.5) and proved that it conserves mass (Proposition 3.3).

(i) Extended the analysis in [14, Section 3] to this new flow, proving a weak form, an explicit
form, and uniqueness and existence theory for this flow (Theorems 3.6, 3.7, 3.8 and 3.9,
respectively) and, via the semi-discrete scheme, proved that solutions exhibit monotonic
decrease of the Ginzburg—Landau energy and Lipschitz regularity (Theorems 5.9 and 5.11,
respectively).

(iii) Defined a mass-conserving semi-discrete scheme for this flow (Definition 4.1) and, as in
[14, Theorem 4.2], proved that this scheme is equivalent to a variational scheme of which
the MBO scheme is a special case (Theorems 4.3 and 4.22).

(iv) Used the tools of convex optimisation to characterise the solutions of this variational
scheme (Theorems 4.16 and 4.19) and proved that in the MBO limit, the mass-conserving
semi-discrete solutions converge to an MBO solution, providing a choice function for the
mass-conserving MBO solutions (Theorem 4.21).

(v) Following [14, Sections 4.2 and 5], derived a Lyapunov functional for the mass-conserving
semi-discrete scheme (Theorem 4.26) and proved convergence of the scheme to the Allen—
Cahn trajectory (Theorem 5.7), giving a novel proof of a key lemma.

Though we worked in the framework of [14], this paper extends upon that paper in a num-
ber of key ways. Most directly, we have shown a new result, that shows that the semi-discrete
scheme link between the Allen—Cahn flow and the MBO scheme in the non-mass-conserving
case is robust in the presence of a mass constraint. Moreover, this was not a trivial extension:
the mass conservation condition substantially increased the difficulty of demonstrating some of
the key results. In particular, finding the solutions of the variational form and thereby proving
the equivalence to the semi-discrete scheme for Allen—Cahn, which are both fairly straightfor-
ward in the ordinary case, required a substantial employment of the tools of convex optimisation.
Other results, such as Theorems 3.6 and 4.21, also required non-trivial extensions to the proofs
of their counterparts in [14] (indeed, the latter being in that context sufficiently clear as to not be
needed to be stated). Furthermore, for the proof of convergence, we have exhibited a novel proof
technique for one of the key lemmas.

We now give a brief overview of the rest of this paper.

In Section 1.2, we describe how this work fits in against the background of previous literature.
In Section 2, we outline our notation and key definitions and then briefly describe the link from
[14] that we shall be extending to the mass-conserving case in this paper. In Section 3, we exhibit
contributions (i) and (ii). In Section 4, we exhibit contributions (iii), (iv) and the first half of
contribution (v). Finally, in Section 5, we exhibit the second half of contribution (v) and then
use this convergence to prove monotonicity of the Ginzburg—Landau functional along mass-
conserving Allen—Cahn trajectories and prove the Lipschitz regularity of those trajectories.

1.2 Background

The primary background for this work is [14], in which the authors developed a general frame-
work for linking graph Allen—Cahn flow and the graph MBO scheme via a semi-discrete
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scheme. We showed that the MBO scheme was a special time discretisation of Allen—Cahn flow
with a double-obstacle potential and investigated properties of this Allen—Cahn flow and time
discretisation scheme. This paper will follow that framework, introducing a mass constraint.

Mass conservation (a.k.a. volume preservation) as a constraint on the MBO scheme and on
Allen—Cahn flow arises in a number of contexts, which we shall here briefly survey. For a wider
survey of general MBO schemes and Allen—Cahn flow in both the continuum and graph contexts,
see [38] and the references therein.

In the continuum context, mass-conserving dynamics of the Ginzburg—Landau energy have a
long history, dating back to [16] and [17] and the development of the Cahn—Hilliard equation. In
the 1990s, Rubinstein and Sternberg [34] devised a mass-conserving variant of the Allen—Cahn
equation as an alternative to the Cahn—Hilliard equation. More recently, Chen et al. [19] rigor-
ously proved that mass-conserving mean curvature flow is the phase field limit of Rubinstein and
Sternberg’s mass-conserving Allen—Cahn flow. We will use Rubinstein and Sternberg’s equation
as the basis for our mass-conserving graph Allen—Cahn equation.

Just as the original MBO scheme was introduced as a method for mean curvature flow in
Merriman et al. [5], mass-constrained MBO schemes in the continuum have been investigated
as methods for studying mass-constrained mean curvature flow. It was first introduced as such
in Ruuth and Wetton [36], and the convergence of this scheme has been recently studied by
Laux and Schwartz [28], who showed that as the time step goes to zero, the algorithm of Ruuth
and Wetton converges (up to a subsequence) to the weak formulation of mass-constrained mean
curvature flow defined in [33].

The links between the non-mass-conserving Allen—Cahn flow and MBO scheme in the contin-
uum are well-studied, as both have deep links to mean curvature flow (see e.g. [13] for details on
the convergence of Allen—Cahn flow to mean curvature flow, and [22] for details on the conver-
gence of the MBO scheme). As mentioned above, [19] and [28] show that the same links (now
via mass-conserving mean curvature flow) hold in the mass-conserving case. We will demon-
strate that this link between the mass-conserving Allen—Cahn flow and MBO scheme translates
into the graph context.

Turning to the graph context, recently Van Gennip [37] studied a graph analogue of the
Ohta—Kawasaki functional and devised a modified graph MBO scheme (with the ordinary MBO
scheme as a special case) and mass-conserving graph MBO scheme as a method for minimising
this functional without and with a mass conservation constraint, respectively. We will show
that the mass-conserving MBO scheme yielded by applying the technique from [14] to the
Rubinstein and Sternberg Allen—Cahn equation on a graph coincides with this definition of the
mass-conserving MBO scheme on graphs (up to non-uniqueness of MBO solutions).

Finally, graph Allen—-Cahn flow and MBO schemes have received much attention in the last
decade as algorithms for image processing and semi-supervised learning, stemming from pio-
neering work by Bertozzi and Flenner [6] and Merkurjev et al. [31], respectively, and extended
to the multi-class case in Merkurjev et al. [30]. Bae and Merkurjev [3] studied the effect of mass
conservation constraints on these algorithms, inspiring Jacobs, Merkurjev, and Esedoglu [26] to
employ ‘auction dynamics’ as a novel way to solve a mass-conserving multi-class graph MBO
scheme. In this work, we extend the link developed in [14] between these image-processing algo-
rithms to this mass-conserving setting in the two-class case and demonstrate how to define our
framework in the multi-class case. In future work, we seek to extend the theory of this paper to
the multi-class case, and so link up with this body of work.
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2 Groundwork

We here rewrite the abridged summary of [38] from [14]. We henceforth consider weighted
graphs G := (V, E, ) which are finite, simple, connected, undirected, and positively weighted,
with vertex set V, edge set £ C 72, and with weights {w;j}jer satisfying w;; = w;; and w;; > 0 for
all ij e E. We extend w; =0 when ij ¢ E. We define function spaces on G (where X C R, and
T C R an interval):

V={u:V—->R}, Vy ={u:V— X}, E={p:E—R}.
Vier ' ={u:T—V}, Vyer i ={u:T— Vx}.

We introduce a Hilbert space structure on these function spaces. For r € [0, 1], and writing d; :=
Zj wy; for the degree of vertex i, we define inner products on V and £

1
(u,v)y =Y widj, (9. Ple =7 D vy
ieV ijeV
and define the inner product on Vier (or Vy ser)
o)eri= [ 00y dr= Y d s vy
T ieV

The parameter » has two roles: First and foremost, when we later define the graph Laplacian, »
will parameterise the normalisation of the graph Laplacian. Second, it appears in (-, -}y, to ensure
that any such choice of graph Laplacian is self-adjoint with respect to V. We then induce inner
product norms || - ||y, || - ||, and || - ||;er and also define on V the norm ||u||eo := max;cy |u;.
Next, we define the L? and L™ spaces:

LX(T; V) :={u € Vier | lullier < 00},
L®(T; V) :={u€Vier | IC R, ||u(t)||oc < C forae.teT}.

Finally, for 7 an open interval, we define the Sobolev space H'!(T; V) as the set of u € L*(T; V)
with weak derivative du/dt € L*(T; V) such that

do du
dt teT dt teT

where C°(T'; V) denotes the set of elements of Ve that are infinitely differentiable with respect
to time and compactly supported in T. By [14, Proposition 2.1], u € H'(T;V) if and only if
u; € H'(T; R) for each i € V. Then, H'(T; V) has inner product:

du dv .
(u, V)1 1) = (U, V)rer + (E’ Z) = Z d; (Ui, V) (ym)-
teT eV

We also define the local H'! space on any interval 7T
Hy(T; V) :={ueVier |Ya,be T, ue H'((a, b); V)}

and likewise define leoc

(T;V)and L (T; V).

loc
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We introduce some notation: for 4 C V, define x4 € V by

1, ifieAd,

(=1 ifigA

Next, we introduce the graph gradient and Laplacian:

(Vuyy = {710 UEE
ij =
Y 0, otherwise

(D) =d;" Y " wyu — uy). 2.1)

jev
We note that A is positive semi-definite and self-adjoint with respect to V. As shown in [38, p.
7], these operators are related via:

(u, Av)y = (Vu, Vv)e.

From A, we define the graph diffusion operator:

where v(f) = e "?u is the unique solution to dv/dt = —Av with v(0) = u. Note that e=21=1,
where 1 is the vector of ones, so graph diffusion is mass-conserving, i.e. {e”"“u, 1)y, = (u, 1)y.
By [14, Proposition 2.2], if u € H'(T; V) and T is bounded below, then e~"*u € H'(T; V) with

d di
o (e7"u) = e_tA;L; —e "M Au

We recall from functional analysis the notation, for any linear F': YV — V),

p(F):=max{|A|: X an eigenvalue of F'}
IF|[:== sup [|Fully

[fully=1

and recall the standard result that if F" is self-adjoint, then ||F|| = p(F).
Finally, we recall the notation from [14, p. 4106]: for problems of the form

argmin f(x),

we write f >~ g and say f and g are equivalent when g(x) = af (x) + b for a > 0 and b independent
of x. As a result, replacing f/ by g does not affect the minimisers.
To define graph Allen—Cahn (AC) flow, we first define the graph Ginzburg—Landau functional
as in [14, Definition 2.5] by
1 1
GLe() 1= 5 ||Vu||§+g (Wou,l)y, (2.2)
where W is a double-well potential and & > 0 is a scaling parameter. AC flow is then the (-, -)y,

gradient flow of GL,, which for ¥ differentiable is given by the ODE

du |
— =—Au— -W ou=-Vy GL(u), (2.3)
dt e

where Vy is the Hilbert space gradient on V.
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In [14, (2.5)], AC flow was linked to the MBO scheme via a discretisation of it by the ‘semi-
discrete’ implicit Euler scheme (with time step 7 > 0):

—TA
Upy1 =€

T
Uy — —W ottyyy. (2.4)
e
The name ‘semi-discrete’ refers to the fact that the scheme uses the exact solution operator for
the diffusion part of the AC ODE and uses an implicit Euler time discretisation for the potential
term. Equation (2.4) can be interpreted as an Euler scheme for a time-splitting scheme for AC
flow, as was detailed in [14, Section 4.3] in the non-mass-conserving case. This scheme obeys
the variational equation:
2
rAun | |V

. u—e-
Uy €argmin — (Wou, 1)y, + ——=

2.5)
uey € 2T

We now define the MBO scheme.

Definition 2.1 (Mass-conserving graph MBO scheme) We define the mass-conserving graph
Merriman—Bence—Osher (MBO) scheme by the sequence of variational problems:

U,11 € argmin (1 —2¢ "y, u)
ueV,1
(u,1)y,=(un,1)y,

K

This is motivated by recalling the result from [38, Proposition 4.6] that the ordinary graph MBO
scheme, defined as an iterative diffusion (for a time t) and thresholding scheme, is equivalent to
the sequence of variational problems:

Upy| € argmin (1 —2e "%y, u>

ueVo,1 v

to which we have added a mass conservation constraint on the minimiser. Note that we can
suppress the now constant (1, u)y term.

To link the AC flow to the MBO scheme, as in [14], we take as W the double-obstacle
potential:

1x(1—x), for0<x<1,

W(x):= )
00, otherwise.

(2.6)

See also Blowey and Elliott [7, 8, 9] for study of this potential in the continuum context and
Bosch et al. [10] for recent work in the graph context.

This choice of potential is essential to the whole of this work, so to motivate this choice,
we review some of its virtues. One of the key advantages of this potential over smooth alter-
natives (as previously noted by Chen and Elliot in [18, p. 430], where a bunch of other more
continuum-centric virtues are also discussed) is that it forces solutions to lie in Vg ;; come-what-
may, whatever extra constraints or dynamics are imposed. This property is especially important
when trying to link up with the MBO hard thresholding. The quadratic form of the potential
between the wells is also very convenient for a number of reasons. First, it means that W’ is
an affine function on (0, 1), leading to the resulting AC flow (i.e. (2.7) below) being analysable
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using the tools for linear ODEs/differential inclusions. Second, we recall from [14, (2.2)] that the
MBO scheme can be written as

—TA

Up+1 eargminl <1 _u’u>v+ % Hu_effAuan):argminWou"— % Hu—e un||i

ueVo,1] ueVo,1]

and thus the %x(l —x) term in W is exactly the term that arises naturally in the MBO scheme.
Finally, the negative quadratic part of W ou is cancelled out by the quadratic ||u — e‘mu,,lﬁ,
term to give a convex energy, which will allow us to employ the tools of convex optimisation to
study these variational problems.

As W is not differentiable, the AC flow has to be redefined via the sub-differential of . As
in [14, Definition 3.4], we say that a pair (u, B) € Vjo,11e7 X Vier 1s a solution to double-obstacle
AC flow for any interval 7 when u € H], (T; V) and fora.e. 1 € T:

du(t)
dt
where B(u) is the set (for /jo11(x) := 0 if x € [0, 1] and /j9,17(x) := oo otherwise)

&

+ eAu(t) + %1 —u(f) = B(1), B(@) € B(u()), (2.7)

Bu):={aeV|VieV,a;€—dlpu)}. (2.8)
That is, B(u) = 0 if u ¢ V17, and for u € Vo 1y, it is the set of B € V such that

[Os OO), Ui = 0,
e {0, 0<u <1,

(_OO, 0]> U= L.

The semi-discrete scheme (2.4) thus becomes, where A :=1/e¢,

A
(1= M1 — e Puy + §1=Kﬂn+1, (2.9)

where 8,11 € B(u,+1). Then, the key result of [14, Theorem 4.2] is the derivation of the MBO
scheme from AC flow via the semi-discrete scheme, i.e. that for ¢ = 7, the solutions to (2.9) obey
the variational equation:

T

Uyt € argmin (u, 1 —u)y, + ||u —e AunHi

ueV,1]
and thus the solutions are MBO trajectories.
This paper will follow this method to derive the mass-conserving MBO scheme as a special
case of a semi-discrete scheme for a mass-conserving double-obstacle AC flow.

2.1 A comparison of the semi-discrete scheme and the minimising movements scheme
for GL,

It is fruitful to compare the semi-discrete scheme to the minimising movements scheme for GL,
(see [2, Chapter 2] for details on minimising movements). For a fixed time step 7 > 0, this is
defined by the variational scheme

1
Uns1 € argmin GLo () + == |lu — uy|[3,
ueV 2t
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or equivalently, when W is the double-obstacle potential,
1 1 1 )
Upy1 € argmin = (u, Auyy + —(u, 1 —u)y + — [lu —u,|l3, .
ueV,1 2¢ 2t
As in [2, (2.0.2)], this scheme corresponds to the implicit Euler scheme

Upy1 — Uy
T

= —Vy GL(ty41).

Handling the non-differentiability via the sub-differential as in (2.9), a short calculation yields
the following expression for this scheme:

A
(1= Nty — (I +at A u, + 51 =1 +atA) By, (2.10)

where 8,11 € B(uy,1), I is the identity matrix, and « := 1/(1 — X). It is straightforward to for-
mally compare and contrast (2.9) and (2.10): the only differences are the (/ + at A)~! matrices in
place of the "2 matrix on the left-hand side and in place of the identity matrix on the right-hand
side.

For A 1 1, we can quickly see that (2.10) is not going to behave like the MBO scheme. The
eigenvalues of (/ + atA)~! are vy := (1 + aty;)~! where the y; are the eigenvalues of A. Recall
that 9 =0 and for £ > 0, y; > 0. Therefore as A 4 1 (and hence o — o0) for all £ > 0, vy —
0, whilst vy will remain 1. Recall that the zeroth eigenvector of A, and hence the eigenvector
corresponding to vy, is (1,1)y,~'1. Hence, (I + atA)~' — Q where Qu:= %“fl and so for
A1 1(2.10) becomes

(1 ~ <un,1>v) (B Dy
2 L1y L1y
Thus, the requirement that g,y € B(u,+1) imposes almost no constraint on the values of w41,
entailing only that if the bracketed term on the left-hand side is negative, then there must be an
i € V with (8,+1); < 0 and so (u,+1); = 1, and if the term is positive, then there must likewise be
anie V with (u4,41); =0.

Finally, let us non-rigorously sketch the asymptotics of (2.10) as t, A | 0 with ¢ fixed. Solving
the recurrence relation, the nth term of the sequence generated by (2.10) is given by

1 1 -
uy= 14" +arA) " (ug— 1)+ Y "I +ard)y "H0g,. (2.11)
2 2 -
Now, we note that up to O(t): " ~ ", and (I + atA)F a0 e ¥ ~ ¢=*74 "and so
U, = 11 + enke—nrA Uy — 11 A 2’7: e(n—r+l)le—(n—r+l)tA’B + O(‘L’)
"2 2 p ! '

This is almost the same expression as for the asymptotics of the semi-discrete scheme
derived in [14, Section 5], and thus the minimising movements scheme converges to the
AC solution by roughly the same argument as given in that section. Indeed, note that by
[14, Proposition 5.1], the semi-discrete scheme sequence has its nth term given by

1 n —ntA 1 . n—r+1 —(n—rtA
unzzl—f—a e <u0—§1>+kza e B (2.12)

r=1

It is beyond the scope of this paper to compare (2.11) and (2.12) further.
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2.2 A note on our assumptions on G

As stated above, in this paper, we will assume that our graph G is finite, simple, connected,
undirected, and positively weighted. In this subsection, we will briefly discuss the consequences
of relaxing these conditions.

The case of G an infinite graph is a substantial divergence from our framework, affecting a
large number of definitions and results. To detail, these effects would take us well beyond the
scope of this paper; as an example, see e.g. [24] for the subtleties of defining A in the infinite case.

If G is non-simple, it must have multi-edges or self-loops. Multi-edges are essentially harmless
for our framework, as they behave exactly like a single edge with weight equal to the sum of the
weights of the multi-edges. If G has self-loops, then let G’ be the simple subgraph of G without
those self-loops. Then, as shown in [1], the unnormalised Laplacian A, on G (defined as in [1,
(1)]) and the unnormalised Laplacian A}, on G’ (defined as the » = 0 case of (2.1)) are related by

Ay=A,+M,

where M is a diagonal matrix with diagonal entries M;; := w;;. Therefore, diffusion and AC flow
on G correspond, respectively, to the ODEs
dv , dv , 1,
E:—Auvz—Auv—MU and Z:—Auv—Mv—gW ov.
These can be observed to be special cases of (respectively) fidelity forced diffusion and fidelity
forced AC flow on G, as defined in [15, Definitions 2.1 and 2.6]. One of the major topics of
that paper is the extension of our theoretical framework, e.g. [14, Theorem 4.2], to those fidelity
forced (but non-mass-conserving) flows. Finally, the degree matrices D and D’ on G and G’
are related by D = D' + M, so it follows that the normalised Laplacians A :=D7"A, and A" :=
D'™" A, are related by

A=T+MDY)YTAN+D +M)""M=:MA + M,

where M; and M, are diagonal matrices, so diffusion with a normalised Laplacian on G
corresponds to a forced and rescaled diffusion on G’, and similarly for AC flow.

If G is disconnected, it is a simple matter to apply our framework to each connected
component of G.

If G is directed, then there are a number of different approaches to defining the Laplacian
on a directed graph. For example, in [32, p. 6] and [39], the unnormalised Laplacian is defined
by A, =D — A where 4 is the (directed) adjacency matrix and D is the diagonal matrix of out-
degrees. An alternative approach, found in [40], is as follows: given a directed graph G = (V, E),
define vertex sets ‘H, A C V where H are the vertices with positive out-degrees d;’“’ and A are
the vertices with positive in-degrees d/" (note that 7 N A need not be empty). Then, define the
map T : V|4 — V|y given by, foralli € H,

wj
(Tu); = Z ——
=N

with adjoint 7% : V|3 — V| 4 given by, for all j € A,
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Next, extend 7" and T* to V by setting (Tu); = 0 and (T*u); =0 for i ¢ H and j ¢ A, and then for
v €0, 1] define the Laplacian A, :=7 — y T*T — (1 — y)TT*. A third approach can be found in
[25, Section 2]. It is beyond the scope of this work to examine which of these definitions works
best with our framework, and to what extent our framework can be extended to directed graphs.

Finally, if G is a signed graph (i.e. G has negative weights), then define £ := {ij € E | w;; > 0}
and E~ := {ij € E | w; < 0} and thus define the positively weighted graphs G* := (V,ET, w|g+)
and G~ :=(V,E~, —w|g-). It was shown in [20, (39)] that the unnormalised Laplacian A, on G
(defined as in [20, (36)]) can be decomposed as

A= AT+ O]

where A} is the unnormalised Laplacian on G and Q;, is the unnormalised signless Laplacian
(see [21, 23] for details) on G, defined by

O vi= Y (—opitu).
JjeV st ijeE~
The authors of [20] then go on to define an AC flow and MBO scheme on G and apply this to
a number of clustering problems. It is a topic for future research whether our framework can be
extended to link AC flow and the MBO scheme on signed graphs.

3 Mass-conserving AC flow

In [34], Rubinstein and Sternberg define a mass-conserving Allen—Cahn flow (on a domain €2)
as the non-local reaction—diffusion PDE, where u: Q2 — R,

ou
o —Au—W(u)+@f W' (u) dx 3.

with Neumann boundary conditions. We can readily formulate this on a graph, noting the
differing sign convention on A and introducing our scaling, as the ODE
du 1 LW ou, 1)y

_—Au——W’ou—i—

- T 1. (3.2)

Finally, as above in (2.7), we account for the non-differentiability of ¥ to arrive at:

du (u(n), 1)y (B(0),1)y
— teAut) —u(lt)+ ———1=8(0) — —F———1, 1) € B(u(?)). 33
g HEAUO) —ult) + ST = B0 = S e Buw).  (3.3)
We verify the mass conservation property for u continuous and H'. We first recall a standard fact
about continuous representatives of H' functions.

Lemma 3.1 (See [14, Lemma 3.1]) Ifue H} (T;V)NCYT; V) or ue H} (T;R)NC(T; R),
then u is locally absolutely continuous on T. It follows that u is differentiable a.e. in T, and the
weak derivative equals the classical derivative a.e. in T.

lac

Definition 3.2 Define the mass of u € V to be

M) = (u, 1)y. (3.4)
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Furthermore, define the average value of u €V to be

M(u)
M)

u:=

3.5)

Proposition 3.3 For any interval T and u € Hzloc(T§ VYN CXT; V), ifu obeys (3.3)atae teT,
then fora.e. teT

d
— 1))=0
= M(u(0)
and so M(u(t)) is constant.
Proof First, note that M(u(t)) € H} (T; R) N C°(T; R) with
d du
- |
& (5. >V

since for any ¢ € C2°(T; R)

dp d_(p
/T(u(t),l)vz dt_/;<u(t), p 1>v dt

du du
=—/T<E,(p(t)l>v dt:—/T<E,l>v o(t) dt.

Then, for almost every ¢ € T, taking the mass of both sides of (3.3):

(u(n), 1)y _ (B, 1)y
Ty (L 1)y =(B@®),1)y — R

So, most of the terms cancel, and we are left with

s<@,1> + e (Au(®), 1)y — (u(r), 1)y + (1, 1)y.
[,

du
<E’ 1>v =—(Au(t),1), =0

with the final equality because A is self-adjoint and A1 = 0. Then, by absolute continuity, we
infer that M (u()) is constant. O
As with the ordinary Allen—Cahn flow, not all values in the sub-differential are attained in

valid trajectories. We use Lemma 3.1 to characterise the validly attained .

Theorem 3.4 (Cf. [14, Theorem 3.2]) Let (u, B) obey (3.3) at a.e. t€ T, withu € H}OC(T; Y)n
c(T;v)n Vo, 11,eeT- Then, for a.e.t € T and allieV, we have

i+ e(Au(t),  ifuf)=0,
Bi(t) — B(1) = { —B(), ifu;(t) € (0, 1), (3.6)
i — 1+ e(Au(t)), ifut)=1.

Proof Since B(f) € B(u(t)) at a.e. t€ T, (3.6) holds at a.e. € T for which u(¢) € (0, 1). Let
T C T denote the times when u is differentiable and has classical derivative equal to its weak
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derivative. Since u;(¢) € [0, 1] at all times, when ¢ € T and u;(t) € {0, 1}, we have du;/dt =0.
Consider first u;(f) = 0. Then for a.e. sucht € T

du; o
0= =2 (0) = —e(Au(e) + A1) — (D) —

so rearranging
Bit) — B(t) =1t + e(Au(D)):.
Likewise for u;(f) = 1, we have for a.e. suchr € T
Bi(t) — B() =1 — 1 + e(Au(?));

s0 (3.6) holds at a.e. r € 7. By Lemma 3.1, T\ T is null, so (3.6) holds at a.e. 7€ T.. O

Definition 3.5 (Mass-conserving double-obstacle AC flow) Let T be any interval. A pair
(t, B) € Vjo,11,,eT X Vier is a solution to mass-conserving double-obstacle AC flow on T" when

ueH} (T; V)N CYT; V) and for almost every t € T
du (u@®), )y (B(), 1)y

For brevity, we will often refer to just u as a solution to (3.7) where we also understand (3.7) to
inherit the conditions on u (including the existence of a corresponding ).

3.1 Weak form and explicit integral form

In this section, we prove first a weak form of mass-conserving AC flow and then an explicit
integral form. The weak form is not used in the remainder of this paper; however, it is of general
interest as it is a mass-conserving graph analogue of the variational inequality form of the con-
tinuum double-obstacle AC flow (see e.g. [9, (1.16)]). In the continuum setting, that form played
an important role in the analysis performed by Blowey and Elliott in [7, 8, 9]. The latter form we
will later use to show the convergence of the semi-discrete scheme (Theorem 5.7).

Theorem 3.6 (Cf. [14, Theorem 3.8]) A function u € Vio,1jser ﬁH,loc(T ; V) (and associated B)
is a solution to (3.7) if and only if for a.e. t € T and ¥n € Vio,17 such that M(n) = M(u(?)) (i.e.
n — u(t)L1), the following hold

<8Z—L; —u(t),n — u(l)> + & (Vu(t), Vi — Vu(t)) ¢ = 0, (3.8a)
%
du
<E’ 1>v —o. (3.80)

Proof Let u satisfy (3.7). Then for a.e. r € T, we have (3.8b) and S(¢) € B(u(f)), so in partic-
ular B;(f) > 0 and B;(f) < 0 when u;(?) is 0 and 1, respectively. Therefore, for all n € Vjo 17 with
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n —u(t)L1, fora.e. t € T, we verify (3.8a):

LHS

- (). 1)y B0y, ~
_<—8Au(t)— TR 14+ B8() 11y 1,9 u(t)>v+e(Vu(t),Vn Vu(t)) ¢

= (B0, n —u(n)y

= Y dpm+ Y, dBHmn—1)>0.
{ilui()=0} {ilui(=1}

Now letu € Vjo,13er N HllaC(T; V) satisty (3.8). Therefore by (3.8a), fora.e. t € Tand all n € Vo1
with n — u(f) L1

du
<8— —u(t) + eAu(t),n — u(t)> >0
dt v

and so forany 0 : T — R, a.e. t € T, and any n as before,

d N, 1
e u(t) + e Au(t) + M1 + 01, n—u(t)) =>0. (3.9)
dt (L 1)y v
Let t € T be any such ¢. For a specific 6 to be determined later, define
d n,1
,8(t):=e—u —u(t)—i—sAu(t)—i—ml—i—@(t)l. (3.10)
dt (1,1)y

By considering certain valid test functions 5 for (3.9), we will show that 6(f) can be chosen so
that B(¢) € B(u(t)). Towards this, for any i,/ € V and v € V, we define the set

Sijo =1{5 €VIVk ¢{i,j}, 6 =0,Vk € {i, ]}, & € [k, 1 — ve], and M(§) =0}

which is constructed so that if £ € 8, ), then 1 :=u(f) + & is a valid test function. Hence for
any & € ;) by (3.9) and (3.10), we have that

d;&Bi(t) + d§pi(1) > 0
and so, since M(§) =0 (i.e. d;§; + d;j§; = 0), for any § € 8, (), we have that
di&(Bi(1) — B(1) = 0. (3.11)
Note Ifu;(t) =0 and u;(t) > 0, then for 0 < a < 1 sufficiently small
§ = —au;(?) € [-u;(), 0) & =ad;"du; € (0,1 —u;(1)]

is a & € Bjju with & > 0. Likewise, if ui(t) =1 and uj(t) < 1, there is a & € ) with §; <0,
and if ui(t), uj(t) € (0, 1), there exist £,&' € Bjj ) with & > 0 and &/ < 0.

Next, first suppose u;(f) € (0, 1) for some j € V. Then, we fix such a j and choose 6(¢) so that
Bi(t) =0, and thus by (3.11) forany i € V' and & € &, :

&Bi(1) = 0.
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Then by the above note, if we choose a & € &, with & of the appropriate sign,

=0, ifu(r)e(0,1),
Bi() <0, ifu(t)=1,
>0, ifu(r)=0,
and so B(t) € B(u(t)).
Next, suppose no such j exists. By above if u;(f) =0 and u;(f) = 1, then we can choose & €

8iju With & > 0 and so by (3.11), we have that 8;(¢) < B(?). Thus, we can choose 6(7) to add
an appropriate constant to the values of B(¢) so that

0e [r%?}l Bi(1), min ,Bi(t):| .

u;(1)=0
Hence, we have

<0, ifu(=1,
>0, ifu()=0,

Bi(1)
so B(¢) € B(u(t)). Therefore, we can choose 6 so that 8(¢) € B(u(t)) ata.e. t€T.

Note finally that whatever the choice of 6, by (3.8b) and (3.10) we have ata.e.t€ T

(B0, 1)y =0()(1,1)y.

Hence by (3.10), at all such ¢

du w@®, )y (B(), 1)y
and, by choice of 6(¢), 8(¢) € B(u(¢)). Hence, (u, 8) solves (3.7). U

Theorem 3.7 (Cf. [14, Theorem 3.7]) For u € Vio,11er and B € Vier, (u, B) is a solution to (3.7)
if and only if B — B1 is locally essentially bounded and locally integrable (where by ‘locally’ we
mean on each bounded subinterval of T), B(t) € B(u(t)) for a.e. t € T, and for allt€ T

u(t)=ul + ¢ (u(0) — ul) + éet/se_’A / e f ™ (B(s) — B(s)1) ds. (3.12)
0

Proof Let (u, B) solve (3.7). Then, B — A1 is a sum of a continuous function and the deriva-
tive of a H} . function and hence is locally integrable. We shall prove that g — B1 is globally
essentially bounded in Lemma 5.10. Finally, we rewrite (3.7) to obtain (3.12). Consider the
expression:

d

e— (e7/fe (u—ul)). (3.13)
dt

Applying the product rule, we obtain that fora.e. t € T,
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d
(3.13) = —e F! X (u — ul) + 8@"/8% (e (u—ul))

du
=—e e (u—ul)+ e ! A(u — ul) + ge /e —

dt
A (e% +eAu—u +a1> = et (ﬁ(’) B %Q

and therefore integrating both sides and applying the ‘fundamental theorem of calculus’ on H'
[12, Theorem 8.2], we obtain the integral form.

Now let £ := 8 — B1 be locally essentially bounded and locally integrable, let B(f) € B(u(t))
for a.e. t € T, and for all # € T let (3.12) hold. By differentiating and reversing the above steps,
we get that (u, 8) obeys the ODE in (3.7) and, in particular, the weak derivative of u is given by:

du 1 t/e —tA - 1 1 1 [ (t—s)/e —(t—s)A
—=-I1-A )" wO0)—ul)+ -E@O)+(-1—A)—- | e e E(s) ds.
dt & & e e Jo

As £ is locally essentially bounded, by (3.12) u is continuous, and since u is bounded, it is
locally L2. Finally, by above, du/dt is a sum of (respectively) a smooth function, a locally essen-
tially bounded function and the integral of a locally essentially bounded function, so is locally
essentially bounded and hence locally L. Hence, u € H}, (T; V). O
Note The forward reference to Lemma 5.10 does not introduce circularity here because we do
not use this aspect of the forward direction of this theorem until after proving that lemma. We

will however use the converse direction in proving the convergence of the semi-discrete scheme
(Theorem 5.7).

Note By (3.12), if B(t) =0 for a.e. t € [0, 00), then

V-1

uty=ul+ Y e/FN0), &) véi

k=1

where {(Vi, gk)}}ﬂg ! are the orthonormal eigenpairs of A in increasing orvder of eigenvalue (so
yo =0 and &y x 1). Let £ be the least k > 1, such that (u(0), &)y # 0. Then to leading order

u(t) ~ ul + eV w(0), &) v

which if ye < 1/¢ contradicts u(t) € Vo1 for sufficiently large t. Hence, in such a case, we must
have B(t) # 0 for a non-null subset of the time. In particular, if ¢ < 1/||A||, then this holds unless
u(0) = ul.

3.2 Existence and uniqueness

Finally, we have the following existence and uniqueness theory for (3.7). As was brought to our
attention by one of the reviewers, these results also follow from standard gradient flow theory
(see [2, Chapter 4 especially Theorem 4.0.4] for details; to apply this theory in the present case,
it is important to note that GL, is proper, coercive, lower semicontinuous, and is (—1)-convex,
and hence [2, (4.0.1) and Assumption 4.0.1] is satisfied). However, these techniques are more
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theoretically involved than are needed in the present case, so we will here present these results
with more elementary proofs.

Theorem 3.8 Let (u, ), (v, y) solve (3.7) on T :=[0, Ty] or [0, 00), with u(0) = v(0). Then,
forall te T, u(t)=v(t), and there exists T such that T\ T has zero measure and for all te T,
B(1) — v (1) = (B(t) — 7(O)1. Furthermore, if ui(f) € (0, 1) for some i€ V and t € T, then B(t) =
().

Proof As u and v solve (3.7), by subtracting and since # = v we get fora.e. 1€ T

d —
8E(v(t) —u(®) + e A(v() — u(®) — (v(1) — u(®) = (y () = B(®) + (B@®) — Y (D).

Let w := v — u and take the inner product with w, noting that (w, 1), =0,

d
. <% w(t>> + (AW, WD)y — W0, WD)y = (1) = BO, WD)
v

Consider (vi(t) — u;j())(vi(t) — Bi(?)). If vi(¥) = u;(¢), this equals 0, if v;(¢) > u;(¢) then a sim-
ple case check gives that therefore y;(r) < Bi(f) and likewise if v;(¢) < u;(¢), then y;(¢) >
Bi(?). Hence ,(y () — B(?), w(?))y < 0. Furthermore, since A is positive semi-definite, we have
(Aw(f), w(t))y = 0. Therefore, by the above, we have fora.e. 7€ T,

1 d
ESZIIWU)II%; <Iw)lly

and note that w(0) = 0. Hence, by Gronwall’s differential inequality, we have that for all t € T,
|[[w(n)%, < 0. Therefore, for all € T, v() = u(?).

Finally by Theorem 3.4, since u=v on T, at a.e. t € T (in particular, at r € T for some 7 C T
with 7'\ T of zero measure):

B —7(0), ifu(t)=0,
Bi() = () =1 0, ifu;(t) € (0, 1),
B —y(0), ifu(r)=1.

Therefore at ¢ € T, either B(f) — y(£) = (B(t) — 7())1 or, if u;(r) € (0, 1) for some i € V, then
taking the average value of both sides, we get

M(Xijuinetoyy)

B(1) — 7(1) = (B(t) — y(1)) M)

so B(f) — y(¢) = 0 and hence B(¢) = y (). O
Note There are only 2\V! distinct u such that u; € {0, 1} for all i € V. Hence, if u(0) € [0, 1]\
{ulueV andVie V,u; € {0, 1}}, which is [0, 1] minus a finite set of points, then we must have

B(t) =y (t) for a.e. t € T (since u(t) = u(0)).

Theorem 3.9 Let T'=[0,00). Then, for all uy € Vo), there exists (u, B) € Vio,1jer X Vier
satisfying (3.7) with u € HIIOC(T; V)N CUT; V) and with u(0) = ug.
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Proof We prove this as Theorem 5.7, by taking the limit as 7 | 0 of the semi-discrete approxi-
mations defined in (4.1). (We avoid circularity as we do not use this theorem until after we have
proved Theorem 5.7.) 0

3.3 A note on pinning

It was observed in [38, Theorem 5.3] (for the standard quartic potential) and [14, Remark 4.7]
(for the double-obstacle potential) that if ¢ is too small, the AC flow ‘pins’ or ‘freezes’, i.e. any
vertex initially in a well remains in that well for all time. We now show that a similar result holds
true in the mass-conserving case.

Theorem 3.10 Let S CV and let u(t):= xs for all t € T. Then, u solves (3.7) if and only if
& maX;ese [(Axs)il < 1 —emax;es [(Axs)il, which always holds if ¢ < %||AXS| |o‘01.

Proof Note that u(¢) := xs forall t € T satisfiesu € H,loc(T; V)N CAT; V)N Vio,11,.er- Hence, by
plugging it into (3.7), such a u solves (3.7) if and only if there exists a § € V,cr such that for a.e.
teT, B(t) € B(xs) and

eAxs — xs+Xs1=B(t) — B(N)1.

In turn, this holds if and only if there exists a 8’ € V such that for all i € S, 8/ <0, for all i € S¢,
Bi =0, and eAyxs — xs+xs1=p — B'1. Observe that for all 0 € R, B :=eAys — xs+ 01
satisfies the latter condition, and furthermore if some B satisfies the latter condition, then
B’ —pB"1=p"—p"1 and so B” =p" +(B"” — B")1. Thus, all B’ satisfying eAxs — xs+
Xs1=p" — B'1 are of the form ' = eAys — xs +61.

Hence, u solves (3.7) if and only if there exists a 6 € R such that for all i € S, e(Axs); —
1+6 <0, and for all i € §¢, e(Axs); +6 > 0. Note that by the definition of A, (Axs); = 0 for
i€ Sand (Ayxs); <0 for i € S°. Therefore, such a 6 exists if and only if [¢ max;cse [(Axs)il, 1 —

& maX;es |(A xs)i|] is non-empty. Finally, if e|| A xs]]|oo < %, then it suffices to take 6 = % O

4 Mass-conserving semi-discrete scheme and link to the MBO scheme

Definition 4.1 (Mass-conserving semi-discrete scheme) Building on the insight from [14],
we link the mass-conserving AC flow to the mass-conserving MBO scheme by defining the
following mass-conserving semi-discrete scheme:

<u"+1’1>V1=)»/3n+1 _}\<,8n+1, 1>V1 (41)

<1’1)V (131>V

for 8,41 € B(u,41), recalling that A := 7/¢. Recall that, by (2.8), since B(u,+1) is non-empty, we
must have u,1 € Vo 1.

N
Uppl — € Uy — My + A

We check this conserves mass.

Proposition 4.2 For u, given by (4.1),

M(utn 1) = M(uy).
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Proof Taking the mass of both sides of (4.1) and cancelling gives

TR, )y = (4, Dy

(nt1, 1)y = (e
with the final equality because e ™2 is self-adjoint and e "1 = 1. O

We express this scheme variationally and link to the MBO scheme.

Theorem 4.3 (Cf. [14, Theorem 4.2]) If0 < © < ¢, then the solutions to the semi-discrete scheme
(4.1) obey

T

Upp1 € argmin A (u, 1 —u)y + ||u —e” Aun||i

uEV[o,l]
Mw=Miun) 4.2)

2= (1= 2) [full}, — 26u, €™ Suy) .
In particular, when Tt = &, we have

Upy1 € argmax (u, e_mu,,)v 4.3)
ueV,1]
M(uy=M(un)
which is equivalent to the mass-conserving MBO scheme as in Definition 2.1.
Proof Let u,;; solve (4.1). First, note that B(u,;;) is non-empty and so u,1 € Vo,
Furthermore, we know that M (u,+;) = M(u,) =: M.
Next, expanding out the functional for M(u) = M gives:

A, 1 —u)y + ||u — e_’Au,,| |i =AM+(1-2) ||u||%, —2(u, e " Puy)y + ||e_’Au,,| |$}
= (1= 1) |lull3, = 26, €™ Py
We seek to prove that for A < 1 and Vi € Vo3 such that (n, 1)y =M = (u,41, 1)y:
(1= M) {tns1s tni1)y = 2ungr, € Py <A =2y = 2(n, e Pup)y.
By rearranging and cancelling, this is equivalent to (noting that (n — u,+1, 1)y, =0)
0 < — (1= tt1, 2672, + (1= 2) (0, My = (1, Une1)v)
(0 — w1, =27 2y + (1= (01 + 1)),
(= ttg1, 200 = Mty — 2Py + (1 = () — unr1))y,
(1 = thns1, 2281 = 22 Byt 1 = 2200511 + (1 = 1) = 1)y, by (4.1)
20 (0 = 1, Bue )y + (1= DI = s[5

As B,+1 € B(u,y1) and n; € [0, 1]: either (B8,41); =0, or (B,+1); = 0 when n; — (u,41)i =n; =0,
or (Bu+1)i <0 when n; — (Uy41)i =n; — 1 < 0. Thus (n — w41, Bat1)y = 0.
Finally, for A = 1, the quadratic term in (4.2) cancels and we get equation (4.3). O

Note We briefly compare this behaviour to that of a mass-conserving minimising movements
scheme for GL,. This we define by

. 1
Upy1 € argmin GL. () + — |lu — u,,||%,
ueV, M(u)y=M (i) 2t
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or equivalently

: 2 2
i€ argmin v, Auy — AllulB + llu—
ueVio,11M(u)=M(un)

For A €0, 1), this is a strictly convex problem, so it has a unique solution which can be checked
to obey

(1= Mttprs — I +atA)  uy + A1 = AT + 2t A) " Bost — ABup1 1, (4.4)

where B,.1 € B(u,y1) and o :=1/(1 — X). This is an implicit Euler scheme for (3.7). One can
then compare and contrast (4.4) with (4.1), which will follow similar lines as in the comparison
for the ordinary case given in Section 2.1.

4.1 Solving the variational equations

Compared to the ordinary case, the addition of the mass conservation constraint substan-
tially increases the difficulty in solving the equations from Theorem 4.3. We here employ
the techniques of convex optimisation, particularly the Krein—Milman theorem, complementary
slackness, and strong duality, to help resolve this difficulty.

We consider the set of feasible solutions to (4.2) and (4.3).

Definition 4.4 For a given M = M(uy) for some uy € Vjo,1;, we define the hyperplane Sy, :=
{fueV|(u,1)y =M}. We can visualise this as the plane through u, with V-normal vector 1.
Then, we write the set of feasible solutions to (4.2) and (4.3)

X .= V[O,l] ﬂSM. (45)

Note that X is compact and is the intersection of two convex sets, so is convex. Furthermore,
note that X can be described as the set of solutions to the linear inequalities

VieV (u, xu)v = 0and (u, xu))y < d; and (u, 1)y > M and (u, 1)y <M

and thus is said to be a polyhedral set.

Definition 4.5 For a convex set C, define x € C to be an extreme point of C when
Vy,ze C,Vte (0, 1) (x:t)/+(l —t)z=>y:z:x)

and write Ext C for the subset of C consisting of all such points.
We can then characterise the extreme points of the feasible set.

Proposition 4.6 The set Ext X of extreme points of X is finite and is given by

ExtX ={ueX |3 eVVjeV\{i*}ue(0,1}}.
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Proof Since X is polyhedral, Ext X is finite by a standard result [27, Corollary 1.3.1]. Suppose
ueX and 3i,j € V such that i # j and u;, u; € (0, 1). Now for § > 0 let

V] i=u— Sd;r)({i} + Sdfr)({j},
Vi =u-+ Sdl-_r)({i} — 84/-_r)({j}.

Then, M(v)=M@w)=Mu)—-5§+s=Mu)=M so v,v,€Sy. And for <
min {dfu;, d/(1 = u), 7w, d(1 — )}, we have vy, v€Voy. Therefore, we have
U= %vl + %vz for vy, v; € X \ {u}. Therefore, u ¢ Ext X.

Now let ue{ueX |3i* eV VjeV\{i*}u;€{0,1}}, and suppose u=rv; + (1 —t)v, for
some vy, v; € X and 0 < ¢ < 1. As Ext([0, 1]) = {0, 1}, we have that u; = 0 if and only if (v;); =
(v2); = 0 and likewise for u; = 1. So, v; — vy =0 x(+, for some 6, and

0= (v — v, )y =6 {xx, )y = edir*
and so 6 =0, i.e. vi = vp. Thus, u =rv; + (1 — )vo = vi = v =u, so u € ExtX. =

For tidiness, we define some useful notation.
Definition 4.7 For u € Vo) and T > 0 define the set
Ay i={ael0,1]|FieV (e u),=a) (4.6)

with ordering o1 < o < ... < otk for the elements of 4, ;, where K = |4,, - |. Define the quantities

Ayt = Z df (47)

i(e”TAu)i=a

Proposition 4.8 [ft >0, then0e 4, = u=0,and1 €4, >u=1.

Proof Follows immediately from the connected graph case of [38, Lemma 2.6(d)]. O

4.2 The MBO case: A =1

Definition 4.9 Define the set of solutions to (4.3)

St = argmax (u,e” "%

ueX

), - (4.8)

This is convex as the objective function is linear and X is convex, compact as it is a closed subset
of X, and non-empty as X is compact so the continuous objective function attains its maxima.

Proposition 4.10 S, is a face of X, i.e. ifu,v € X and t € (0, 1), then
tu+(1—-HveSy, =>uvesy,,.
Proof Letu,velX,te(0,1),and tu+ (1 —t)v €S;,,. Then

t(u, e_fAun>v )] <v, e_IAun) = max (w e ™

-
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and so
—TA —TA —TA _ —TA
t{u, e ””)v > max (w,e ™ u,), — (1 -1 max (w,e ”")v = fmax (w, e ””)v
and likewise for (v, e*TAu,,)V. Hence,
—TA o —TA _ TA
(u, e ”">v =(v,e ”">v = max (w, e ”")v )
which is to say that u, v € S; . O

Proposition 4.11 The extreme points of Sy, are given by
Ext S;,, =S, NExtX
and the solutions to (4.3) are given by the convex hull of the extremal solutions, i.e.

St 4, = conv(S; , N Ext X).

Proof LetueS;,, NExtX. Then, if v, v, € 87y, S X, 1€(0,1), and u=1tv; + (1 — f)vy, then
v = v, since u € Ext X. So, u € ExtS; .

Next, let u € Ext S 4, € Sru,- Then, if vy, v; € X and u = tvy 4+ (1 — vy, then vy, v, €S, as
Sz.u, 15 a face, and so v; = v; since u € Ext S;,,. Hence, v € S;,,, N Ext X.

So, Ext S; 4, = Sz, N ExtX, and finally we apply the Krein—Milman Theorem (see e.g. [35,
3.23]), which entails in particular that a finite-dimensional compact convex set is the convex hull
of its extreme points. O

Corollary 4.12 For M(uy) = M, there exists a trajectory u, obeying (4.3) such that

VneN, u, e ExtX={ueX |I*eVVjeV\{i* u {0, 1}}.
Proof Follows immediately from the fact that S;,, is non-empty, and so S;,, N Ext.X is non-
empty as otherwise S; ,, = conv(¥) = . U

In [37, Section 5.3], Van Gennip considers a mass-conserving MBO scheme for minimising
the Ohta—Kawasaki functional with a modified graph diffusion, which in the y = 0 special case
reduces to ordinary graph diffusion and hence is the same problem as (4.3). We here repeat his
form for the solutions to (4.3) lying at extreme points.

Theorem 4.13 Let u,11 € Sy, NExtX. Then write
E={ieV|(up1)i=1}, Fi={i eV |(up+1)i =0}

Then for eachi€ V\ F, j € V \ E we have (e""*u,); = (e " uy);.

Proof Recall that u,; is a solution of (4.8). By Proposition 4.6, we have that u,| = xz +
0 xy\ur) where 6 €(0,1) and V' \ (E'UF) has at most one element which we will denote *
(when it exists). Now choose some 0 < § < minep{d;,d.0,d.(1 —0)},andany ie V'\F,je
V'\ E. Define

U:=uyy1 — Sdl_rX{,} + 8dj_1X{j}9
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where by choice of §, we ensure that u € X. Therefore,
0< (Upt1 —u, e_rAun>V = 6((e_TAun)i - (e_rAun)j)

and so (e7"%u,); = (e " u,); as desired. O

4.2.1 Uniqueness conditions for the mass-conserving MBO scheme

We consider when (4.3) has a unique solution and characterise all solutions to (4.3).
Corollary 4.14 S;,, has one element if and only if S, ,, N Ext X has one element.

Proof As S;,, is non-empty, S;,, NExtX is non-empty as else S;,, = conv(¥) = @. Thus, if
Szu, = {u}, then S, N ExtX = {u} as this is the only non-empty subset of S; ,,. Conversely, if
Sz.u, NExtX = {u}, then by Proposition 4.11, S; ,,, = conv({u}) = {u}. [

Usefully, Theorem 4.13 gives a necessary condition for u € S; ,, N Ext X. We demonstrate the

following sufficient condition for uniqueness of solutions.

Theorem 4.15 Define the condition
VijeV, i#j= (e u); # (€ uy),. 4.9)

Then if (4.9) holds, S; ,, has a unique element (i.e. (4.3) has a unique solution).

Proof WLOG, up to relabelling of V', we may write (4.9) as

—TA

i<je (e uy) < (e uy);

Let u € SN ExtX. By Theorem 4.13, we thus have
i<j=u=00ruy =1
and hence by Proposition 4.6, u must have the form
u=(0,0,..,0,0,1,1,... 1),
T v
where 6 € (0, 1] so (a, 8) uniquely determines any element of S;,, N Ext X. Let
M(a, 6) := M(u) for u defined by (a, 0) as above.
Then for a < b,
M(a,0) — M(b,¢)=0d,+ > d + (1 — ¢)d; >0

a<i<b
and clearly M(a,0) = M(a, ¢) if and only if 6 = ¢. If u € S;,,, N Ext X, M(u) = M, and by the
above, we have that M(a, 8) = M for a unique (a, 8). Thus, S; ,, N ExtX has a unique element
(as by the proof of Corollary 4.12, S; ,,, N Ext X is non-empty), so by Corollary 4.14, S, ,, has a
unique element. O

Following this idea, we get a characterisation of S ,, and a necessary and sufficient condition
for uniqueness.
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Theorem 4.16 Suppose u, € Vio,1; and M = M(u,) > 0, then there is a unique k such that 1 <
k <K and

K K
Z : a”n’faak <M<: :a“nafaaé

{=k+1 =k

recalling K and a, ; o from Definition 4.7. Then, u € Sy, if and only if u € X and

u; =0, if (e P uy); < o, (4.10a)
ui=1, if (¢ uy); > o, (4.10b)
K
M= tyra,= Y, du (4.10c)
=k+1 (€A up)i=ay

Therefore, Sy 4, has a unique element if and only if

K
M=) ayra, or AieV, (€ u,)i=o. (4.11)
=k

Proof First, we show that k exists and is unique. Let B, := Zf:, Qyy7p- Thenas a,, o, > 0, the
B, are strictly decreasing in » and we observe that B; = M(1) > M and Bg,; =0 < M. Hence,
there exists a unique k € {1, ..., K} such that By | <M < By.

Next, forv e V, define v: {1, ..., K} > R by

~ -1 o
Ve =a, o, E div;
iz~ Aup)i=ay

and define the inner product

K
(ﬁ, 17‘))01 = Z Ayt 0 ﬁé‘:{}f-
(=1

Then note by a simple calculation, we have that
(v, 1)g = M(v)

and

<l~)9 e_rAun)ot = <U5 e_tA

un)V-

Hence, deﬁningf( = {v|v € X}, we have that u € S; ,, if and only if

il € argmax <f1, e—fAun>

ek o

and note that (4.9) is satisfied by e, (i.c. (e~ 21y)e % (€ Duy), forall £ £ 7 € {1,2, .., K}).
Therefore, by the same argument as in the proof of the previous theorem mutatis mutandis (i.e.
replacing instances of (-, )y with (-, )4, of d] with a,, - «, €tc.), there is a unique such u of the
form
u= (0, 0,..,0,6,1,1,..,1 )
——— ———

b—1 K—b
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where 6 € (0, 1]. Then, we have

K
M= <Lt, 1)0( = Hau,,,r,ah + E Ayt 0
{=b+1

so we must have b = k and

Taking ¢ < k,

o~ _ -1 T,
O=u,= Ay vy Z diu;

(e TAup)i=ay

TA

and so u; =0 if (e" "2 uy,); < oy, and taking £ > k

o~ _ -1 T
l=u=a,,,,, E diu;

(e~ TAuy)i=ay

and so u; = 1 if (e "2u,); > ay. Finally taking ¢ = k, we get the equivalences
u € S;,, if and only if # € argmax <17, e*fAu,,>
o

veX

u; =0, if (e %u,); < ay,

ifand only if {u; =1, if (e "%u,); > oy,
_ —1 7.
0 = aun,r,ak Z(e_’Aun)[zak di Ui.

Hence, we have a unique solution if and only if (e "*u,); = o at a unique i € ¥ or 6 =1 (and

therefore u; = 1 for (e~**u,); = o), i.e. when (4.11) holds. O

Note [fM =0, then X = {0}, so uniqueness is trivial, hence supposing that M > 0 incurs no loss
of generality.

Note The solution in (4.10), with an adjustable threshold level (i.e. ay) to ensure that mass
is conserved, accords with the definition of the mass-conserving graph MBO scheme in [37]
and with the definition of the mass-conserving continuum MBO scheme in [36]. We here note
that there is a typo in the definition in [37] (i.e. [37, Algorithm (mcOKMBO)]): all instances of
“dlu;” in that definition should just read “d; .

4.3 The non-MBO case: 0 <A <1
To solve (4.2) for 0 < A < 1, we use duality. Let M := M(u,) and define the functions

Siw) = —d u;, gi(w) == — d;, h(u) :=2(M(u) — M). (4.12)
Then, (4.2) can be written as the primal problem:

mi\gl (1 =2) [|u| |%, —2u, e "uy)y st fi(u) <0, gi(u) <0, and h(u) = 0.
ue
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Hence, for &, © € V and v € R dual variables, (4.2) has Lagrangian:

L, &, 1, v) = (1= ) [l = 20, e Pudy + Y Eifiw) + pigi(w)) + vh(w)

(4.13)
=1 =W ully — 20w, e Pun)y + (u, o — )y + v — g1, 1)y — 20M.
We can rewrite this by making the following definition:
1
u*(E, 1, v) = TIPS (2e" " u, + & — p — 2v1) (4.14)

so that
L, &, p,v) = (1= 1) [Jully, = 2(1 = &) (u, " (&, 1, ), — (1, Dy — 20M
= (1 =0 ||u— & )| [5 — = WG, s I — (s 1)y — 20M,

which we note is strictly convex, proper, and bounded below in u (for fixed &, u, and v). Next,
we define the dual objective function:

G, p,v) = Inf L(u, &, p, v) = LW (§, 1, v), 6, i, V). (4.15)
and therefore
G, p,v)=— ((1 — ) [|u* &, )| }f, + (u, 1)y + ZUM) . (4.16)
The dual problem to (4.2) is given by

sup G, u,v). (4.17)

§20,u20,v

Lemma 4.17 For u, € Vio,13, M = M(u,), (4.2) and (4.17) have strong duality, i.e.

sup  G(&, u,v)=min (1 — 1) |[ull}, — 2(u, e " “uy)y
£20,u>0,0 ueX

and if £*, u*, and v* optimise (4.17), then u* .= u*(§*, u*, v*) € X as in (4.14) optimises (4.2).

Proof We apply Slater’s condition for strong duality (see [11, Section 5.2.3]). As the f; and
g; are affine on V and V is open and affine, Slater’s condition is satisfied if Ju € V with fi(u) <
0,g/(u) <0,and A(u) =0, i.e. if Ju € X. As u,, € X, we thus have strong duality.

Now let £* > 0, u* > 0, and v* be optimal for (4.17), and let &z € X be optimal for (4.2), which
we know exists since X is compact and the objective function is continuous. Writing g(u) :=
(1 = 2) [|ul3, — 2{u, e~ " u,)y, we have by strong duality:

gli) = G(E", 1", v) = L', 7, " v") = inf L 87, ", ") LG &7, ', v%) < g,

where the final inequality holds by (4.13), as # € X and so fi(i), g;(¢t) < 0, and A(z) = 0. So, the
inequalities are equalities and L(u, £*, u*, v*) is minimised at z. As L is strictly convex in u, it
has a unique minimiser, so u*(§*, u*, v*) = it is optimal for (4.2). O
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By Lemma 4.17, we have that v* :=u*(&*, u*,v*) € X for (§*, u*, v*) dual optimal, and by
applying complementary slackness, we have that

ui; >0=&"=0, and uf <1=puf =0,
& >0=u; =0, and wi>0=u=1.

Thus, at eachie V, £ =0 or uf = 0. So, we have the necessary conditions

0 = ur=0,
u =1€(0,1) = &=u=0,
1 = &'=0.
Then by substituting into (4.14)
0, ifand only if puf =0, & =2v* —2(e”"u,); >0,
(e_IAun)i —v*
up = 1—A ifand only if £ = uf =0, 0< (e ™u,); —v* <1—4,
€(0,1),
1, ifand only if £ =0, uf=2(e""%u,); —2(1 — 1) —2v* > 0.

We simplify by noting that the v* inequality conditions are disjoint and exhaustive, so we need
to only consider those conditions (to see this, note that if for example v* > (e *%u,);, then each
of the u} > 0 cases is ruled out, so «] must equal zero):

0, if and only if v* — (e7"2u,); > 0,
uj = wf&)’_v* €(0,1), ifandonlyif 0 < (e "®u,);i —v* <1 —A4, (4.18)
1, if and only if v* < (e "2u,); — (1 — A).

But by the above lemma u* € X, so we have M(u*) = M. Thus, v = v* is a solution to:

-1, v< (e uy) — (1= 1),
0=M+ 3 d {mte™mh - (o=ray) (1 3) < v < (e Puy), (4.19)
B [0} v (e u,);,

which exists by the Intermediate Value Theorem. By Definition 4.7, we rewrite (4.19)

1, v<a—(1—=2),
M= Z Qupra V=, a—(1—-A)<v<a, (4.20)

a€dyy, «

0, V>a.
Note Although u* is unique, v* is not in general unique, but in such cases, each solution v* gives

rise to the same u*. For example, if Ay, = {0} (i.e. u, = 0), then any v > 0 solves (4.20), but by
the same token in that case, any v > 0 gives u* = 0. In general, the right-hand side of (4.20) is
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constant in v if and only if v € [ag, ajr1 — (1 — L)], where ay, oy are consecutive elements in
Ay, - But if v in that interval solves (4.20), then by (4.18)

0, ifand only if (e "*u,); < oy,
1, ifand only if (e "2 u,); > ay.
Finally, note that, therefore, this situation of non-unique v* can only arise if M € {M(u) |u €

Vio,1}}, which is a finite set of values.

Proposition 4.18 Let u, € Vi1, M = M(u,), and suppose 0 <M < (1,1)y and T >0. If v
solves (4.20), then v € [Amin 4,,, -, A max 4,, ;] < (0, A).

Proof By Proposition 4.8 and the condition on M, note that 4,, . € (0, 1). Since diffusion
preserves mass, M = M(e~"*u,) and therefore

M= E Ay 0O

a€Ay, ¢
and so we have by (4.20):
l —a, v<a—(1—-24),
0= Z upra VT3 — % a—(1=-2)<v<a, 4.21)
WEAun,r -, v 2 o,

i.e., v is a solution to

0= Z aun,r,a(l - Ol) + Z G, %

a€[l=A4v, )Ny, o @ €W,1=A+V)yy 1

+ Z Ay r0(—0).

ae(0,v]N4y,

First, suppose that v < A min4,,, ; <min4,, .. Then

Z aun,r,a(_a) =0

ae(0,v]NA4y,
and oA —v > Mo —mind,, ) >0 fora € 4,,; so
oaA—V
Z aun,r,rx(l - Ol) + Z au,,,r,otﬁ >0
a€[l—=A+v,1)N4y, ¢ ac(v,1=A+v)NAy, ¢

hence, v does not solve (4.21). Next, suppose that v > A max 4,,, .. Then, we have max 4,, . =
(1 —-A)max4,,, + Amax4,,. <1—A+vso

Z au,,,r,ot(l - 0[) =0

ae[1=A+v, )Ny, ¢
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and el —v < A(e —max4,, ) <0 foraed,,  so
oA —v
Z aun,r,aﬁ + Z aun,r,a(_a) <0.
ac(v,1-=A+v)NA4y, ¢ ae(0,v]NAy, «
Thus, if v solves (4.21), we must have v € [A min 4,,, -, A max 4,, - ]. ]
Note If M =0, then u* =0=u,, which is satisfied if and only if v > (e "*u,); =0. If M =

(1,1)y, then u* =1 =u,, which is satisfied if and only if v < (e "*u,); — 1 + A = A. Hence, we
can always assume v to lie in [0, A].

4.4 Behaviour asi 11

Usefully, for A < 1, (4.2) is strictly convex, so it has a unique solution uz 41+ In this section, we
show that as A 1 1, these solutions converge, yielding a choice function for solutions of (4.3). By
the discussion in Section 4.3, we have the following theorem.

Theorem 4.19 For 0 < A < 1, (4.2) has a unique solution

0, if and only if v = (e”"%u,);,
)= { S irand only if (67 A,y — (1— 1) < v < (e~ 2u,), (4.22)
1, if and only if v < (e"™u,); — (1 — 1),

where v is a solution to (4.20) and hence v € [0, A].

A

As a prelude to investigating the convergence properties of u;,  ;,

of solutions of (4.2) as A 1 1 is relevant to solving (4.3).

we first show that convergence

Theorem 4.20 Fix u, and denote the objective function in (4.2) by:

@ > (L= ) [}, = 2(u, e Puy)y

Then as A 1 1, g, — q1 uniformly on X, and note that q, is equivalent to the objective function in
(4.3). Furthermore, if (u") € X solve (4.2) and u* — uas A 1 1, then u € X is a solution to (4.3).

Proof ForanyueXand A <1,

g3 (1) — q1(w)| = (1 — M[ull3, < A = VI

which tends to zero uniformly as A 4 1.
Next, suppose u* — u as above. Then, u € X since X is closed. By uniform convergence, for
all £ > 0, we have some § > 0 such that forallA e (1 —4,1)and allve X

I, (v) — q1(v)| < &/2.

Therefore, since the #* minimises g;, for any v € X, we have

1) — e/2 < () < @ (v) < g1 (v) + £/2.
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Since ¢, is continuous, we can take A 1 1 and rearrange to get

) <qi(v)+¢

and since ¢ was arbitrary, we must have that  is a minimiser of ¢, . O

Theorem 4.21 Suppose M = M(u,) € (0, M(1)), and take k as in Theorem 4.16 with

K K
Y Gy <M<Yy, (4.23)
I=k+1 I=k

Then for some sufficiently small § > 0, depending only on e **u,, and each A € (1 — 6§, 1)

0, if and only if (e "®u,); < o1,
i =] it (M = Ts Qurae )+ if and only if () =, (4.24)
1, if and only if (€™ " uy); = ags1,

and thus uﬁH converges to the RHS of (4.24) as L 1 1.

Proof AsA,,. is afinite set, we can take 6 > 0 sufficiently small so that the §-balls around the
a €4, are disjoint. Let A € (1 — 4, 1) and choose v solving (4.20). Then by Proposition 4.18,
v € (0, 1), by (4.20) we have

1, v<a—(1—=2),
M= Z Qo V=, a—(1—-N)<v<a,

a€dy, ¢

0, V>,

and by choice of 8, v is within 1 — A of at most one «. Let ap :=0 and g := 1. Then, there
exists 1 <m < K such that v € (a—1, o1 — (1 — 1)), since these intervals cover (0, 1), and we
have

K
. fom—v
M= Z Qe+ Quy,r 0 MAX {mln {ImT’ 1} , O} .
{=m+1
Hence, by (4.23), we must have either m =k ifv <o, orm=k—1ifv > a,. [fv < ay,

K
o —V 1
1—a Zaun,r,ak M — § Quproy | >

=k+1

which by (4.22) gives (4.24). If v € [, 1 — (1 — X)), then by (4.22) and since m =k — 1

N 0, ifandonly if (e "%u,); < o = tj_1,
(un+1)i =

—TA

1, ifandonlyif (e "%u,); = apy1 = 4.

Therefore

K
M= E Ayt
=k
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so it follows that

K
-1 N
au,,,‘:,ak M — z : Auproy | = 1

L=k+1

and so (4.24) follows. O

Note If M =0 or M = M(1), then the uﬁﬂ can only be 0 or only be 1, respectively, and the
convergence is trivial, so the supposition on M incurs no loss of generality.

Note The RHS of (4.24) can immediately be seen to solve (4.3) as it satisfies the conditions
of (4.10). Furthermore, note that uﬁﬂ converges to a point in ExtX (i.e. the RHS of (4.24) is
in ExtX) if and only if (4.11) holds, i.e. if and only if (4.3) has a unique solution and uﬁﬂ
converges to the unique solution of (4.3).

4.5 The converse of Theorem 4.3
In this section, we prove the following theorem.

Theorem 4.22 [f u =u,, solves (4.2), then 3B € B(u) (given by (4.26) when . =1 and (4.28)
when 0 < A < 1), such that (u, B) is a solution to (4.1) (for B as By+1).

Note If(u, B) and (u, B') solve (4.1), then rearranging we get

B—B =p1-p1
i.e. B and B’ differ only by a multiple of 1. So, for a given u and B € B(u), (u, B) is a solution if
and only if (u, B’) is a solution for all and only the B’ € { + 01|06 € R} N B(w). If u; € (0, 1) for
anie€V and (u, B) and (u, B) solve (4.1), then B = p’ as B; =B/ =0.
451 r=1

If M =0, then u =u, =0, is trivially a solution to (4.1), for e.g. 8 =0, hence WLOG we can
suppose M = M(u,) > 0. Let k be as in Theorem 4.16, such that

K K
E Quy,r0p <M < E :aun,naz'
t=k+1 o=k

Then, recalling Theorem 4.16, any solution « to (4.2) for A = 1 must satisfy
u; =0, if (7 u,); < oy,

ui=1, if (e " 2u,); > ax,

K
,
M — E Auprp = E diu;.

t=k+1 (e A uy)=ay
For . =1, (4.1) becomes
1
—e A, + 1=5— B D)y (4.25)
(L, 1)y (1, 1)y
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We seek to find a 8 such that 8; =0 if u; € (0, 1). Note that if u; € (0, 1), then by Theorem 4.16,
we have (e""%u,); = o, so we desire to have

_(B.1)

1
BTN T RT T

%
%
Therefore substituting into (4.25), we have candidate solution:

B=ail —e "u,. (4.26)
We now verify that this candidate solution works even for binary u.

Proof of Theorem 4.22 for A =1. We check that the 8 as in (4.26) solves (4.25):

—TA - 1
—eirAun—i- lzakl —eirAun —ak1+ w
(1’ 1>V <1a 1>V
Moreover, by the form for u from Theorem 4.16, it follows that 8 € B(u). O

452 0<Aa<1

For 0 < A < 1, (4.2) is strictly convex, so recalling (4.22), it has unique solution

0, if and only if v > (e "%u,);,
wi={ € i and only if (67 u) — (1 — &) < v < (e Duy);
1 1—x B y nJi njlis
1, if and only if v < (e7"%u,); — (1 — 1),

where v € [0, 1] solving (4.20) is such that # =u,. Hence, (4.1) is satisfied if and only if for all
iel
—(e P un)i, if v > (e up)i,
ABi—AB=Ait+ { —v, if (e ™u,);i — (1 —1)<v<(e"u,),  (427)
1—A— (e "u,);, if v<(e ™ Pu,) — (1 —21).

We seek a g8 solving this with 8; =0 if u; € (0, 1). Suppose 3i € V' for which u; € (0, 1). This
occurs when (e "2u,); — (1 — 1) < v < (e "®u,);, and so at this i:

—AB=Aii—v.
Plugging into (4.27), we get the candidate solution:
v — (e uy);, if v=> (e " uy)i
B=r"110, if (7™ 2uy)i — (1 —A) < v < (e 2uy);, (4.28)
v—(e ")+ 1=, if v<(e T u,)i — (1 = 1),
which obeys S € B(u) since u obeys (4.22).

Proof of Theorem 4.22 for 0 < A < 1. By the above discussion, taking  as in (4.22) and 8 as in
(4.28) entails that (u, B) is a solution to (4.1) if 3i € V" with u; € (0, 1). We check the alternative
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case, i.e. for all ie V, u; € {0, 1}. Take B as in (4.28). As u is binary, either v > (e "*u,); or
v<(e7"u,)i— (1 —A)ateachie V, so

)\.,3 = 1)1 — eirAun + (1 — A’)X{i‘(e_rAun)j>l)+1*)»}'
But as u is binary, we have u = x(;—a,,),>v+1-1) and so
AMB=v—i+(—Ni=v— AL

Thus, 8 solves (4.27). Therefore, (u, B) is always a solution to (4.1). O

4.6 Sufficient conditions for pinning

Similarly to the AC flow, the semi-discrete scheme experiences pinning (if t is taken too small).
Results giving sufficient conditions for ‘too small’ in the non-mass-conserving case are proved in
[38, Theorem 4.2] (for the MBO scheme) and [14, Theorem 4.5] (for the semi-discrete scheme).
We here prove similar results in the mass-conserving case.

Lemma 4.23 Forany SCV and o >

T<||Al  og [ 1+« mifey df ort <allAxslly (4.29)
& “Mxs) K5lloe '

then [l xs — xslloo < t, and if
<A log (1o, [T 9T s < gl AxsIZ (4.30)
S b .
“M(xs)
then ||le"™ x5 — xslloo <.

Proof Follows as a corollary of the proof of [38, Theorem 4.2]. O

Theorem 4.24 If'S C V and t obeys (4.29) for a« = % then Sty = {xs}-

Proof By Lemma 423, we have that [le ™ x5 — xslloo < % and it follows that
max;ese(e T2 xs)i < % < min;es(e "2 xs);. Recall from Corollary 4.12 that Sz xs NEXtX is non-
empty, so consider an arbitrary u € S; ,, N Ext X. By Corollary 4.14, to prove the theorem it will
suffice to prove that u must equal .

By Theorem 4.13, if u; > 0 and #; < 1, then (e xs)i = (e_’AxS)j. Thus, if i€ S¢ and j € S,
then (7" xs); < 1 < (e""® xs); and hence u; =0 or u; = 1. Suppose that u; < 1 for some j € S,
then by the above u; =0 for all i € §°. But then u < xg vertexwise and u; < (xs);, so M(u) <
M(xs), a contradiction. Hence, u; = 1 for all j € S. Likewise, u; = 0 for all i € 5°. O

Theorem 4.25 [fSCV, L €[0,1), t obeys (4.30) for a = lk and u solves (4.2) with u, = xs,
then u = xs.

Proof Recall that solutions to (4.2) are unique for A € [0, 1), so it suffices to show that u = g is
a valid solution. By Lemma 4.23, we have that ||e " x5 — xslloo < %k, and hence (e 772 x5); <
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%)\ ifieS¢and (e "2 yxs); =1 — %)L if i € S. Hence, taking v = %)L, we observe that (recalling
that M := M(u,) = M(xs))

~1, V< (e u) — (1= 1),
M+ dr e (oA, (1= ) < v < (e~ Buy),
! Os v 2 (eifAul’l)ia
-1 — <@ ),
=M+ df { e Tmi (e tAy) e (Ma, 1 1,
! 0, A= (e Py,

=M+) d
Xi: 0, ies,
=M — M(xs)=0.

Thus, v = %)» solves (4.19), and so by (4.18) u is given by

0, if and only if v > (e "%u,);,
U= %, ifand only if (e "%u,); — (1 — 1) < v < (e "2u,);,
1, ifand only if v < (e "2u,); — (1 — 1),
0, if and only if 11 > (e "%u,);,
=3 T3k i and only if (e Auy) € (41,1 — 12,
1, ifand only if 1 — %)» < (e 2wy,

0, ifandonlyifieS°,

1, ifandonlyifies,

S0 u = xg is a valid solution. O

Note The sufficient bounds on t derived here are exactly the same bounds as the ones derived
in [14] and [38] for the non-mass-conserving case.

4.7 A Lyapunov functional for the mass-conserving semi-discrete scheme

In this section, we show that the Lyapunov functional for the semi-discrete scheme derived in
[14, Section 4.2] is also a Lyapunov functional for the mass-conserving semi-discrete scheme.
We then use this functional to examine the eventual behaviour of the scheme, extending the
analysis in [14] by accounting for the complications that arise due to the mass conservation
condition. All results in this section assume only that the initial condition ug € Vjo,1; and are
otherwise independent of the initial condition.

Recall from [38, Lemma 4.5] the Lyapunov functional for the ordinary MBO scheme, i.e. the
strictly concave functional J: V — R

Jw) =1 —u, e Pu)y
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with first variation at u, L, : V — R

Ly(v):=(v,1—2¢""%u),, .

Theorem 4.26 (Cf. [14, Theorem 4.9]) When 0 < A < 1, the functional (on V1)
H(u):=Jw)+ (o — D, 1 —u)yy = A, 1 —upy + (u, (I — e*) u), (4.31)

is non-negative, and furthermore the functional is a Lyapunov functional for (4.1), in the sense
that H(u,41) < H(uy,) with equality if and only if u,.+\ = u, for the sequence of u, € Vo, defined
by (4.1). Moreover, we have that

H(uty) — H(tps1) = (1= 2) Nttt — ][5, - (4.32)

Proof Note that / — e~ " has eigenvalues 1 — e~ ™% > 0, since the eigenvalues y; of A are
non-negative, and so (u, (I —e™"*) u),, > 0. As u € Vjo,13, H(u) > 0 follows.
Next by the concavity of J and linearity of L, , recalling that (u, — ,41, 1)y = 0:
H(un)—H (uns1) = J (W) = J(ni1) + (1 = D{ttng1, 1= i)y — (1 = D (un, 1 — )y
2 Ly, (uy — tty1) — (1 = )ttt Ung1)y + (1 — At up)y
=ty =ty 1,1 =267 2t,)y — (1 = M)ty 1, g 1)y A (1= 2ty )y
(U — ttns1, =2 Pty + (1 = M)yt + )y
(U — U1, 200 = Wity — 26 Pty + (1= M)ty — g1y
(u,, — Ung 1, 2MBug1 — 2A00 11 — 208 1+ (1 — A)(u, — ”"+1)>v by (4.1)
(g = 1, 20Bs1)v + (1= 2) [t 1 = w3,

> (1= ) lun1 — wall3,

where the final line follows from 8, € B(u,+1) as in the proof of Theorem 4.3. Note that if
Upy1 7 Uy, then J(u,) — J (Ups1) > Ly, (4y — uyt1) by strict concavity, so even for A = 1, there is
equality if and only if u, | = u,. O

Corollary 4.27 (Cf. [37, Lemma 5.18]) Recall from Definition 4.9 the notation S ,, for the set
of valid MBO updates of u,, i.e. the set of solutions to (4.3). For A =1, if an MBO sequence u,
defined by (4.3) satisfies either:

(1) for eventually all n, u,y, € ExtS;,,, or
(i1) for eventually all n, u,y; is as in (4.24) (i.e. the L 1 1 limit of the semi-discrete updates

A
un-H)’

then there exists u € X such that for eventually all n, u, = u.

Proof For (i), recall that Ext S; ,, = S; ., N ExtX € Ext.X and that Ext X is a finite set. Hence,
{u, | n € N} is a finite set, so if the u, are not eventually a single u, then we must have some
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u, v € X such that u # v, u, = u infinitely often, and u,, = v infinitely often. Therefore, we must
have n < m < k such that u,, = u; = u and u,, = v, and hence

Hw) > Hupy) > ... 2 Hup—1) > Hw) > Hupyr) = ... 2 Hug—1) > Hu).

All the inequalities are equalities, and therefore by the equality condition on H from
Theorem 4.26, we have u = v, a contradiction. Thus, the u, are eventually constant.

For (i), we show that there are finitely many possible # € X of the form (4.24). Each such u
has the form

M= M(xy,)

M(xr,)
for a partition V' =V UV, U V3 with 0 <M — M(xy,) < M(xy,). To see this, note that u as in
(4.24) has Vi ={i| (e "%u,)i < ax), Vo ={i | (e "Pu,); = ay}, and V3 = {i | (e "2 u,); > o). But
since V is finite, there are only finitely many tripartitions of V. Hence, {u, | n € N} is a finite set,
and the proof runs as above. O

XV, + XV3

Corollary 4.28 (Cf. [14, Corollary 4.10]) If A € (0, 1) and the sequence u, obeys (4.1), then

o0
2
> g — g}y < 00

n=0

and therefore in particular

lim ||uy1 — unlly, =0.
n—00

Proof By the non-negativity of H and (4.32), we have

N
=2 Y " Mtat — ual P} < H(uo) — Huy 1) < H(uo)
n=0
so the result follows by taking N — oo. O

We wish to use the gradient of H to investigate critical points of the flow. However as we
restrict the flow to lie in Sy, a non-Hilbert space, we make the following definition.

Definition 4.29 Let H, be a Hilbert space, and H; € H, be a closed subspace. Let H:=x+H,
for some x € Hy. Then for any Fréchet differentiable map f : Hy — R with Fréchet derivative Df,
we define the Fréchet derivative of /|7 at u € H by

Df |3 (u) := Df ()|, »

where the restriction of the argument to H; ensures that the u + A terms that appear in the
definition of the Fréchet derivative satisfy u + & € H. Then, we define the gradient

Vi flg(w) € Hy

to be the Riesz representative of Df|z(u), i.e. the unique element of H; such that

Vv e Hy (Vi flgw), v) = Df | z(u)(v) = Df (u)(v).
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Note, therefore, that for u € H, since Vi,f (u) is the Riesz representative of Df (),

Vv e Hy (Vayf(u),v)=(Vyfl7w),v)

and so Vg f|7(u) — Vy,f(u)LH;. That is, for u € H, Vi f1;(w) is the orthogonal projection of
Vi, f (1) onto H;.
Proposition 4.30 (Cf. [14, Proposition 4.11]) Suppose M € (0, M(1)). The Lyapunov functional
has gradient (for u € Vo,1y N X)

Vs, Hls,, (1) = 2(u — e " u) — 20u + 22l (4.33)
and therefore:
(1) For uyy1 € Vo,1) N X obeying (4.1)

Vy Hlsy tni1) = =2 2 (U1 — ). (4.34)

(ii) Define & to be the eigenspace of A with eigenvalue —t~"log(1 — 1), or {0} if there is no
such eigenvalue. If u € Vio,1y N X, then Vs, Hls,,(u) = 0 (i.e. u is a critical point of H) if and

: M
Ol’lly zfu € (ml + é") N V(()’l).

Proof It is straightforward to check that

H(u+ tv) — H(u) _

p (1 =2e""2u, v)y + (0 — 1)(1 = 2u, v)y

(VvH(u), v)y = liI%
t—
and therefore
VoHu) =1—-2e""2u+ 0 —1)(1—-2u)=1—2¢ Pu+2(1—Mu

Restricting to Sy = u + {1}, by definition Vs, H|s,, (1) € {1}* and Vs, H|s,, (1) — VyH(u) €
span{1}. Thus, Vg, H|s,, () = Vv H(u) — Vv H(u)1, yielding (4.33).

(1) Since u,41 € Vio,1), we have 8,41 =0, so from (4.1), we have
Upy1 — e_tAun — AMiyy1 + }‘un+11 = )‘«ﬂn+l - )\ﬂnJrll =0

and (4.34) follows by substituting u,,; into (4.33) and subtracting twice the above
expression.

(ii) Let4:v+> vlanddefine B:=2e "* + 2( — 1)I — 21A. Then, Vs, H|s,, (1) = 0 if and only
if Bu=0. Note that B1 =21+2A1—-21—-2A1=0sou= %1 € X is a solution. Taking
(€x)k=0 the eigenvectors for A (with eigenvalues y;) as a basis for {1}*, we get that (recalling
that & L1 for £ > 0 and y; > 0 for £ > 0)

B =2(e7 + A — 1)§ =0 if and only if §, € &.

()
Blu———1)=0
L1y
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if and only if

M
u———1€~&
(L 1)y

as desired. O

Note We identify when the above identified critical points are all global maximisers.
Considering the quadratic terms, we observe that for n L1 (recallingu=M/(1,1)y)

H @l 4n)=x @l +n,1—ul —n)y+ (@l +n, (I —e ™) @l +n)),
=H (ul) — ((n.e "*n)y — (1 = A)(n, m)v)

so, for A< 1, u= <1A14>v 1 is a global maximiser of H in Sy if and only if

Pi=e "2 —(1 =01
is positive semi-definite on Sy, i.e. for (Vi)i=o the eigenvalues of A, we desire that:
e —(1—=21)=0, ie.te ! >1—e ™%,

Therefore, we have for . < 1 that u = ﬁl is a global maximiser of H if and only if

T
e, T oeTal |-

Furthermore, note that & =ker P so in that case Lvl + & are all global maxima since

(11)
H(%l +n)= H(%l)ﬁ)r n € ker P.
Since H(u,) is monotonically decreasing and bounded below, it follows that H(u,) | Hs for
some H,, > 0. Furthermore, since the sequence u, is contained in X and X is compact, there
exists a subsequence u,, that converges to some u* € X with H(u*) = Hy, since H is continu-
ous. Unfortunately, just like [29] for graph AC flow with the standard quartic potential, or [14]
for AC flow with the double-obstacle potential, we are unable to infer convergence of the whole
sequence from these facts. However, by the same argument as in [29, Lemma 5], if the set
of accumulation points of the u, is finite, then there is in fact only one such point and the
whole sequence converges. Notably, if u* € V1) N X is an accumulation point of the u, then
by Corollary 4.28 and (4.34), we have that Vg, H]|s,, (u*) = 0. Thus, if H(ug) < H(ﬁ 1), then
no accumulation points of the u,, lie in Vg 1) N X.

5 Convergence of the semi-discrete scheme

We follow the method of [14] to prove convergence of the semi-discrete iterates to the solution
of the continuous-time flow (3.7) for T'= [0, 00) and u(0) = uy € Vjo,17. Note that for 7 € {0, 1},
this result is trivial, since the semi-discrete scheme has u,, = uy and (3.7) has u(¢) = u,. Therefore,
for the rest of this section, we shall assume u =g € (0, 1).

5.1 Asymptotics of the nth semi-discrete iterate

We first note two important controls.
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Lemma 5.1 For 0 <A <1, and (upt1, But1) solving (4.1) for given u, € Vio,1}, suppose u:=
Uy, =Upr1 €(0,1). Then

Bt — Bat11 € Via_ 1 (5.1

and
Bu+1 € Vi-11)- (5.2)
Proof First, suppose A = 1. Then by (4.25),
(Bus1)i = Burr =1t — (e uy); € [ — 1, @),

Next, suppose A € (0, 1). Then by (4.27),
—(e " Puy);, if v > (e "2u,);,
-V, if (e uy)i — (1 —2) <v < (e Puyp);,

L= — (e u,), if v<(e ™ u)i — (1 - 1),

— _ 1
(Bur1)i — By =u+ 3
r— (e Puy)i, if v (e " Pu,),
1
=u-—1 +X A=, if (7™ %u,); — (1 —21) < v < (e "Puy);,
1 — (e "2u,);, if v<(e ™u,)i— (1 —=21),

where we recall from Proposition 4.18 that v € (0, 1). It is therefore easy to check that in the
first line, the conditional term is non-positive, and in the second line, the conditional term is
non-negative. Therefore, we deduce (5.1).

Consider the set % :={(B,41)ili€ V). By (5.1), B — Bny1 C it — 1,u], so we have that
diam £ < 1. Furthermore, u,; ¢ {0, 1}, so since 8,1 € B(u,+1), we have x,y € & such that
x> 0and y <0. Therefore, ZC [x— 1, x+ 1]1N[y—1,y+ 1] [-1,1]. O

Recall that the semi-discrete scheme is defined for A < 1 by
(I =Mty = eitAun —Aul + Ay — ABui 1.

Iterating this formula, we get the following formula for the nth term. For bookkeeping, we intro-
duce the superscript [7] to keep track of the time step governing a particular sequence of u,, and
B, — note that these can both be considered as functions of (z, ).

Proposition 5.2 (Cf. [14, Proposition 5.1]) For 0 <X < 1, the semi-discrete solution has nth
iterate

pR— —
qu] =ul+(1— )L)fnefntA (up — ul) + T Z(l _ k)*(nfk)e*(nfk)rA (’BIET] _ ﬁIE ]1) . (5.3)
k=1
Therefore, understanding O to refer to the simultaneous limit of © | 0 and n— oo with

nt —t€[0,7) for some fixed t >0 and for fixed ¢ >0 (ie., f(r,n)=0O(t) if and only if
limsup |f(z,n)/t| < 00 as (t,n) — (0,00) in {(p,m) | p >0, mp — t € [0, p)} with the subspace

https://doi.org/10.1017/50956792521000061 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792521000061

Mass-conserving diffusion-based dynamics on graphs 461

topology induced by the standard topology on (0, 00) x N), we have that with respect to this limit
(recalling that A := t /& and hence A = O(t) in this regime)

n —_
qu] =il + el nTA (up — 1) + A Z e(n—k))»e—(n—k)rA </3]£T] _ ]ET]I) + O(‘L’). (5.4)
k=1

Proof We follow the proof of [14, Proposition 5.1]. We prove the first claim by induction.
The n =0 base case is trivial. Then writing 8171 := Bl — I11 € Vi, 5 (by Lemma 5.1) and
inducting, we have:

A A
[7] P 1 - [t]
un+1 =(1 _)\.) le Au,,— 1_)\'u1+m9n+1
—(1—n)le A [m F (1= 2) e (uy — i)

A« A A
s Y=g ] - a4 gl
k=1

1—2 1 —a !

1 )\' - — —(n T b
= (m - m) il + (1 — )~ (rFTa (0 1)

Ao »
Z 1 — a)" (kD ==kt Dragltl L~ glr]
+l—)»k=1( : ) k +1_k "

n+1
— il + (1 = A) D= HDTA () agy 4 1 A - Z(l _ A)*(n7k+1)ef(n7k+l)rAQIET]
k=1

completing the induction.
To prove the second claim, we use that nt =¢+ O(t) and ni =t/e + O(7) for fixed ¢ to
control:

n
HE,T] —ul — en)»e—n'L’A (u(] _ lel) —A Z e(n—k))»e—(n—k)rAGIEf]
k=1

0:=

(=27 = &) [ g — ], + A Z (1 — 2y~ kD gln=hiny He_(n_k)tAQIET]
k=1

%

n
((1 —A)"— enA) (e—nrAuo _ ftl) +A Z ((1 _ )\)—(n—k-ﬁ—l) _ e(n—k))») e_(n_k)fAOIET]
k=1

%

v

<(A=n7" =) (|le " ug — ]|, + O@)) +AC Y (1 = n) "D — 02y,
k=1

with the first equality by the triangle inequality since (1 —A)""*D —¢* >0 as
e M) > 1 _p/r+1)>1—1, and for the second inequality, we can take
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C 1= SUP, (o, 147) SUPhevyy_, 4 |[e=26]|,,. Note that we can bound C < supyo o |le™?]|

max{u, 1 —u} ||1||y, = max{u, | —u}|[1]],,. Then
A (1=1T"=1 e —1

—C ,
1—A(l—x)T-1 & —1

RHS =D+ O(1)) (1 =" —€")+C

n so noting that (1 — 1) = (1 — (t/e + O(1))/n) " = €/*TO 4

where D = ||e’ i —L_t1|

O(1/n)=¢€"* + O(v),

V2

t/a_l
RHS:O(T)+C<€'/8—l+(9(r)—)»eA 1)
o
er—1—-x
e —1

=0(1)+ C (¢/* — 1) O() = O(1)

=0(1)+ C (e/* — 1)

as desired. We have used here that el;:* has Taylor series %)» — %AZ + O(A%), as can be

checked by direct calculation. O

5.2 Proof of convergence

We consider the limit of (5.4) as 7 | 0, n — oo with nt — ¢ for some fixed ¢ and 7 € (0, &) (for
¢ > 0 fixed). The key insight, as in [14, Section 5.2], is noticing that (5.4) strongly resembles
a Riemann sum for the integral form for the mass-conserving AC flow from Theorem 3.7. To
exploit this, we define the piecewise constant function z, : [0, c0) — V,

efr/eerAIBII]’ 0 <s< T,
ZZ(S) ._ —kt/e Jkt A pltl _
e e ep, (k—1Dr <s<krforkeN,

and the function

(S) L €‘Y/Ee_SAz (s) _ e_(T—S)/Ee(T—S)A'BI[T]’ 0<s<rt,
" o i N —(kt—s)/e J(kt—s)A plT] .
e e B, (k— 1t <s<ktforkeN.

We note an important convergence result.

Proposition 5.3 For any sequence t, — 0 with t, <& for all n, there exists a function z:
[0,00) = V and a subsequence t, of T, such that z,, converges weakly to z in leoc([O, 00); V)
and z,, weak*-converges to z in L7, ([0, 00); V).

Proof For N €N, consider z;|jon. As the ,B,EI] € V—1,1 for all k and T by Lemma 5.1, we have
forallse[0,N]and t <&

! —
ey < sup e Sty < max {1, e 081=D Ly,

s €[0,N+e]

where we have used that for s < N, the corresponding k£t in the exponent of z, (s) is less than N +
sl / — . .. .

7 and that ||e= (¢/=2)|| = ¥ (1AlI=¢ Y is maximised at the endpoints of [0, N + ¢]. Therefore,

the z;|[jov) are uniformly bounded in || - ||y, (and therefore in || - || since all norms on V are
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equivalent) for T < ¢, and hence, they lie in a closed ball in L*([0, N]; V) and in L>®([0, N]; V).
By the Banach—Alaoglu theorem, the former ball is weak-compact and the latter ball is weak*-
compact. Hence, for any 7, | 0, there exists 7,/ a subsequence of 7, and z € L*([0, N]; V) and
w e L*°([0, N]; V) such that

zer | — z in L*([0, N1, V), zer oy =" win L=([0, N]; V).

We claim that z = w a.e. on [0, N]. By the definitions of the weak and weak* topologies, we have
that for all /' € L>([0, N]; V) and g € L' ([0, N]; V)

N

N N N
/ (o (.S (O di — / 0.1 () db, / (o (0, Oy di — / (w(t), g(0)) v .
0 0 0 0

Hence, for any A C[0,N] (measurable) and i€V consider f(z):= xa(f)x;. Then f €
L*([0, N]; V)N L'([0, N]; V) and so for all measurable A C [0, N],

/ Z,'(I) — W,‘(l‘) dt=0.
A

Hence, z; = w; a.e. foreachi e V,soz=wa.e. on [0, N].
Finally, we extend to [0, c0) by a ‘local-to-global’ diagonal argument. First, we take N = 1: by
above we can choose a subsequence 7'V of 7’ such that z (1 converges in both the weak topology

on L? and the weak* topology on L™ to some z on [0, 1] . Then to move from N to N + 1, we
likewise choose a subsequence T+ of t™ such that z_v+1) converges in both senses to z on

[0, N + 1]. Finally, define 7, := . Then for all bounded 7 C [0, o), we have T C [0, M] for
some M €N and hence z,,|r is eventually a subsequence of ZT(M)| r and so converges in both
senses to z|r. O

Corollary 5.4 Fromz,, —zin L}

([0, 00); V), we infer:
A. yo, — v, where y(s) :=e"/*e™%z, and z,, — z,,1 — z — Z1 (both in LIZOC([O, 00); V)).
B. Forallt>0,

/t Zg,(8) — Zg,(s)1 ds — /r z(s) — z(s)1 ds.
0 0

C. Replacing t, by an appropriate subsequence, we have strong convergence of the Cesaro
sums, i.e. for all bounded T C [0, 00)

N N

1 1

N E Zg, —>Z and v E Vi, =V in L*(T; V)
n=1 n=1

as N — oo.

* : (o]
And from z,, =~* z in L7,

([0, 00); V), we infer:
D. y,, ="y inLj ([0, 00); V).

loc

Proof Claim (A) follows since f — e*/?e™2f (where s is the argument of f) and f > f — f1
are continuous self-adjoint maps on L2(T; V) for T bounded. Hence for all / € L*(T; V),

(Vt,,af)seT = (Zr,,, es/ae_SAf)seT - (Z, es/ge_SAf)seT = (V :f)seT
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and

(Zey = Zey Lo her = @opf —f Vier = @ f —fDier = (2 — 21,/ )rer-

Claim (B) is a direct consequence of weak convergence. Claim (C) follows by the Banach—
Saks theorem [4], which states that weak L” convergence on a bounded interval entails strong
convergence of Cesaro sums on that interval along an appropriate subsequence, and a ‘local-to-
global’ diagonal argument as in the above proof to extract a subsequence that works on all of
[0, 00). Claim (D) follows since f — e/?e~*2f is continuous on L>°(T; V) and on L!(T; V), for
T bounded, and with respect to the pairing of L> with L', for all f € L>(T; V) and g € L'(T; V)

/ (€5 D1 (s), g(s)y ds = / (F(s), /e Dg(s)y ds
T T

so the map is ‘self-adjoint’ and so (D) follows by the same argument as (A). O

We now return to the question of convergence of the semi-discrete iterates. Taking t to zero
along the sequence t,,, we define for all ¢ > 0 the continuum-time function

a():= lim  yl™ (5.5)

n—oo0,m=[t/1,] "

Therefore by (5.4) (note that m depends on both ¢ and n, but for the sake of readability, we will
write m rather than m,,(¢))

u(t)=ul + lim (e”””/ee—””"A (ug — ul)

1 " _
+ —6”1.["/6@7"1T"A‘L'n Z efkr,,/aekr,,A <ﬂ1ETn] _ ﬂ/ET"]l) )

&
k=1

and by rewriting the sum term via the definition of z,:
1 mty
() =ul + lim e"™/fe™nA (4y — i) 4 —"™/e e~ f 25,(8) = Z, (s)1 ds.
n—o00 & 0
We seek to show that the pair (i, y) solves (3.7), i.e. it is an AC flow trajectory. We will do this

by checking that (i, y) satisfy the sufficient conditions given for (u, 8) in Theorem 3.7. We will
spit this into two lemmas. First, we show all but one of the required conditions.

Proposition 5.5 The pair (i1, y) obeys:

(1) Forallt> 0, u(t) exists and is given by
1 t
)y =ul+e’fe™™ (uy — ul) + —e/*e'» / e™/e e (y(s) — 7(s)1) ds. (5.6)
€ 0

(i) a(t) € Vio,1yfor all t > 0.
(ii1) y — y1is locally essentially bounded and locally integrable.

Proof LetAd:=¢ ' —Aande,:=mt,—1t€]0,1,).
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(1) Note that
e/t emminh — Glitend — A1 1 O(e,)) = + O(z,)
and so

() =ul+ lim e (uy — 1)
n—0o0

e om) ( / ) — O ds+ / T )~ 2o ds) .

Hence, as by Proposition 5.3, the z;, — z;,1 are uniformly bounded on any compact interval
(and so on [0,  + max, e,]), it follows by Corollary 5.4(B) that

1 t
() =ul +e’fe™™ (uy — ul) 4+ —e'fe™ / z(s) — z(s)1 ds.
€ 0

Then, (5.6) follows immediately by Corollary 5.4(A).

(if) #(¢) is a limit of semi-discrete iterates, each of which lies in Vg 1.

(iii) Since y — y1 is a weak limit of locally bounded and locally integrable functions, we have
that y — y1 is locally bounded a.e. and is locally integrable.

O

Lastly, we check the sub-differential condition.
Lemma 5.6 y(¢) € B(u(?)) for a.e. t > 0.

We give two proofs of this result. We first recap part of the proof in [14] in order to derive the
characterisation of y in (5.7), and next we give a novel proof of this result.

Proof (A), cf. [14, p. 4125]. By Corollary 5.4(C), on each bounded 7 C[0,00), y is the
L*(T; V) limit of

1 N
Sy = N ;Vrn

as N — oo. As L? convergence implies a.e. pointwise convergence along a subsequence, by a
‘local-to-global’ diagonal argument, there exists a sequence N; — oo such that for a.e. > 0

QL
)= lim — - (1),
7= lim = ;yn()
Recall 4:=¢~'1 — A, m:=t/1,], and e, := mt, — t € [0, 7,). Then, by Lemma 5.1
¥e, () — BE 1y = 11(e™* — DLy < (1 — e M1y,
< (1 —e ™M 1]ly < 7| |4]] 1]}y

Therefore, fora.e. t > 0,

Nk

1
+ A My Y 17— 0
Y Nk n=1

<

1 Ny
rO- 5 DRG]
n=1

I
v =< ) B

%
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as k — oo (since 1, — 0 and the convergence of a sequence implies the convergence of its Cesaro
sums to the same limit), so for a.e. 1 >0

1
= lim — [l 5.7
7= lim Zﬂm (5.7
The result then follows identically as in [14, p. 4125] — we here omit the details. O
Proof (B). Fixi e V and bounded T C [0, o0). For tidyness of notation, we define x,(¢) := u[ﬁ;]m

and x(f) := i(#), and likewise &,(1) := (BL7j2 |); and £(f) := (). Let

Ty :={te T |x(t)=0}, To:={te T |x(t)€ (0, 1)}, Ty:={teT|x(t)=1}.

Then, it suffices to show that £ >0 a.e.on 77, & =0a.e.on 75 and £ <0 a.e. on T5.
By Corollary 5.4(D), we have that (y;,); =* & in L7, ([0, 00); V) and therefore (y;,); —* & in
L>®(T,R),i.e. forall f € L'(T,R), as n — 00

/wwﬁmmw»/aymw
T T

Recalling from Proof (A) that (y;,)i(t) = £,(t) + O(t,), we infer that as n — oo

/MW@ﬁ%/ﬁM@ﬁ
T T

By (5.5), we have by definition that for all ¢ € T}, x,(f) — 0. We define the (measurable) sets
Ay :={te T |V¥n > N x,(f) < 1/2}. Then, by the pointwise convergence of the x,, T = UN Ay.
Suppose for contradiction that for some X C T of positive measure, £ < 0 on X. So there exists
8 >0 and Y C X of positive measure such that £ < —§ on Y. As T is the union of the 4y, there
exists N € N such that Y N4y is of positive measure. Taking test function ' = xyn4,, we infer
that as » — oo (and u the Lebesgue measure)

/ a(2) dt — EM)dt < —8u(Y NAy) <0
Yndy YNAy

but since ﬂ}:}’gﬂ S B(u[rfjlm), we have that if 7 € Ay, then for all n > N, &,(¢) > 0, so this is a
contradiction. Hence, £ > 0 a.e. on 7. By the same argument, £ < 0 a.e. on T3.

Finally, for all ¢ € T5, since x,(f) — x(¢), x,(¢) is eventually in (0, 1). Define By :={te€ T3 |
Vn > N x,(f) € (0, 1)}, and note that 7, = UN By and that for f € By and n > N, &,(f) = 0 since
,3573”] € B(u[ﬁ;]m). Suppose for contradiction that for some X C 7, of positive measure, £ # 0
on X. Then WLOG, there exists § > 0 and ¥ C X of positive measure such that £ > on Y. As
before there exists N € N such that ¥ N By is of positive measure. Taking /' = xyng,, we infer
that as n — oo (for n > N)

0=/ &) dt — E@)dt=>8u(Y NAy)>0
YNBy YNBy
a contradiction. Therefore, £ =0 a.e. on 7. O

Note Proof (B) is also valid in the non-mass-conserving case. We thank Dr Carolin Kreisbeck
for her suggestion of using weak* L™ convergence which led to the development of this proof-
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Therefore, by Theorem 3.7, we have the following convergence result.

Theorem 5.7 (Cf. [14, Theorem 5.4]) For any given ug € Vjo,11\ {0,1}, ¢ > 0 and t, | 0, there
exists a subsequence T, of T, with T, < & for all n, such that along this subsequence, the semi-

discrete iterates (ug,f”], ,B,Ef”]) given by (4.1) with initial state uy converge to an AC solution. That
is, there exists (i1, v) a solution to (3.7) with u(0) = uy, such that:

° ﬂr /I | converges 1oy weakly in L,OC([O 00); V) and weakly* in L}, ([0, 00); V),

e foreacht >0 and for m:=[t/7,], um LN u(t) as n — oo, and
[Tn

e there is a sequence Ny — oo such that for almost every t >0, NLk ZnNil — y()

as k — oo.
Note This result proves Theorem 3.9, i.e. the existence of AC solutions.
Note For ug =0 or 1, the ul™! = uy trivially converge but the Bl™ need not converge.

Note As in [14, Remark 5.5], we can avoid passing to a subsequence in all but the last of these
convergences because of Theorem 3.8. Recall the fact noted in [14]: if (X, p) is a topological
space, x,,x € X, and every subsequence of x, has a further subsequence converging to x in
p, then x, — x in p. Let 7, | 0, with t, <¢ for all n, and x, :=t+> ”n/r,,w € (Vier0,00)» ) for
p the topology of pointwise convergence. By Theorem 5.7 applied to t,,, every subsequence
Xu, has a subsequence converging to an AC solution with initial condition uy. By uniqueness,
these must equal ii. Therefore, x,, — i pointwise, without passing to a subsequence. Likewise, the
corresponding y — y 1 is unique up to a.e. equivalence, so z,, —z;,1 — z — z1 and y,, — Y, 1 —
y —yLlin L2 ([0, 00; V) without passing to a subsequence. Finally, when y is unique up to a.e.
equivalence (i.e. when u(t) ¢ Vio,1y for all t > 0), then y,, — y in LIDC([O, oo; V) and y,, —=* y in

L7 ([0, 00; V) without passing to a subsequence.

5.3 Consequences of Theorem 5.7

Given this representation of the unique solution to (3.7) as a limit of semi-discrete approxima-
tions, we can deduce a number of properties of this solution.

First, following [14, Section 5.3], we verify that the unique AC solution is a decreasing flow of
GL, by considering the Lyapunov functional H for the semi-discrete scheme defined in (4.31),
and in doing so obtain a control on the behaviour of GL, (ii(¢)).

We recall from [14], for u € Vo 1}, the following scaling of the Lyapunov functional

1 1
H () 1= 5-H() = GLe(w) = 7 {u, Qct)y,
T 2
where 720, :=e " — I 4+ 1 A. Furthermore, we recall the result.

Proposition 5.8 ([14, Proposition 5.6]) Let u,,u € Vo 1y satisfy |lu; — ully — 0 as T — 0. Then
it follows that H;(u;) = GL.(u).
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Theorem 5.9 (Cf.[14, Theorem 5.7]) The AC trajectory u defined by (5.5) has GL.(u(t))
monotonically decreasing in t. More precisely: for all t > s > 0,

GL,(il(s)) — GL, (iu(t)) > >3 | |ii(s) — ()| |V (5.8)

Proof We reproduce the proof from [14]. Let > s > 0 and m := [s/7,] and £ := [t/7,]. Next,
note a standard inner product space fact: for all sequences v, € V,

N IR N 2
Dl =~ Zvn +— van vl 13, > Z : (5.9)
n=1 n=1 k<n n=1 i
Now by (5.5), we have ul™! — i(s) and uEf”] — (#). It follows that:
GL(i(s)) — GLe (1) = lim H, (ulf") — H, (ugm) by Proposition 5.8
1
n]
> Jim e (1= 2) [ -, e
n k=m
1 Tn 1 wl o]

JL“;O 7o (=) 7= e =i, ey

2(l H (S)_“(t)||v>o
as desired, since t,(£ —m) —>t —s. O
Note Since GL.(i1(s)) — GL.(1(2)) < GL.(u(s)) < GL.(21(0)), it follows by (5.8) that

||iwts) — 0], < /1t = 51v/2 GL.(i(0)),
which as in [14, Remark 5.8] gives an explicit C%'/? condition for ii.

Next, we derive some controls on y and thereby infer a Lipschitz condition on ii.

Lemma 5.10 For y(t) given at a.e. t € T by (5.7), at each such t

y(®) = y(O1 € Viz—14 and y (1) € Vi-1.1].
Proof Follows immediately from (5.7) and the controls in Lemma 5.1. O

Theorem 5.11 The AC trajectory it defined by (5.5) has it € C*!([0, 00); V).
Proof By (3.12) and the argument in [14, Theorem 3.13], we have for #; < t,

(1) — ii(ty) = (e~ = 1) (i(nn) — 1) + é / T -9 — 7t — o)) ds,
0
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where 4:=¢7'T — A and y(¢) is given at a.e. ¢ >0 by (5.7). By Lemma 5.10, () — y(t)l €
Vig—1,, fora.e. £ > 0, and

li(#) — ullly < max{u, 1 —u}|[1]]v =: pl[1]v

since #U(t) € Vjo, for all 1>0. Let By := (e’ —1)/8t. Then, ||By|| = (¢*/¢ —1)/8t, which
monotonically increases in §¢. We thus have for#, — #; < 1,

u(ty) — u(t 1
Nate) = teoll, <1Biy—n |l - plI]ly + = ess sup || (y(12 — ) = 7( — D],

h—th € se0,t—11]
(n—=11)/e _ 1
€ sA
oty += sup |[|e]]- plltlly
Hh—1 € se[0,h—11]
o=t/ _ |

e
Pl e i

1
<plllly <el/£ -1+ —61/8>
&

and for t, — t; > 1 we have

||du(t2) — @
~

th —th

< Iy

completing the proof. O

6 Conclusion

In this paper, we have translated Rubinstein and Sternberg’s mass-conserving Allen—Cahn flow
[34] into the context of dynamics on graphs and have proved existence, uniqueness and regularity
properties of the resulting differential equation with a double-obstacle potential. Following [14],
we have formulated a semi-discrete scheme for mass-conserving graph Allen—Cahn flow, proved
that the mass-conserving graph MBO scheme emerges exactly as the L =1 special case of this
semi-discrete scheme and shown that the Lyapunov functional from [14] remains a Lyapunov
functional in the mass-conserving case.

Using the tools of convex optimisation, we have characterised the solutions of this mass-
conserving semi-discrete scheme, allowing us to prove that:

e As A 11, the semi-discrete solutions for a given A converge in V to a solution for A =1,
yielding a choice function for MBO solutions.

e As 7,1 ] 0 (and ¢ fixed) the semi-discrete solutions converge pointwise to the Allen—Cahn
solution.

Additionally, we have extended some results from [14] and [38] concerning pinning/freezing to
the mass-conserving case, observing remarkably that the same sufficient conditions for pinning
hold as in the non-mass-conserving case.

In future work, we seek to devise a formulation of mass-conserving multi-class Allen—Cahn
flow on graphs (with a ‘multi-obstacle potential’) and extend the results of this paper to the
multi-class case, thereby giving a choice function for the multi-class MBO scheme which selects
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the A 1 1 limit of the multi-class semi-discrete solutions. We shall then compare this method
for solving the multi-class MBO scheme on graphs with others in the literature, e.g. the auction
dynamics of Jacobs, Merkurjev, and Esedoglu [26].
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