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RANDOM NETWORKS WITH PREFERENTIAL
GROWTH AND VERTEX DEATH
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Abstract

A dynamic model for a random network evolving in continuous time is defined, where
new vertices are born and existing vertices may die. The fitness of a vertex is defined
as the accumulated in-degree of the vertex and a new vertex is connected to an existing
vertex with probability proportional to a function b of the fitness of the existing vertex.
Furthermore, a vertex dies at a rate given by a function d of its fitness. Using results from
the theory of general branching processes, an expression for the asymptotic empirical
fitness distribution {pk} is derived and analyzed for a number of specific choices of
b and d. When b(i) = i + α and d(i) = β, that is, linear preferential attachment
for the newborn and random deaths, then pk ∼ k−(2+α). When b(i) = i + 1 and
d(i) = β(i + 1), with β < 1, then pk ∼ (1 + β)−k , that is, if the death rate is also
proportional to the fitness, then the power-law distribution is lost. Furthermore, when
b(i) = i + 1 and d(i) = β(i + 1)γ , with β, γ < 1, then logpk ∼ −kγ , a stretched
exponential distribution. The momentaneous in-degrees are also studied and simulations
suggest that their behaviour is qualitatively similar to that of the fitnesses.

Keywords: Branching process; random network; preferential attachment; power-law
distribution; degree distribution
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1. Introduction

Empirical studies on real networks have revealed that many of them exhibit features that are
not captured by the classical Erdös–Rényi graph. In particular, many networks tend to have
a quite heavy-tailed degree distribution, often described by a power law, that is, the fraction
of vertices with degree k decays as k−τ for some exponent τ . To capture this, a number of
new graph models have been developed that allow for this type of degree distribution; see, for
instance, the seminal paper by Bollobás et al. [5] (the setup described there includes many
previously studied models as special cases) and the references therein.

A model type that has received a lot of attention is based on preferential attachment:
new vertices are successively added to the network and are connected to existing vertices
proportionally to a function f (k) = kγ of the degree. The mechanism was introduced in the
context of network modelling by Barabási and Albert [3], who observed that, for γ = 1, it
seemed to lead to power-law distributions with exponent τ = 3 for the degrees. This was
proved rigorously in [6]. Krapivsky and Redner [14] later derived heuristic results indicating
that the regimes γ ≤ 1 and γ > 1 are qualitatively different: for γ > 1, the degree distribution
is degenerate in the sense that there is a single dominant vertex that is connected to almost
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Random networks with preferential growth and vertex death 1151

every other vertex. This was confirmed in [18]. Recently, Dereich and Mörters [10] studied
the degree evolution in the sublinear regime γ < 1.

Most preferential attachment models in the literature are defined in discrete time. Rudas
et al. [19] however studied the model from a new perspective, embedding it in continuous
time and interpreting it as a continuous-time branching process. This opens up for the use of
well-established results from the theory of branching processes. Compared to the traditional
techniques for analyzing models with linear preferential attachment, the approach has the
advantage that it applies for any γ ≤ 1. We mention also the paper by Athreya et al. [2], where
the linear case γ = 1 is studied by aid of a different type of branching process embedding.

The purpose of the current paper is to define and analyze a preferential attachment model
embedded in continuous time where vertices are not just added but may also die, and where
the death rate of a vertex is taken to be a function of its previous success, quantified by its
accumulated degree. Using results from the theory of general branching processes, a charac-
terization of the asymptotic distribution of the accumulated degrees is derived and analyzed in
various special cases. The momentaneous degrees are also discussed and analyzed by means of
simulations. This generalizes results from [19]. More specifically, the generalization compared
to [19] lies in that we work with a birth-and-death process instead of a pure-birth process. We
also mention the paper by Britton and Lindholm [4], where a model is treated that is similar in
spirit but not based on preferential attachment.

Preferential attachment models incorporating deaths of vertices are much less studied than
pure-growth models, while real networks may well be affected by vertex emigration. Exist-
ing rigorous results are restricted to the case when vertices die randomly, that is, the death
mechanism does not depend on features of the vertices (age, degree, etc.); see [7] and [8]. See
also [9] and [15] for heuristic results, the latter concerning a situation where vertices die with a
probability inversely proportional to their degree. Concentration results are so far comparably
weak, see, e.g. [8, Lemma 4.1], and are lacking for models with more complicated death
mechanisms.

1.1. Definition of the model

We now proceed to define the model. As already described, a vertex population evolving in
continuous time is considered where existing vertices give birth to new vertices but may also
die. More specifically, a vertex that is alive at time t and that has given birth to i new vertices
during its lifetime, gives birth to an (i + 1)th vertex at rate b(i), that is, the probability that
the vertex gives birth in the time interval (t, t + ε) is b(i)ε + o(ε). Furthermore, the vertex
dies at rate d(i), that is, its probability of dying during (t, t + ε) is d(i)ε + o(ε). Let ξ be a
random point process on [0,∞)with points (representing the births) generated according to the
above rules. Starting from a single root vertex at time 0, each vertex x reproduces according
to an independent copy ξx of ξ . This means that the vertex population evolves as a birth-
and-death process in continuous time and, hence, fits into the framework of general branching
processes; see, e.g. [12, Chapter 6]. Below we shall formulate conditions which guarantee that
the process is supercritical, so that the vertex population indeed grows to infinity with positive
probability.

Write Zt for the set of vertices that are alive at time t , and, for x ∈ Zt , let Axt denote the
total number of children that vertex x has produced up to time t (including children that are
no longer alive), also referred to as the fitness of the vertex. The time until the next birth in
the population is exponentially distributed with parameter

∑
x∈Zt

b(Axt ) and the time until the
next death is exponentially distributed with parameter

∑
x∈Zt

d(Axt ). Hence, the probability
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that the next event that occurs in the population is a birth is given by

∑
x∈Zt

b(Axt )∑
x∈Zt

(b(Axt )+ d(Axt ))
, (1.1)

and the probability that the birth occurs at vertex x is proportional to b(Axt ). We shall see later
that, under certain assumptions on b and d , the ratio (1.1) converges almost surely to a number
in (0, 1).

The vertex population described above naturally gives rise to a network structure: directed
edges are created between a vertex and its children, pointing from the child to the mother. When
a vertex dies it turns into a ghost and all edges associated with it are turned into ghost links.
According to the dynamics, the rate at which a vertex produces/attracts new vertices depends
on its previous success, measured by its in-degree, including ghost links. Whether or not it is
realistic to include the ghost links depends on the setting. In many situations it is indeed natural
to assume that the ability of a vertex to acquire new edges is affected by the total historical
success of the vertex rather than just the contributions generated by vertices that are still present
in the network (think e.g. of coauthorship networks, sexual networks, recruitment networks,
etc.). A model where ghost links are excluded in the definition of the fitness can be analyzed by
the same means as the present model. The calculations however become cumbersome and do
not lead to explicit expressions. We elaborate on this and present simulation results in Section 5.

1.2. Results

Let ρ(t) be the density of ξ , that is,

ρ(t) = lim
ε→0

ε−1 P((t, t + ε) contains a point from ξ),

and define the Laplace transform

ρ̂(λ) =
∫ ∞

0
e−λtρ(t) dt. (1.2)

Clearly, ρ̂(λ) increases as λ → 0, and we write

λ = inf{λ > 0 : ρ̂(λ) < ∞}. (1.3)

Our first result is an expression for ρ̂(λ).

Proposition 1.1. We have

ρ̂(λ) =
∞∑
k=0

k∏
i=0

b(i)

λ+ b(i)+ d(i)
.

Throughout, we shall assume that the functions b and d are such that

(C1) ρ̂(λ∗) = 1 has a solution λ∗ ∈ (0,∞).

In fact, we shall assume that

(C2) λ∗ > λ.
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It is well known from the theory of branching processes that, when λ < ∞, condition (C1) is
equivalent to the process being supercritical. To be more precise, write ξ(t) for the ξ -measure
of [0, t] and let Zt = |Zt | be the number of vertices alive at time t . Then P(Zt → ∞) > 0 if
and only if E[ξ(∞)] > 1 if and only if λ∗ > 0; see [12, Chapter 6]. Writing

ρ̂(λ) =
∞∑
k=0

exp

( k∑
i=0

log

(
1 − λ+ d(i)

λ+ b(i)+ d(i)

))
(1.4)

and using the Taylor expansion log(1 − x) = −x +O(x2) reveals that a necessary condition
for ρ̂(λ) < ∞ is that

∞∑
i=0

λ+ d(i)

λ+ b(i)+ d(i)
= ∞,

and, hence, a necessary condition for λ < ∞ (which is indeed necessary for (C1)) is that

∞∑
i=0

1 + d(i)

b(i)+ d(i)
= ∞.

Furthermore, a sufficient condition for having ρ̂(λ) < ∞ for all λ > 0 (so that λ = 0) is that

1 + d(i)

d(i)+ b(i)
≥ ci−γ for some γ < 1. (1.5)

Indeed, a bound of the same order then applies for (λ+ d(i))/(λ+ b(i)+ d(i)) and, hence,
by the Taylor expansion and integral approximation, the exponent in (1.4) decays at least like
−k1−γ , making the sum convergent. Also, note that (C1)—or, more specifically, the fact that
λ < ∞—guarantees that the process does not explode in finite time: a sufficient condition
for nonexplosion is that E[ξ(t)] < ∞ for some t > 0 (see [12, Theorem 6.2.2]), and, since
ρ(t) dt = E[ξ(dt)], it is clear that λ cannot be finite if this does not hold.

We are now ready to formulate the main theorem, which is a characterization of the asymp-
totic fitness distribution in the vertex population. To this end, recall that Zt is the number of
alive vertices at time t and write Zkt for the number of alive vertices at time t with fitness k.
Furthermore, let L be a random variable distributed as the lifetime of a vertex.

Theorem 1.1. Assume that b and d satisfy conditions (C1) and (C2). Then, for all k, on the
event {Zt → ∞}, almost surely,

lim
t→∞

Zkt

Zt
= C

λ∗ + b(k)+ d(k)

k−1∏
i=0

b(i)

λ∗ + b(i)+ d(i)
,

where

C−1 =
∫ ∞

0
e−λ∗t P(L > t) dt

and the empty product arising for k = 0 is defined as 1.

The rest of the paper is organized as follows. In Section 2 we state the results we shall need
from the theory of branching processes and, in Section 3, Proposition 1.1 and Theorem 1.1
are proved. Then, in Section 4, the limiting distribution in Theorem 1.1 is analyzed in more
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detail for a number of specific choices of b(i) and d(i). In Section 5, a formula is given for
the asymptotic degree distribution in a network where the birth and death rates are based on
the momentaneous in-degrees rather than the fitnesses (that is, the accumulated in-degrees).
Unfortunately, this expression is hard to analyze, but simulation results are presented that
indicate that the qualitative behaviour of the distribution is the same as for the fitnesses. Finally,
some possibilities for further work are mentioned in Section 6.

2. Preliminaries on branching processes

The corpus of literature on branching processes is vast and we do not intend to give a survey;
for this, see [12] or the more expository book by Haccou et al. [11]. We shall however briefly
explain the concepts that are needed to establish Theorem 1.1. These revolve around general
branching processes counted with random characteristics. In a general branching process, the
individuals reproduce independently of each other according to a random point process ξ on
[0,∞) during a lifetimeL, where there are no restrictions on the dependence structure between
ξ and L. An individual x can be represented as x = (j1, . . . , jn), indicating that x is the jnth
child of the jn−1th child . . . of the j1th child of the ancestor. Hence, the space of possible
individuals is

	 =
∞⋃
i=0

N
n.

Write σx for the time when the individual x is born, that is, σ0 = 0 and, if x is the ith child of
individual x′, then σx = σx′ + inf{t : ξx′(t) ≥ i}.

Roughly, when counting a branching process with a random characteristic, a random score is
assigned to each individual and the quantity of interest is then the total score in the population.
More specifically, let φ(t) be a real-valued stochastic process with φ(t) = 0 for t ≤ 0 giving
the score of an individual of age t . The score of the individual x at time t is then given by
φx(t) = φ(t − σx) and the total score in the population at time t becomes

Z
φ
t =

∑
x∈	

φx(t).

Examples of common characteristics are φ(t) = 1{t ≥ 0}, in which case Zφt is the number
of individuals born up to time t , and φ(t) = 1{0 ≤ t < L}, in which case Zφt is the number
of individuals that are alive at time t—for this quantity, we shall use the notation Zt . These
characteristics are both individual, meaning that ξx depends only on the process of descendants
of x. Characteristics that also involve information about preceding generations are called
relational. An example of such a characteristic that we shall be interested in below is when an
individual is assigned the value 1 if its mother is still alive and 0 otherwise.

The Laplace transform ρ̂(λ) of the density ρ(t) of ξ and the related quantity λ are defined as
in (1.2) and (1.3). The solution λ∗ to the equation ρ̂(λ) = 1 is called the Malthusian parameter
and the process is subcritical, critical, or supercritical depending on whether λ∗ is less than 0,
equal to 0, or greater than 0, respectively. A more frequent formulation of the definition of λ∗
in the literature is as the solution to the equation∫ ∞

0
e−λt E[ξ(dt)] = 1,

where, as in Section 1.1, ξ(t) = ξ([0, t]). Since E[ξ(dt)] = ρ(t) dt , the formulations are
clearly equivalent.
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Now, Theorem 1.1 will turn out to be a direct consequence of the following result concerning
almost-sure convergence of ratios of random characteristics.

Theorem 2.1. ([17].) Consider a supercritical branching process with Malthusian parameter
λ∗ > λ, and let φ and ψ be two individual characteristics satisfying

E
[
sup
t

{e−λtφ(t)}
]
< ∞ for some λ < λ∗, (2.1)

and likewise for ψ . Then, on the event {Zt → ∞}, almost surely,

Z
φ
t

Z
ψ
t

→ φ̂(λ∗)
ψ̂(λ∗)

,

where φ̂(λ) = ∫ ∞
0 e−λt E[φ(t)] dt .

Remark 2.1. The characteristics we shall work with will in general be bounded and, for such
characteristics, (2.1) is trivially satisfied.

Remark 2.2. As pointed out in [11, p. 163], the conclusion of the theorem also holds for
relational characteristics provided that these depend only on a finite number of preceding
generations; see [13] for details.

3. Proofs

We now return to the specific setting defined in Section 1.1, where ξ is the point process
generated by the described birth and death rules.

Proof of Proposition 1.1. The expression for ρ̂(λ) follows from straightforward calcula-
tions. First note that

ρ̂(λ) =
∞∑
k=0

b(k)

∫ ∞

0
e−λt P(ξ(t) = k ∩ L > t) dt,

where, trivially,

P(ξ(t) = k ∩ L > t) = P(ξ(t) = k)− P(ξ(t) = k ∩ L ≤ t).

Consider a generic vertex (the root vertex for instance) and write Ti for the time, counting from
the birth of the vertex, when its ith child is born, with Ti := ∞ if ξ(∞) < i. Also, when
Ti < ∞, define
bi = Ti+1 −Ti and let
di be the time, counting from Ti , until the vertex dies.
For k = 0, we obtain

∫ ∞

0
e−λt P(ξ(t) = 0 ∩ L > t) dt =

∫ ∞

0
e−(λ+b(0)+d(0))t dt

= 1

λ+ b(0)+ d(0)
,

where e−(b(0)+d(0))t is the probability that nothing happens in the process up to time t . To deal
with k ≥ 1, note that

P(ξ(t) = k) = P(ξ(t) = k | Tk < ∞)P(Tk < ∞),
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with

P(ξ(t) = k | Tk < ∞) = P(ξ(t) ≥ k | Tk < ∞)

− P(ξ(t) ≥ k + 1 | Tk+1 < ∞)P(Tk+1 < ∞ | Tk < ∞).

Here

P(ξ(t) ≥ k | Tk < ∞) = P

(k−1∑
i=0


bi ≤ t

∣∣∣∣ Tk < ∞
)
,

where, conditionally on Tk < ∞, the variables 
b0, . . . , 

b
k−1 are independent and 
bi is

exponentially distributed with parameter b(i)+ d(i). Similarly,

P(ξ(t) = k ∩ L ≤ t) = P(ξ(t) = k ∩ L ≤ t | Tk < ∞ ∩ Tk+1 = ∞)

× P(Tk < ∞ ∩ Tk+1 = ∞)

with
P(ξ(t) = k ∩ L ≤ t | Tk < ∞ ∩ Tk+1 = ∞)

= P

(k−1∑
i=0


bi +
di ≤ t

∣∣∣∣ Tk < ∞ ∩ Tk+1 = ∞
)
,

where, conditionally onTk < ∞∩Tk+1 = ∞, the variables
b1, . . . , 

b
k−1,


d
k are independent,


bi is exponentially distributed with parameter b(i)+ d(i), and
dk is exponentially distributed
with parameter b(k)+ d(k). Also, note that

P(Tk < ∞) =
k−1∏
i=0

b(i)

b(i)+ d(i)
=: qk,

P(Tk+1 < ∞ | Tk < ∞) = b(k)

b(k)+ d(k)
=: q ′

k,

P(Tk < ∞ ∩ Tk+1 = ∞) = d(k)

b(k)+ d(k)

k−1∏
i=0

b(i)

b(i)+ d(i)
=: q ′′

k .

For independent exponential variables {Xi}, where Xi has parameter b(i)+ d(i), write

Ik =
∫ ∞

0
e−λt P(X0 + · · · +Xk−1 ≤ t) dt.

Combining all of the above, we obtain

ρ̂(λ) = b(0)

λ+ b(0)+ d(0)
+

∞∑
k=1

b(k)(qkIk − (qkq
′
k + q ′′

k )Ik+1), (3.1)

and all that remains is to note that

Ik = 1

λ

∫ ∞

0
e−λtfX0+···+Xk−1(t) dt = 1

λ

k−1∏
i=0

b(i)+ d(i)

λ+ b(i)+ d(i)
,

where the first equality follows from partial integration and the second from independence.
Substituting this, and the expressions for qk , q ′

k , and q ′′
k , into (3.1) gives the desired formula

for ρ̂(λ).
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We proceed to prove the main result, Theorem 1.1, which, as already mentioned, follows
from Theorem 2.1.

Proof of Theorem 1.1. Consider the characteristic

φ(t) = 1{ξ(t) = k ∩ 0 < t < L},
that is, Zφt = Zkt is the number of alive vertices with k children at time t , and let ψ(t) = 1{0 <
t < L} so that Zψt = Zt is the number of alive vertices at time t . These characteristics are both
bounded, and, hence, since b and d are assumed to be such that (C1) and (C2) are satisfied,
all assumptions of Theorem 2.1 are fulfilled. It follows that, on the event Zt → ∞, the ratio
Zkt /Zt converges almost surely to the limit identified in Theorem 2.1. The expression in the
denominator becomes

φ̂(λ∗) =
∫ ∞

0
e−λ∗t P(ξ(t) = k ∩ L > t) dt,

and identical calculations as in the proof of Proposition 1.1 yield the formula in Theorem 1.1.

4. Examples

We now investigate the behaviour of the limiting fitness distribution in Theorem 1.1 for a few
specific choices of birth and death rates b and d. The limiting distribution is henceforth denoted
by {pk}. Furthermore, for two sequences {ak} and {bk} of real numbers, we write ak ∼ bk to
denote that ak/bk converges to a strictly positive constant as k → ∞.

Example 4.1. First consider the case when b(i) = i + α and d(i) = β with α > 0, that is, the
birth rate is a linear function of the fitness and the vertices die at a constant rate. This means
that a new vertex is connected to an existing vertex with a probability that depends linearly on
the fitness of the existing vertex, and the vertices die at random. Using the relation

k∏
i=0

(i + c) = �(k + 1 + c)

�(c)
,

we obtain

ρ̂(λ) =
∞∑
k=0

k∏
i=0

i + α

λ+ i + α + β
= �(λ+ α + β)

�(α)

∞∑
k=0

�(k + 1 + α)

�(k + 1 + α + β + λ)
.

Van der Hofstad et al. [20, Lemma 5.4] derived the formula

n∑
k=0

�(k + a)

�(k + c)
= 1

1 + a − c

(
�(n+ 1 + a)

�(n+ c)
− �(a)

�(c − 1)

)
, (4.1)

and, by Stirlings formula, �(k + c)/�(k) ∼ kc as k → ∞. It follows that

ρ̂(λ) =
⎧⎨
⎩

∞ if λ ≤ 1 − β,
α

λ+ β − 1
otherwise.
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Hence, λ∗ = 1 + α− β, implying that the process is supercritical if β < α+ 1. For the fitness
distribution, we obtain

pk = C

k + 1 + 2α

k−1∏
i=0

i + α

i + 1 + 2α
= C′ �(k + α)

�(k + 2 + 2α)
∼ k−(2+α).

The limiting behaviour of the fitness distribution is hence unaffected by the vertex death. This is
explained by the fact that the vertices die randomly, that is, given that the next thing to occur is
a vertex death, the vertex to die is chosen uniformly at random, and such a mechanism does not
affect the tail behaviour of the power-law distribution generated by the birth mechanism. With
α = 1, the expression for pk is in agreement with previous results for pure linear preferential
attachment.

Recall that, given the development of the process up to time t , the probability that the next
event occurring is a vertex birth is given by (1.1), where Axt is the fitness of vertex x at time t .
If the characteristics given by φx(t) = b(Axt−σx ) andψx(t) = d(Axt−σx ) satisfy condition (2.1),
then it follows from Theorem 2.1 that the probability converges almost surely to a number in
(0, 1). This number is in general difficult to determine, but in the current case, defining the
total fitness by Atot

t = ∑
x∈Zt

Axt , we obtain

∑
x∈Zt

b(Axt )∑
x∈Zt

(b(Axt )+ d(Axt ))
= Atot

t + αZt

Atot
t + (α + β)Zt

.

The total fitness in the alive population can be obtained by counting the population by the
characteristicψ(t) = 1{t > 0 and the mother of the individual is alive}. Hence, by Theorem 2.1
and Remark 2.2, the ratio Atot

t /Zt converges to 1 almost surely and it follows that

lim
t→∞ P(the next event is a vertex birth) = 1 + α

1 + α + β
.

This probability is strictly larger than 1
2 precisely when β < α+ 1, that is, when the process is

supercritical.

Example 4.2. Next consider the case when b(i) = i + 1 and d(i) = β(i + 1), that is, both the
birth and death rates are linear functions of the fitness. In this case, by (1.5) we have ρ̂(λ) < ∞
for all λ > 0, and it is given by

ρ̂(λ) =
∞∑
k=0

k∏
i=0

i + 1

λ+ (1 + β)i + (1 + β)

= �

(
λ+ 1 + β

1 + β

) ∞∑
k=0

�(k + 2)

�(k + 1 + (λ+ 1 + β)/(1 + β))

1

(1 + β)k

= F

(
1, 1,

λ+ 1 + β

1 + β
,

1

1 + β

)
− 1,

where F denotes the Gauss hypergeometric function; see Chapter 15 of [1]. The equation
ρ̂(λ∗) = 1 cannot be solved explicitly, but a numerical solution is easily obtained for a given
value of β. The process is supercritical precisely when β < 1, since the expected number of
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children produced by a vertex is given by

E[ξ(∞)] =
∞∑
k=1

P(ξ(∞) ≥ k) =
∞∑
k=1

k−1∏
i=0

b(i)

b(i)+ d(i)
=

∞∑
k=1

1

(1 + β)k
= 1

β
. (4.2)

The asymptotic fitness distribution is

pk = C

λ∗ + (1 + β)(k + 1)

k−1∏
i=0

i + 1

λ∗ + (1 + β)(i + 1)

= C′ �(k + 1)

�(k + 3 + λ∗/(1 + β))

1

(1 + β)k

∼ k−(2+λ∗/(1+β)) 1

(1 + β)k
.

A mechanism where the vertices die at a rate proportional to their fitness therefore destroys the
power-law distribution obtained without vertex deaths regardless of how small the proportion-
ality constant is, and instead produces a (super)exponentially decaying fitness distribution.

We note that b(i) = (i + 1)γ and d(i) = β(i + 1)γ give rise to the same exponential decay
for any γ > 0. Indeed,

pk = 1

λ∗ + (1 + β)(k + 1)γ

k−1∏
i=0

(i + 1)γ

λ∗ + (1 + β)(i + 1)γ

∼ 1

(1 + β)k
exp

(
−
k−1∑
i=0

log

(
1 + λ∗

(1 + β)(i + 1)γ

))
,

where the sum in the exponent grows like k1−γ for γ < 1 and is convergent for γ > 1.

Example 4.3. Next take b(i) = i + 1 and d(i) = β(i + 1)η for β < 1 and η ∈ (0, 1). Also, in
this case ρ̂(λ) < ∞ for all λ and, by comparison with the previous example, β < 1 guarantees
that the process is supercritical. For the fitness distribution, we obtain

logpk ∼ −
k∑
i=0

log

(
1 + λ∗ + β(i + 1)η

i + 1

)
∼ −kη.

Vertex deaths determined by a sublinear function of the fitness therefore also destroy the power-
law distribution obtained without vertex death, bringing it down to a stretched exponential
distribution. In contrast to the case when the vertices die at random however, the tail behaviour
of the distribution is changed by the vertex deaths.

Again, we note that b(i) = (i + 1)γ and d(i) = β(i + 1)η for arbitrary γ > η > 0 with
γ − η ∈ (0, 1) give rise to the same type of fitness distribution: a similar derivation as above
implies that logpk ∼ −k1−(γ−η).

Example 4.4. Finally, consider a situation with b(i) = α and d(i) = (i + 1)−1, that is, new
vertices attach randomly to existing vertices and vertex deaths occur inversely proportional to
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the fitness. Analogously to (4.2) we obtain

E[ξ(∞)] = �

(
1 + 1

α

) ∞∑
k=1

�(k + 1)

�(k + 1/α)
,

and, using (4.1), it follows that

E[ξ(∞)] =
⎧⎨
⎩

∞ if α ≥ 1,
α

1 − α
otherwise.

Hence, the process is supercritical if and only if α > 1
2 . The Laplace transform is

ρ̂(λ) =
∞∑
i=0

(
α

λ+ α

)k+1
�(k + 2)

�(k + 2 + 1/(λ+ α))

= F

(
1, 1, 1 + 1

λ+ α
,

α

λ+ α

)
− 1,

where again F is the hypergeometric function, and the equation ρ̂(λ∗) = 1 is easily solved
numerically for a given value of α. As for the fitness distribution, we have

pk = 1

λ∗ + α + 1/(k + 1)

k−1∏
i=0

α

λ∗ + α + 1/(k + 1)

= 1

α

(
α

λ∗ + α

)k+1
�(k + 2)

�(k + 2 + 1/(λ∗ + α))

∼
(

α

λ∗ + α

)k
k−1/(λ∗+α),

that is, the fitness distribution decays (super)exponentially at rate α/(λ∗ + α). The fact that
vertices that are not successful in acquiring edges die at a higher rate is hence not sufficient in
itself to explain the power-law distributions for the fitnesses.

5. The in-degrees

As mentioned in Section 1.1, the fitnesses (that is, the accumulated in-degrees) are often
the primary object of interest when studying a network incorporating vertex death. However,
there are also situations when the momentaneous in-degrees, henceforth referred to as just the
in-degrees, are the relevant quantities. This is presumably the case for instance when modelling
the World Wide Web. In this section we demonstrate how a formula for the asymptotic in-degree
distribution follows from the same method as for the fitnesses and we present simulation results
that show that the in-degree distribution behaves in a similar way to the fitness distribution.

Consider a vertex population that evolves in the same way as described above, with the
difference that the birth and death rates are based on the in-degrees rather than the accumulated
in-degrees. More specifically, a vertex that is alive at time t and has i alive children at time t
gives birth to a new vertex at rate b(i) and dies at rate d(i). Let ξ̃ be a random point process on
[0,∞)with points (representing the births) generated according to these rules. We use the same
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notation as before, equipped with a wave-hat for quantities related to ξ̃ , omitting the original
hat for the Laplace transform of the reproduction function. The Laplace transform is given by

ρ̃(λ) =
∞∑
k=0

b(k)

∫ ∞

0
P(ξ̃ (t) = k ∩ L̃ > t) dt, (5.1)

and λ̃∗ is defined by ρ̃(λ̃∗) = 1. Furthermore, if b(i) and d(i) satisfy the analogues of (C1)
and (C2), it follows from Theorem 2.1 that

lim
t→∞

Z̃kt

Z̃t
=

∫ ∞
0 et λ̃

∗
P(ξ̃ (t) = k ∩ L̃ > t) dt∫ ∞
0 P(L̃ > t) dt

, (5.2)

that is, the fraction of vertices with in-degree k converges almost surely and the limit is given by
the right-hand side of (5.2). Unfortunately, it does not seem possible to derive a more explicit
expression for the limit in this case. The event that a vertex of age t has k alive children occurs
if the vertex has given birth to n children for some n ≥ k and n− k of these children have died
before the vertex has reached the age t . To find an expression for the probability of this event
that leads to a tractable formula for the integral in (5.1) and the numerator of (5.2) does not
seem possible.

To get a grip of the asymptotic in-degree distribution, we turn to simulations. These indicate
that the qualitative behaviour of the in-degrees is the same as for the fitnesses. Figure 1
shows simulated in-degrees and fitnesses plotted on a log–log scale for b(i) = i + 1 and
d(i) = 0.5. In Example 4.1 it was shown that the asymptotic fitnesses in this case follow a
power-law distribution with exponent 3, and Figure 1 reveals that the in-degrees seem to follow
the same type of distribution, although the exponent appears to be slightly larger. Figure 2
shows simulated in-degrees and fitnesses for b(i) = i + 1 and d(i) = 0.5(i + 1), with a log
scale on the y-axis. The asymptotic fitness distribution was shown in Example 4.2 to have
an exponentially decaying tail in this case, and the same seems to be true for the in-degrees.
Finally, Figure 3 shows simulated in-degrees and fitnesses on a log–log scale for b(i) = i + 1

10–3

10–2

10–1

100

100 101 102 103

101

102

Figure 1: Simulation with b(i) = i + 1 and d(i) = 0.5. The figure shows the tail probabilities of the
fitness distribution (stars) and the in-degree distribution (circles).
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Figure 2: Simulation with b(i) = i + 1 and d(i) = 0.5(i + 1). The figure shows the tail probabilities of
the fitness distribution (stars) and the in-degree distribution (circles).
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100

101

102

100 101 102

Figure 3: Simulation with b(i) = i + 1 and d(i) = 0.5(i + 1)0.5. The figure shows the tail probabilities
of the fitness distribution (stars) and the in-degree distribution (circles).

and d(i) = 0.5(i + 1)0.5. The plot reveals a slightly curved behaviour for both the in-degrees
and the fitnesses which is significative for a stretched exponential distribution and in agreement
with the analytical result for the fitness distribution. Note that, in all three cases, the tail of
the in-degree distribution seems to decay faster than the tail of the fitness distribution. All
simulations have been run until the number of alive vertices equals 100 000.

6. Further work

There are a number of questions about the studied model that deserve further investigation.
What about the global properties of the obtained structure for instance? If the ghost links are
included we get a random tree, analyzed in [19], and excluding the ghost links gives rise to a
forest. Will there be an infinite component in this forest? How does the answer depend on b(i)
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and d(i)? Another issue to look into is the time evolution of the process. For models without
vertex death, it is known that the maximal degree grows polynomially with the same order as
the first vertex; see [16]. Is this the case also in the current setting for the maximal fitness?
Recently, Dehrich and Mörters [10] have shown for a model with attachment function kγ and
no vertex death that there is a phase transition at γ = 1

2 : if γ > 1
2 , there is a persistent hub that

will be of maximal degree at all but at most finitely many times, while, if γ < 1
2 , there is no

persistent hub. Is there a similar phenomenon in a model with vertex death?
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