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Abstract. This paper studies Hausdorff–Young inequalities for certain group extensions, by use of

Mackey’s theory. We consider the case in which the dual action of the quotient group is free almost ev-

erywhere. This result applies in particular to yield a Hausdorff–Young inequality for nonunimodular

groups.

Introduction

In this paper we deal with a definition of Lp-Fourier transform on locally compact
groups. Recall that for locally compact abelian groups the Hausdorff–Young inequal-
ity reads:

Let 1 < p < 2 and q = p/(p − 1). If g ∈ L1(G) ∩ Lp(G), then ĝ ∈ Lq(Ĝ), with

‖ĝ‖q ≤ ‖g‖p.

The inequality allows us to extend the Fourier transform to a continuous operator
Fp : Lp → Lq by continuity. It was generalized to type I unimodular groups by

Kunze [13]. Over the years, various authors derived Hausdorff–Young inequalities,
both for concrete groups [1, 7, 8, 14] and for certain classes of groups [2, 10, 16–18],
with the aim of getting a more precise bound in the inequality.

The formulation of the results for nonabelian groups requires a certain amount of

notation. Given a locally compact group G, we denote by Ĝ its unitary dual, i.e., the
set of (equivalence classes of) irreducible unitary representations, endowed with the
Mackey Borel structure. The dual space is used to define the operator valued Fourier
transform by letting

L1(G) ∋ g 7→ F
1(g) := (σ(g))σ∈Ĝ,

where σ(g) is defined by the weak operator integral

σ(g) =

∫

G

g(x)σ(x) dx.

The main task for Plancherel theory in the nonabelian setting is to find suitable Ba-
nach spaces for these operators, which is what we describe next.
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For a Hilbert space H, we denote by Bp(H) the set of bounded operators T such

that (T∗T)p/2 is trace class. Then Bp(H) is a Banach space with the obvious norm

‖T‖p = tr((T∗T)p/2)1/p. The Plancherel theorem for type I unimodular locally com-

pact groups [5, 18.8.2] provides the existence of a Plancherel measure νG on Ĝ with
the following properties: given a measurable realization (σ,Hσ) of representatives

from Ĝ, denote by B
⊕
p (p > 1) the space of operator fields A = (Aσ)σ∈Ĝ such that

Aσ ∈ Bp(Hσ) a.e., and moreover that

‖A‖p := ‖(Aσ)σ‖B
⊕
p

:=
(∫

Ĝ

‖Aσ‖
p
p dνG(σ)

) 1/p

is finite. It is routine to check that (B⊕
p , ‖ · ‖B

⊕
p

) is a Banach space; for p = 2 it
is even a Hilbert space. It is convenient to use the notation B⊕

∞ for the space of

uniformly bounded operator fields. Note that since ‖π(g)‖ ≤ ‖g‖1, for arbitrary
representations of g we have the estimate

(0.1) ‖F(g)‖∞ ≤ ‖g‖1.

Now the Plancherel theorem for unimodular groups states that for the unique Plan-
cherel measure νG, and for all g ∈ L2(G) ∩ L1(G), we have

(0.2) ‖F(g)‖
B

⊕

2

= ‖g‖2.

This gives rise to the Plancherel transform

P = F
2 : L2(G) → B

⊕

2 ,

which is a unitary equivalence. The Hausdorff–Young inequality then states that, for
all 1 ≤ p ≤ 2 and g ∈ Lp(G) ∩ L1(G), we have

(0.3) ‖F(g)‖
B

⊕
q
≤ ‖g‖p,

where q = p/(p−1), which uniquely defines a Fourier transform Fp : Lp(G) → B⊕
q .

The proof of the inequality usually involves interpolation techniques to derive the
estimate from the inequalities at the “endpoints”, i.e., from (0.1) and (0.2). However,

for a sharper estimate of the operator norm of Fp, in the following denoted by Ap(G),
other techniques are required.

For nonunimodular groups, an additional complication arises. As Khalil showed
for the ax+b-group [11], there exist g ∈ Cc(G) such that for νG-almost all σ, F1(g)(σ)
is not a compact operator and hence F1(g) 6∈ B⊕

q for arbitrary q!

However, there is a way to save the Plancherel theorem, first obtained in [11] for
the ax+b-group and proved later on in full generality [6]. The Plancherel theorem
in [6] can be phrased as follows: let g be a nonunimodular locally compact group with
type I regular representation. There exists a field of unbounded selfadjoint operators
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(Kσ)σ∈Ĝ, called formal dimension operators, and a measure νG on Ĝ, such that, for ev-

ery g ∈ L2(G)∩ L1(G) and νG-almost every σ, the densely defined operator σ(g)K
1/2
σ

extends to a Hilbert–Schmidt operator, denoted [σ(g)K
1/2
σ ], and moreover

∫

Ĝ

∥∥ [σ(g)K1/2
σ ]

∥∥ 2

2
dνG(σ) = ‖g‖2

2 .

The operators are unique up to scalar multiples, and once they are fixed, so is the

measure νG. Similar results were obtained by [12, 19].
In the literature there does not seem to be an accessible general treatment of the

Hausdorff–Young inequality for nonunimodular groups. Terp proved such a result in
the preprint [20]; however the paper seems never to have appeared. Several authors

established Hausdorff–Young inequalities for the ax+b-group [7, 16]. To my knowl-
edge, the largest class of groups under consideration were the solvable Lie groups
acting on Siegel domains, as investigated by Inoue [10]. The result is fairly intuitive,
once we have seen how to treat the L2-case: letting

F
p(g)(σ) := [σ(g)K1/q

σ ]

gives a well-defined operator from L1(G) ∩ Lp(G) into B⊕
q fulfilling

‖Fp(g)‖q ≤ ‖g‖p.

The first theorem shows that this result is true for more general nonunimodular

groups:

Theorem 1 Let G be a nonunimodular locally compact group such that λG is type I
and N = Ker(∆G) is type I. Let (Kσ)σ∈Ĝ denote the field of formal degree operators,

and νG the Plancherel measure of G belonging to that field. Let 1 < p < 2 and q =

p/(p − 1).

Then, for all g ∈ L1(G) ∩ Lp(G) and νG-almost all σ ∈ Ĝ, the operator σ(g)K
1/q
σ

has a bounded extension [σ(g)K
1/q
σ ] ∈ Bq(Hσ), and we have the inequality

(∫

Ĝ

∥∥ [σ(g)K1/q
σ ]

∥∥ q

Bq(Hσ)
dνG(σ)

) 1/q

≤ Ap(N)‖g‖p,

i.e., Ap(G) ≤ Ap(N).

Note that the estimate Ap(G) ≤ Ap(N) is a sharpening of Terp’s result [20, Theo-

rem 4.1], which states Ap(G) ≤ 1.
Theorem 1 is a special case of a more general, somewhat technical result (Theo-

rem 2), which proves a Hausdorff–Young inequality for certain group extensions

1 → N → G → H → 1

with the additional properties that N and H are unimodular and the dual action of
H on N̂ is free νN -almost everywhere.
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1 Group Extensions With Free Dual Actions

Now let G be a second countable locally compact group. Let µG denote the left-
invariant Haar measure and ∆G the modular function of G. We assume that G is
an extension of the unimodular normal subgroup N , and that H = G/N is uni-

modular as well. Moreover we assume that N is type I and G has a type I regular
representation, and we denote the Plancherel measures by νN and νG, respectively. It
is well known that H acts on N̂ via conjugation, denoted by H × N̂ ∋ (γ, σ) 7→ γ.σ.

Mackey’s theory allows the computation of Ĝ from this action, at least under certain

regularity conditions. The Mackey machine also provides the means to compute the
Plancherel measure, under suitable assumptions on N and the dual action [12]. Our
main technical assumption is the following:

(A) There exists a Borel νN -conull subset U ⊂ N̂ with the following prop-

erty: U is H-invariant with U/H standard. Moreover, for all σ0 ∈ U ,

IndG
N σ0 ∈ Ĝ.

In view of Mackey’s theory, we obtain the following consequences:

(i) IndG
N σ0 ∈ Ĝ for every σ0 ∈ U implies that H operates freely on the orbit H.σ0.

Moreover, IndG
N induces an injective map Ind : U/H →֒ Ĝ.

(ii) Since U/H is standard, there exists a measure decomposition along H-orbits
(e.g., [12, Theorem 2.1]). More precisely, there exist measures βH.σ0

on the or-
bits, such that the Plancherel measures of N and G satisfy the relation

(1.1) dνN (ρ) = dβH.ρ(ρ)dνG(H.ρ).

That the Plancherel measure of G may be obtained as a quotient measure of νN

follows from Theorem [12, I, 10.2]. For this we need to check four conditions:

(a) λN is type I with νN concentrated in N̂t . This follows from the type I property

of N .
(b) νN/H is countably separated. This holds by (A).
(c) νN -almost every little fixed group is trivial. This holds by (A).
(d) λG is type I. This holds by assumption.

(iii) The fact that H acts freely on U entails that U can be seen as a product space

H × U0, by the following arguments: since both U and U/H are standard, (U
as a Borel subset of N̂), [15, Theorem 5.2] provides the existence of a Borel
transversal, i.e., a Borel subset U0 ⊂ U meeting each H-orbit in precisely
one point. Hence the freeness of the operation yields a measurable bijection

H×U0 ≡ U , (γ, σ0) 7→ γ.σ0, which is a Borel isomorphism [15, Theorem 3.2].
In the following, for σ ∈ V we use the symbol σ0 ∈ U0 to denote the represen-
tative of the associated dual orbit.

(iv) The Borel isomorphism U ≡ H ×U0 allows us to write down the measure dis-

integration (1.1) much more explicitly. For this purpose we define the mapping
ψ : (h, σ0) 7→ ∆G(h) on U . Note that ψ ≡ 1 iff G is unimodular. Then (1.1)
becomes

(1.2) dνN(h, σ0) = ψ(h)dµH(h)dνG(σ).
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Indeed, a straightforward computation shows that νN (γ.A) = ∆G(γ)νN (A).
This shows that

dβH.σ0
(γ.σ0) = α(H.σ0)ψ(γ)dµH(γ),

for some scalar factor α(H.σ0). Now νG can be renormalized to achieve that
these factors are one.

(v) For the following calculations, σ = IndG
N σ0 is realized via cross sections on

Hσ = L2(H, dµH ; Hσ0
) (see Lemma 4). We define a family of operators Kσ on

Hσ given by multiplication with ∆G:

(Kση)(h) = ∆G(h)η(h),

and dom(Kσ) is the set of all η ∈ L2(H, dµH ; Hσ0
) for which this product is also

square integrable.

Obviously Kσ is the identity operator if G is unimodular. In the other case,
Kσ is precisely the formal dimension operator, as can be seen by verifying the
semi-invariance relation

σ(x)Kσσ(x)∗ = ∆G(x)−1Kσ,

observing that the formal dimension operators obey the same relation [6, The-
orem 5], and then applying the uniqueness statement [6, Lemma 1].

2 Hausdorff–Young Inequalities for Group Extensions

The following theorem is the main result of this paper.

Theorem 2 Let a group extension 1 → N → G → H → 1 be given with N,H
unimodular, N a type I group, and λG a type I representation. Assume that Assumption

(A) holds. Let (Kσ)σ∈Ĝ denote the field of multiplication operators given in (v) above.

Let 1 < p < 2 and q = p/(p − 1).

Then, for all g ∈ L1(G) ∩ Lp(G) and νG-almost all σ ∈ Ĝ, the operator σ(g)K
1/q
σ

has a bounded extension [σ(g)K
1/q
σ ] ∈ Bq(Hσ), and we have the inequality

(∫

Ĝ

∥∥ [σ(g)K1/q
σ ]

∥∥ q

Bq(Hσ)
dνG(σ)

) 1/q

≤ Ap(N)‖g‖p,

i.e., Ap(G) ≤ Ap(N).

Before we prove this result, let us show how the nonunimodular case follows from
it:

Proof of Theorem 1 N = Ker(∆G) is a normal unimodular subgroup, with H =

G/N abelian. Assumption (A) holds by [6, Theorem 6]. Thus Theorem 2 implies
Theorem 1.
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We now proceed with the proof of Theorem 2. It turns out that it is a quite natural
extension of the arguments used in [16] for the ax+b-group, essentially by combining

it with techniques from [12]. First we show how σ( f ) acts via an operator valued
integral kernel. We then use an estimate of the p-norm of such operators by certain
cross norms, as provided by [9].

The first lemma computes the Haar measure of G in terms of µN and µH , and fixes

the normalizations we use in the following. Note that, since N is normal, ∆G|N =

∆N = 1, hence ∆G can (and will) be regarded as a function on H.

Lemma 3 Fix a measurable cross section α : H → G. Then the mapping N × H ∋
(n, h) 7→ nα(h) ∈ G is an isomorphism of Borel spaces. We use the notation g =

nα(h) ≡ (n, h). Then

(2.1) dµG(n, h) = dµN(n)∆G(h)dµH(h)

is a left Haar measure.

Proof The map (n, h) 7→ nα(h) is a measurable bijection between standard Borel
spaces, and thus a Borel isomorphism [15, Theorem 3.2]. Fix g = nα(h), g ′

=

n ′α(h ′) ∈ G, then

gg ′
= n α(h)n ′α(h)−1 α(h)α(h) ′α(hh ′)−1 α(hh ′)

with α(h)n ′α(h)−1, α(h)α(h) ′α(hh ′)−1 ∈ N (observing N ⊳ G). Hence right trans-
lation on G corresponds to right translation in the variables n, h, though not by n ′, h ′.

Now the right invariance of µN , µH entails that dµN(n)dµH(h) is a right Haar mea-
sure on G. But then ∆GdµNdµH is a left Haar measure.

The following two lemmas provide the integral kernels:

Lemma 4 Let σ0 ∈ U0 and σ = IndG
N σ0. Define the cocycle Λ : H × H → N by

Λ(γ, ξ) = α(ξ)−1α(γ)α(α(γ)−1ξ).

If we realize σ on L2(H, dµγ ; Hσ) via the cross section α, we obtain for x = nα(γ)

(2.2) (σ(x) f )(ξ) = (ξ.σ0)(n)σ0(Λ(γ, ξ)) f (γ−1ξ).

Proof Since the measure is invariant, the formula for induction via cross sections

yields

(σ(n, γ) f )(ξ) = σ0

(
α(ξ)−1nα(γ)α(α(γ)−1n−1ξ)

)
f (α(γ)−1n−1ξ)

= σ0

(
α(ξ)−1nα(ξ)Λ(γ, ξ)

)
f (γ−1ξ)

= (ξ.σ0)(n)σ0(Λ(γ, ξ)) f (γ−1ξ),

where α(γ)−1n−1ξ = α(γ)−1ξ is due to N ⊳ G .
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The next step consists in integrating this representation:

Lemma 5 Let σ0 ∈ U0 and σ = IndG
N σ0. For g ∈ L1(G) and γ ∈ H, let gγ :=

g(·, γ). Then σ(g) : L2(H, dµH ; Hσ0
) → L2(H, dµH ; Hσ0

) can be written as

σ(g) f (ξ) =

∫

H

kσ(ξ, γ) f (γ) dγ,

where kσ is an operator valued integral kernel given by

kσ(ξ, γ) = (ξ.σ0)(gξγ−1 ) ◦ σ0(Λ(ξγ−1, ξ)) · ∆G(ξγ−1).

Proof First note that by Fubini’s theorem gγ ∈ L1(N), for almost every γ ∈ H,

which justifies the use of (ξ.σ0)(gξγ−1 ). The following formal calculations can be
made rigorous by plugging them into scalar products, according to the definition of
the weak operator integral. Using the previous lemma and unimodularity of H, we
see that

(σ(g) f )(ξ) =

∫

H

∫

N

g(n, γ)(ξ.σ0)(n)σ0(Λ(γ, ξ)) f (γ−1ξ) dn∆G(γ) dγ

=

∫

H

(ξ.σ0)(gγ)σ0(Λ(γ, ξ)) f (γ−1ξ)∆G(γ) dγ

=

∫

H

(ξ.σ0)(gγ−1 )σ0(Λ(γ−1, ξ)) f (γξ)∆G(γ−1) dγ

=

∫

H

(ξ.σ0)(gξγ−1 )σ0(Λ(ξγ−1, ξ))∆G(ξγ−1) f (γ) dγ,

which is the desired formula.

Proof of Theorem 2 Let g ∈ Lp(G)∩L1(G) be given. By Lemma 5 and the definition

of Kσ , we find that σ(g)K
1/q
σ has the operator-valued kernel

kσ(ξ, γ) = (ξ.σ0)(gξγ−1 )σ0(Λ(ξγ−1, ξ))∆G(ξγ−1)∆G(γ)1/q .

We want to use a result from [9], which gives an estimate of ‖σ(g)K
1/q
σ ‖p in terms of

the cross norm

‖k̃σ‖q,p,q :=
(∫

H

[∫

H

‖k(ξ, γ)‖p
q dξ

] q/p

dγ
) 1/q

,

for arbitrary operator-valued kernels. Using first [9, Corollary 1] and then the Cau-
chy–Schwarz inequality, we have
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(2.3)∫

Ĝ

‖σ(g)K1/q
σ ‖q

q dνG(σ) ≤

∫

Ĝ

‖kσ‖
q/2
q,p,q‖k∗σ‖

q/2
q,p,q dνG(σ)

≤
(∫

Ĝ

‖kσ‖
q
q,p,q dνG(σ)

) 1/2(∫

Ĝ

‖k∗σ‖
q
q,p,q dνG(σ)

) 1/2

,

where k∗σ(ξ, γ) = kσ(γ, ξ)∗. It remains thus to estimate the integral over the cross
norms. We have that

∫

Ĝ

‖kσ‖
q
q,p,q dνG(σ)

=

∫

U0

∫

H

[∫

H

‖(ξ.σ0)(gξγ−1 )σ0(Λ(ξγ−1, ξ))∆G(ξγ−1)∆G(γ)1/q‖p
q dξ

] q/p

dγdνG(σ)

=

∫

U0

∫

H

[∫

H

‖(ξγ.σ0)(gξ)∆G(ξ)∆G(γ)1/q‖p
q dξ

] q/p

dγdνG(σ)

≤
(∫

H

[∫

U0

∫

H

‖(ξγ.σ0)(gξ)∆G(ξ)∆G(γ)1/q‖q
qdγdνG(σ)

] p/q

dξ
) q/p

=

(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ)∆G(ξ)∆G(ξ−1γ)1/q‖q
q dγdνG(σ)

] p/q

dξ
) q/p

=

(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ)‖
q
q∆G(γ) dγdνG(σ)

] p/q

∆G(ξ)dξ
) q/p

.

Note that we have tacitly dropped the unitary operators σ0(Λ(ξγ−1, ξ)), since they
obviously do not affect the ‖ · ‖q-norm. The inequality is due to Minkowski’s gen-
eralized inequality. Now, by the measure disintegration (1.2), we find that the inner

double integral can be estimated by use of the Hausdorff–Young inequality for N :

(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ)‖
q
q∆G(γ) dγdνG(σ)

] p/q

∆G(ξ) dξ
) q/p

=

(∫

H

‖Fp(gξ)‖
p
q ∆G(ξ) dξ

) q/p

≤
(∫

H

A
p
p‖gξ‖

p
p∆G(ξ) dξ

) q/p

= Ap(N)q‖g‖
q
p,

which takes care of the first factor in (2.3). For the second factor, we have to compute
the cross norms of

k∗σ(ξ, γ) = σ0(Λ(γξ−1, γ))∗ ◦ (γ.σ0)(gξ−1γ)∗∆G(γξ−1)∆G(ξ)1/q.

https://doi.org/10.4153/CMB-2006-052-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-052-9


Hausdorff–Young Inequalities for Group Extensions 557

Here we see that
∫

Ĝ

‖k∗σ‖
q
q,p,q dνG(σ)

=

∫

U0

∫

H

[∫

H

‖σ0(Λ(γξ−1, γ))∗(γ.σ0)(gξ−1γ)∗∆G(ξ−1γ)∆G(ξ)1/q‖p
q dξ

] q/p

dγdνG(σ)

=

∫

U0

∫

H

[∫

H

‖(γ.σ0)(gξ−1 )∗∆G(ξ−1)∆G(ξγ)1/q‖p
q dξ

] q/p

dγdνG(σ)

≤
(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ−1 )∗∆G(ξ)−1+1/q
∆G(γ)1/q‖q

q dγdνG(σ)
] p/q

dξ
) q/p

≤
(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ)
∗
∆G(ξ)1−1/q

∆G(γ)1/q‖q
q dγdνG(σ)

] p/q

dξ
) q/p

=

(∫

H

[∫

U0

∫

H

‖(γ.σ0)(gξ)‖
q
q∆G(γ) dγdνG(σ)

] p/q

∆G(ξ) dξ
) q/p

,

where the inequality is again the generalized Minkowski inequality, and we have used
that taking adjoints and multiplication with unitaries are isometries on Bp. Now we

can conclude the proof in the same way as before.

Remark 6 Note that for the case p = 2, all inequalities are in fact equalities: that
the Hilbert–Schmidt norm of an operator given by an L2-kernel equals the L2-norm

of the kernel is well known, i.e., instead of (2.3) we have

∫

Ĝ

‖σ( f )K1/2
σ ‖2

2 dνG(σ) =

∫

Ĝ

‖kσ‖
2
2 dνG(σ).

Instead of the generalized Minkowski inequality, we can simply apply Fubini’s theo-
rem (since p = q = 2), replacing the “≤” by “=”. The last inequality in the argument
is now an instance of the Plancherel theorem for N , hence once more an equality.

Hence the computation provides a rather concrete proof that ν = νG, once the two
measures are proven to be equivalent.

Remark 7 The type I assumption on N ensures that we may define the spaces B⊕
q

as direct integrals of Schatten–von Neumann spaces. In the general case, other traces
than the natural operator trace may occur. For this setting, an extension of the norm

estimates for Hilbert–Schmidt valued kernels by cross norms, as obtained in [16], to
more general traces will be required.

Remark 8 Another situation where Theorem 2 is applicable occurs in the context of
simply connected, connected nilpotent Lie groups. Baklouti, Smaoui and Ludwig [2]
proved for these groups the estimate

(2.4) Ap(G) ≤ Ap(R)dim(G)−d∗(G)/2,
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where d∗(G) is the maximal coadjoint orbit dimension. In particular, let N ⊳ G be a
connected, codimension 1 normal subgroup of the simply connected, connected Lie

group G. Assume that d∗(N) < d∗(G), i.e., d∗(N) = d∗(G) − 2. Given l ∈ g
∗ with

maximal orbit dimension, let l0 denote the restriction to n, and let

rl = {X ∈ g : l([X,Y ]) = 0 for all Y ∈ g}

denote the radical of l in g. Denote by rl0 ⊂ n the radical of l0 in n. Then we have that

dim(rl) = dim(G) − d∗(G)

and

dim(rl0 ) = dim(N)−dim(Ol0 ) ≥ dim(G)−1− (d∗(G)−2) = dim(G)−d∗(G)+1 .

Thus rl ⊂ n by [4, Proposition 1.3.4], and [4, Theorem 2.5.1(a)] implies that πl =

IndG
N πl0 . Here πl ∈ Ĝ and πl0 ∈ N̂ denote the representations associated to l, l0 by

Kirillov’s construction. This holds for all l0 for which dim Ol = d∗(G). But then the

set
U = {πl0 : dim(Ol) = d∗(G)} ⊂ N̂

is conull and G-invariant. Here we used the notation πl for the representation asso-
ciated to l by the Kirillov construction. Hence, assuming (2.4) for N , we obtain from
Theorem 2 that

Ap(G) ≤ Ap(N) = Ap(R)dim(N)−d∗(N)/2
= Ap(R)dim(G)−1−(d∗(G)−2)/2

= Ap(R)dim(G)−d∗(G)/2.

In other words, Theorem 2 provides half of the induction step for the proof of (2.4).
The other half would have to deal with the case d∗(N) = d∗(G), which by similar
arguments as above implies that the dual action of G/N on N̂ is trivial almost every-
where.
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