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Abstract. Tidal friction is thought to be important in determining the long-term spin-orbit evo-
lution of short-period extrasolar planetary systems. Using a simple model of the orbit-averaged
effects of tidal friction (Eggleton et al. 1998), we analyse the effects of the inclusion of stellar
magnetic braking on the evolution of such systems. A phase-plane analysis of a simplified system
of equations, including only the stellar tide together with a model of the braking torque proposed
by Verbunt & Zwaan (1981), is presented. The inclusion of stellar magnetic braking is found to
be extremely important in determining the secular evolution of such systems, and its neglect
results in a very different orbital history. We then show the results of numerical integrations of
the full tidal evolution equations, using the misaligned spin and orbit of the XO-3 system as an
example, to study the accuracy of simple timescale estimates of tidal evolution. We find that
it is essential to consider coupled evolution of the orbit and the stellar spin in order to model
the behaviour accurately. In addition, we find that for typical Hot Jupiters the stellar spin-orbit
alignment timescale is of the same order as the inspiral time, which tells us that if a planet
is observed to be aligned, then it probably formed coplanar. This reinforces the importance of
Rossiter-McLaughlin effect observations in determining the degree of spin-orbit alignment in
transiting systems.
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1. Introduction
Since the discovery of the first extrasolar planet around a solar-type star (Mayor &

Queloz 1995), observers have now detected 322† planets around stars outside the solar
system. Many of these planets have roughly Jovian masses and orbit their host stars
in orbits with semi-major axes less than 0.2 AU, the so-called “Hot Jupiters” (HJs). In
both of the giant planet formation scenarios, core accretion and gravitational instability,
we are unable to produce HJs in situ. We require the formation of close-in planets much
further out (a ∼ several AU) in the protoplanetary disc, before a migratory process that
brings the planet in towards the star and to its present location (Lin, Bodenheimer &
Richardson 1996).

The formation of systems with giant planets can be thought of as occurring in two
oversimplified stages (Juric & Tremaine 2008). During stage 1 the cores of the giant
planets are formed, they accrete gas and undergo migration, driven by the dynamical
interaction between the planets and the gaseous protoplanetary disc (see Papaloizou
et al. 2008 for a recent review). This stage lasts a few Myr until the gas dissipates, by
which time a population of gas giants may exist. If these form sufficiently closely packed
then stage 2 follows. This stage lasts from when the disc has dissipated and continues
until the present, and primarily involves gravitational interactions and collisions between

† As of the day of this session, 4th Nov. 2008 – see http://exoplanet.eu/
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the planets. Recent studies into stage 2 (Juric & Tremaine 2008; Chatterjee et al. 2008)
have shown that this is a chaotic era, in which planet-planet scatterings force the ejection
of all but a few (∼ 2 − 3) planets from the system in a period of large-scale dynamical
instability lasting � 108yr. This mechanism can excite the eccentricities of the planets
to levels required to explain observations.

Planet-planet scatterings tend also to excite the inclinations of the planets with re-
spect to the initial symmetry plane of the system, potentially leading to observable
consequences via the Rossiter-McLaughlin (RM) effect, which allows a measurement of
λ, the sky-projected angle of misalignment of the stellar spin and the orbit (Winn 2008).
Misaligned orbits are not predicted from stage 1 alone, so if λ is measured to be appre-
ciably nonzero in enough systems, then it could be seen as evidence for planet-planet
scattering, or alternatively Kozai migration (see Fabrycky & Tremaine 2007). This is
because gas-disc migration does not seem able to excite orbital inclination (Lubow &
Ogilvie 2001; Cresswell et al. 2007). Alternatively, if observed planets are all found with
λ consistent with zero, this could rule out planet-planet scattering or Kozai migration
as being of any importance. One important consideration is that at such close proximity
to their parent stars, strong tidal interactions are expected to change λ (actually the
true spin-orbit misalignment angle i = arccos(Ω̂ · ĥ)) over time. If tides can significantly
change λ since the time of formation, we may have difficulty in distinguishing between
the possible HJ formation mechanisms of planet-planet scattering, Kozai migration and
gas-disc migration. Below we approach the problem of studying the effects of tidal friction
on such inclined orbits.

2. Model of tidal friction & magnetic braking
The efficiency of tidal dissipation in a body is usually parametrised by a dimensionless

quality factor Q, defined by:

Q = 2πE0

(∮
−Ėdt

)−1

,

where E0 is the maximum energy stored in an oscillation and the integral represents the
energy dissipated over one oscillation period. We find it convenient to define Q′ = 3Q

2k2
,

where k2 is the second-order potential Love number, since this combination appears
together in the theory.

Q′ is in principle a function of the tidal forcing frequency and the amplitude of the
tidal disturbance, and is a result of complex dissipative processes in each body (Zahn
2008). Recent work has shown that Q′ for solar-type stars depends in a highly erratic way
on the tidal forcing frequency (Ogilvie & Lin 2007). In light of the uncertainties involved
in calculating Q′, and the difficulty of calculating the evolution when Q′ depends on
tidal frequency, we adopt a simplified model based on an equilibrium tide with constant
lag time, using the formulation of Eggleton et al. 1998. This formulation is beneficial
because it can treat arbitrary orbital eccentricities and stellar and planetary obliquities.
We refer the reader to Barker & Ogilvie (2009) or Mardling & Lin (2002) for the full set
of equations used.

Observations of solar-type stars show that the mean stellar rotational velocity decreases
with main-sequence age (Skumanich 1972), following the relation Ω ∝ t−1/2 . Magnetic
braking by a magnetised outflowing wind has long been recognised as an important
mechanism for the removal of angular momentum from rotating stars (Weber & Davis
1967), and such a mechanism seems able to explain (on average) most of the observed
stellar spin-down (Barnes 2003).
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Here we include the effects of magnetic braking in the tidal evolution equations,
through the inclusion of the magnetic braking torque of Verbunt & Zwaan (1981). This
gives the following term into of the equation for Ω̇ (Dobbs-Dixon et al. 2004):

ω̇mb = −αmb Ω2 Ω

where αmb = 1.5 × 10−14 yr, giving a braking timescale ∼ 2 × 1011 yr for the Sun.

3. Analysis of the effects of magnetic braking on tidal evolution for a
simplified system

We study the effects of magnetic braking on a simplified system of a circular, coplanar
orbit under the influence of only the stellar tide and magnetic braking. The following set
of dimensionless equations can be derived (Barker & Ogilvie 2009):

dΩ̃
dt̃

= ñ4

(
1 − Ω̃

ñ

)
− A Ω̃3 (3.1)

dñ

dt̃
= 3 ñ

1 6
3

(
1 − Ω̃

ñ

)
, (3.2)

where we have normalised the stellar rotation Ω and orbital mean motion n to the orbital
frequency at the stellar surface, together with a factor C (to some power). C is the ratio
of the orbital angular momentum of an orbit with semi-major axis equal to the stellar
radius R� , of a mass mp , with the spin angular momentum of an equally rapidly rotating
star of radius R� , mass m� and dimensionless radius of gyration rg . The reduced mass is
μ = m� mp

m� +mp
. C is important for classifying the stability of the equilibrium curve Ω̃ = ñ

in the absence of magnetic braking, and it can be shown that this equilibrium is stable if
ñ � 3−

3
4 i.e. no more than a quarter of the total angular momentum can be in the form

of spin angular momentum (Hut 1980). We have thus defined the following dimensionless
quantities:
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There is only one parameter (A) that completely characterises the solution in the
(Ω̃, ñ)-plane, and its value may be estimated as A � 100 for a Jupiter-mass planet
orbiting a Sun-like star undergoing magnetic braking (with standard αmb and with Q′ =
106). The size of this term shows that in general magnetic braking dominates the stellar
spin evolution. We plot some solutions on the (Ω̃, ñ)-plane, restricting ourselves to 0 �
Ω̃ � 10, 0 � ñ � 10. This represents the full range of orbits of the HJs, since ñ � 10
corresponds to an orbital semi-major axis of a � 0.01 AU, and ñ � 0.1 corresponds to
a � 0.2 AU.

With the inclusion of magnetic braking (see Fig. 1), an initially rapidly rotating solar-
type star hosting a HJ for which Ω̃ � ñ, will spin down as a result of the magnetic
torque. During this stage of spin-down the spin frequency of the star may temporarily
equal the orbital frequency of its close-in planet, but the rate of angular momentum loss
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Figure 1. (Ω̃, ñ)-plane with A = 100 for a HJ orbiting a Sun-like star. The dashed line in each
plot corresponds to corotation (Ω̃ = ñ). Left: magnetic braking spins the star down so that the
planet finds itself inside corotation, where the sign of the tidal torque changes, and the planet
is subject to tidally induced orbital decay. Right: solutions with and without magnetic braking
for the same initial conditions. Dot-dashed lines, which are also curves of constant total angular
momentum, are without braking (A = 0) and solid lines are with braking (A = 100). This
shows that the inclusion of magnetic braking is extremely important in determining the secular
evolution of the system, and its absence results in a very different evolutionary history unless
Ω̃ � ñ in the initial state.

through magnetic braking will exceed the tidal rate of transfer of angular momentum
from orbit to spin. The stellar spin continues to drop well below synchronism until the
efficiency of tidal transfer of angular momentum from orbit to spin can compensate or
overcompensate for the braking. The planet continues to spiral into the star once it moves
inside corotation, and Ω̃ � const, unless the planet has sufficient angular momentum to
be able to appreciably spin up the star. Note that any bound orbit will eventually decay
in a finite time since the system has no stable equilibrium.

Without magnetic braking, the evolution is qualitatively different (see right plot Fig. 1),
with orbits initially outside corotation (Ω̃ > ñ) asymptotically approaching a stable
equilibrium Ω̃ = ñ for ñ � 3−

3
4 . Orbits initially inside corotation with dΩ̃

dt̃
> dñ

dt̃
> 0

near corotation, also approach a stable equilibrium (though no such curves are plotted
in Fig. 1, since they occur only in the far bottom left of the plot, near the origin). This
is when the corotation radius moves inwards faster than the orbit shrinks due to tidal
friction, resulting in a final stable equilibrium state for the system if the corotation radius
“catches up” with the planet. For orbits inside corotation for which this condition is not
satisfied, the planet will spiral into the star under the influence of tides.

4. Tidal evolution timescales
It is common practice to interpret the effects of tidal evolution in terms of simple

timescale estimates. The idea behind these is that if the rate of change of a quantity X is
exponential, then Ẋ/X will be a constant, so we can define a timescale for the evolution
of X, given by τX = X/Ẋ. If Ẋ/X �= const, then τX may not accurately respresent
the evolution. A tidal inspiral time can be calculated from τa ≡ − 2

13
a
ȧ (see Barker &

Ogilvie 2009 for the full evolution equations from which these timescales are derived),
since ȧ

a ∼ a
−1 3

2 . This assumes Ω is constant, which we have seen is unreasonable unless
Ω � n, due to magnetic braking.

If the orbital and stellar equatorial planes are misaligned by a small angle i, then
dissipation of the stellar tide would align them after a time

τi ≡ − i
di
dt

� 35.0 Myr
(
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where Ω0 = 5.8×10−6s−1 , and P, P� are the orbital and stellar rotational periods. α is the
ratio of orbit to spin angular momentum. The validity of these timescales to accurately
represent tidal evolution is an important subject of study, since they are commonly
applied to observed systems. Jackson et al. (2008) recently found it essential to consider
the coupled evolution of e and a to accurately model tidal evolution, and that both the
stellar and planetary tides must be included. They showed that the actual change of e
over time can be quite different from simple circularisation timescale considerations, due
to the coupled evolution of a. In the following we consider the validity of τi to accurately
model tidal evolution of i, using XO-3 as an illustrative example.

5. Application to the misaligned spin and orbit of XO-3 b
The only system currently observed with a spin-orbit misalignment is XO-3 (Hebrard

et al. 2008), which has a sky-projected spin-orbit misalignment of λ � 70◦ ± 15◦. This
system has a very massive mp = 12.5MJ planet on a moderately eccentric e = 0.287,
P = 3.2 d orbit around an F-type star of mass m� = 1.3M�. Its age is estimated to be
τ� � (2.4− 3.1) Gyr. Note that even if the star is rotating near breakup velocity (P� ∼ 1
d), the planet is still subject to tidal inspiral, since P� > P cos i (where we henceforth
assume i = λ, which may slightly underestimate i).

Hebrard et al. (2008) quote a spin-orbit alignment timescale of ∼ 1012 yr for this
system, but we find that this is in error by ∼ 105. We believe that the reason for this
discrepancy is that their estimate was based on assuming that the spin-orbit alignment
time for XO-3 b is the same as for HD17156 b, which is a less massive planet on a
much wider orbit. We find τi ∼ 15 Myr assuming Q′ = 106 to align the whole star
with the orbit. Integrations for this system are given in Fig. 2 for a variety of stellar Q′

values. For the system to survive and remain with its current inclination for ∼ 3 Gyr we
require Q′ � 1010 . These integrations highlight the importance of considering coupled
evolution of the orbital and rotational elements, since timescales for tidal evolution are
quite different from simple estimates. Indeed, the actual spin-orbit alignment time from
integrating the coupled equations is about an order of magnitude smaller than that from
the simple decay estimate, due to coupled a evolution.

Figure 2. Tidal evolution of XO-3 b taking current values for the orbital properties of the
system, except that cos i = 90◦ (not unreasonable since this corresponds to the upper limit on
λ, which in any case gives a lower bound on i). Magnetic braking is included, and Ω/n = 2
initially (results do not depend strongly on this choice). From (a) and (b) we require Q′ � 1010

for the planet to survive for several Gyr, and maintain its high inclination. Tidal dissipation in
star must therefore be weak to explain the current configuration of the system.

For this system, and for typical HJs, we find that τi ∼ τa . This means that if we
observe a planet, then its survival implies that tides are unlikely to have aligned its orbit.
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In addition, for systems on an accelerating inspiral into the star, the rate of inclination
evolution will have been much lower in the past; therefore, if we observe a planet well
inside corotation with a roughly coplanar orbit, we can assume that it must have started
off similarly coplanar.

An explanation for the survival and remnant orbital inclination of XO-3 b could be
the result of inefficient tidal dissipation in the host star. A calculation of Q′ using the
numerical method of Ogilvie & Lin (2007) and a stellar model appropriate for this star
was performed (Barker & Ogilvie 2009). This predicts that the dissipation is weak, and
Q′ � 1010 for most tidal frequencies for the host star XO-3. This can explain the survival
and remnant inclination of this planet, since both inspiral and spin-orbit alignment take
longer than the current age of the system.

6. Conclusions
Magnetic braking is important for calculating the long-term tidal evolution of HJs

unless Ω � n, and changes the qualitative behaviour of the evolution significantly. Tidal
evolution can be much faster than simple timescale estimates predict when coupled in-
tegration of the orbital and rotational elements is considered. In addition, we find that
τi ∼ τa for typical HJs, so the orbits of most close-in planets have probably not aligned,
and are likely to be a relic of the migration process. This means that RM effect observa-
tions of transiting planets can potentially distinguish between planet-planet scattering,
Kozai migration and gas-disc migration.
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Discussion

Jardine: Do your results for the banal (orbital) fate of planets depend on the assumption
that there is no outer planet forcing the orbit?

Barker: Outer planets are not included in the integrations that I have performed thus
far. Their inclusion may indeed change the final results and this should be studied for
any system.

Khodachenko: What could possibly be the outcomes of the inclusion of electrodynamic
effects of interaction of planetary dipole with the conducting plasma environment in
your model? This may provide an additional energy dissipation channel and introduce
an additional force into the system.

Barker: An interesting question, and one that I am planning on studying in the next
few years of my PhD. It would be interesting to study whether this B force could be
significant enough to cause any orbital changes of the planet. In addition, dissipation of
time-varying stellar magnetic-field excited currents in the planet could potentially inflate
the planet. This is something that needs to be studied.

Inside the lecture room
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Enjoying common dynamo problems . . . Paul Roberts (left) and Günther Rüdiger (right)

Irina Kitiashvili
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