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Summary

The covariance of heterozygosity serves as a measure of linkage disequilibrium (LD) between genes at two loci,
although one that does not have as much information as a parameter such as r2. However, it may be extended to
blocks of loci (single nucleotide polymorphisms, SNPs) along a chromosome. This has two advantages when
searching for significant associations between different chromosomal regions. Calculations for a data set such as
Hapmap are complicated by the large number of pairs of loci (SNPs) that need to be considered. For example, a
search for significant associations between SNPs on different chromosomes involves around 1012 calculations for
a single population. Furthermore, this may not be an efficient way of detecting associations since r2 values
calculated from neighbouring pairs will not be independent of each other. The covariance of heterozygosity
provides an average measure of association between blocks of any size, and reduces the number of calculations
by a factor of b2, where b is the block size. Unlike the calculation of r2, the covariance of heterozygosity uses just
diploid data and is not biased by sample size. Calculations using a block size of 50 have been used to look for
associations in the Hapmap data set between regions within and between chromosomes. Within chromosomes, a
signal is detected up to around 10 cM. No obviously significant associations have been detected between regions
on different chromosomes, although there is a low level of association consistent with departures from random
mating.

1. Introduction

The original definition of linkage disequilibrium (LD)
was given by Robbins (1918) in terms of D, the
deviation of haplotype frequencies from expectation
based on independence of allele frequencies. Hill &
Robertson (1968) pointed out that D is the covariance
of frequencies at the two loci, and introduced the
parameter r, the correlation of frequencies.

There is a diploid analogy to the haploid D (Yang,
2003). This can be defined as the difference between
the joint frequency of heterozygotes at two loci and its
expectation based on independence. As is the case for
the haploid D, this difference is simply the covariance
of heterozygosity, or equivalently the covariance
of homozygosity. The ‘covariance of heterozygosity ’
term will be used below, rather than the equivalent,
but less specific, terms ‘genic disequilibrium’ or
‘zygotic association’.

Specific statistics related to the covariance of
heterozygosity were introduced by Haldane (1949) for
the case of inbreeding and linkage, by Bennett & Binet
(1956) for the case of selfing and unlinked loci, and
by Ohta (1980) for the case of closely linked poly-
morphisms. Properties of joint heterozygosity have
also been discussed more recently (Sabatti & Risch,
2002; Yang, 2002; Rosenberg & Blum, 2007). It
should be noted that a covariance of heterozygosity
is implicit in arguments related to the formation of
linked gene complexes, e.g. Lewontin & Kojima
(1960), Bodmer & Parsons (1963), although the dis-
cussion at the time these papers were written was in
terms of selective maintenance of gene complexes
rather than just in terms of covariances.

An extension of the variance of heterozygosity to
more than two loci was suggested in Sved (1968).
It was shown that the expected variance of the
number of heterozygous loci per individual relates
directly to the level of LD summed over all pairs of
loci. Avery & Hill (1979) showed that an equivalent
formula could be derived from the earlier more
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general quantitative formulation of Robinson &
Comstock (1955).

The purpose of the present paper is to present the
multiple locus formulation in terms of the covariance
of heterozygosity between two blocks of loci. These
two blocks can be either linked or unlinked. The
methods are used to analyse data from Hapmap.

These methods of analysis are appropriate when
dealing with large numbers of closely linked sites.
LD coefficients involving closely linked sites are not
independent of each other. Should there be dis-
equilibrium between a locus in Block I with a locus in
Block II, any site surrounding the locus in Block I can
also be expected to be in disequilibrium with any site
surrounding the locus in Block II (Weir et al., 2005).
Therefore, it makes more sense to study LD between
blocks of genes than to study LD between individual
genes. The covariance of heterozygosity provides
such a measure. Furthermore, calculation of the co-
variance is expeditious compared with the calculation
of multiple LD coefficients.

2. Materials and methods

(i) Two loci

In a random mating population, the expected vari-
ance of the number of heterozygotes at two loci,
which can take the value 0, 1 or 2, is (Hill, 1975;
Brown et al., 1980)

V(H)=V(H1)+V(H2)+g
m1

h=1

g
m2

k=1

[2D2
1h2k+4p1hp2kD1h2k],

(1)

where V(H1) and V(H2) are the variances at locus 1
and 2, respectively, among individuals in the popu-
lation, m1 and m2 are the number of alleles at the two
loci, p1h and p2k are allele frequencies at the two loci
and D1h2k is the LD coefficient between allele h at
locus 1 and allele k at locus 2, and is equal to
P1h2kxp1h

.p2k. It should be emphasized that this vari-
ance calculation and the covariance calculations that
follow are expectations based on the assumption
of random mating. Under this assumption, V(H1) is
equal to Ng p1i

2 [1xg p1i
2 ], where the entire population

of size N is sampled.
The overall variance may be written in terms of

variances and covariances as

V(H )=V(H1)+V(H2)+2Cov(H1,H2): (2)

Cov(H1, H2) is the covariance of the number of het-
erozygotes at locus 1 and the number of heterozygotes
at locus 2, each of which can take the value 0 or 1.

Therefore, from (1) and (2),

Cov(H1,H2)= g
m1

h=1

g
m2

k=1

[D2
1h2k+2p1hp2kD1h2k]: (3)

As all data in Hapmap involve only two alleles at each
site, it is convenient to continue using only the two-
allele forms of (1) and (2). A single LD coefficient,D12,
between locus 1 and locus 2 suffices in this case, while
allele frequencies at the two loci may be represented
simply as p1 and p2, respectively. The sign of the LD
coefficient is arbitrary, depending on which pair of
alleles is chosen. The equations simplify to

V(H)=V(H1)+V(H2)+8D2
12+16 1

2
xp1

� �
1
2
xp2

� �
D12

(4)

and

Cov(H1,H2)=4D2
12+8 1

2
xp1

� �
1
2
xp2

� �
D12: (5)

(ii) Multiple loci

Figure 1 shows the situations considered in this paper.
Multiple loci/sites are involved, but the specific inter-
est is in the covariance of the total heterozygosity of
Block I with the total heterozygosity of Block II.

The variance in heterozygosity of the overall set of
loci, including loci from both Block I and Block II, is
(Sved, 1968)

V(H)= g
n

i=1
V(Hi)+ g

n

i=1
g
jli

8D2
ij+16

1

2
xpi

� �
1

2
xpj

� �
Dij

� �
,

(6)

where each individual can be heterozygous at 0, 1,
2, … n loci, n being the total number of loci in Block I
and Block II. The double summation is over all pairs
of loci.

This variance may be expressed in the form

V(H)=V(HI)+V(HII)+2Cov(HI,HII), (7)

where V(HI) represents the variances of the sum of
loci in Block I, V(HII) is the equivalent for loci in
Block II, and Cov(HI, HII) is the covariance between
overall heterozygosity in Block I (between 0 and nI per
individual), and in Block II. Then, noting that the
variance terms in (6) and (7) are equivalent,

Cov(HI,HII)= g
nI

i=1
g
nII

j=1
4D2

ij+8
1

2
xpi

� �
1

2
xpj

� �
Dij

� �
:

(8)

(a) Linked

(b) Unlinked

Block I Block II

Block I Block II

c

Fig. 1. Block structure for linked (recombination
frequency =c) and unlinked blocks.
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Equation (8) is the multiple-locus equivalents of the
two-locus eq (5). Note that only LD terms involving
one locus in Block I and one locus in Block II are
involved in the covariance expectation.

It is convenient to normalize the covariance by
using the correlation coefficient, calculated as

r(Het)=Cov(HI,HII)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V(HI):V(HII)

p
: (9)

Note that V(HI) and V(HII) are calculated from the
data, and are usually much higher than expected from
V(H) values of individual loci because of the co-
variance term in (6). The correlation reduces the co-
variance calculations to a common scale, x1 to +1.
However, the correlation coefficient has no simple
expectation in terms of LD coefficients, except that
zero LD makes the correlation zero. A r2(Het) co-
efficient could also be used, although this also has no
obvious LD coefficient expectation.

(iii) Departures from random mating

Departures from random mating can be taken into
account using the coefficient of inbreeding F. Noting
that the frequencies of genotypes heterozygous at one
or both loci are uniformly reduced in frequency by the
factor (1xF), it can be shown that the covariance of
heterozygosity as given in eq (8) is modified slightly,
becoming approximately

Cov(HI,HII)=(1xF) g
nI

i=1
g
nII

j=1
4D2

ij+8
1

2
xpi

� ��

r
1

2
xpj

� �
Dij+4Fpipj 1xpið Þ (1xpj

� ��
:

(10)

The important aspect of this equation is that the co-
variance does not asymptote to zero in the absence of
LD, e.g. for unlinked loci (Benett & Binet, 1956). This

conclusion in terms of the inbreeding coefficient also
applies to population subdivision.

(iv) HapMap data and recombination values

The data analysed below are unphased single nucleo-
tide polymorphism (SNP) data from HapMap
phase 3 release #3 (NCBI build 36, downloaded in
PLINK format from http://hapmap.ncbi.nlm.nih.gov/
downloads/index.html.en). Four populations were
analysed: YRI (Yoruba, Nigeria), CHB (Chinese,
Beijing), JPT (Japanese, Tokyo) and CEU (European,
CEPH). Only unrelated parents were used from the
YRI and CEU families. No additional data from
other sources were used.

For the study of LD within chromosomes, an esti-
mate of the recombination frequency is required,
and recombination frequencies from the Oxstat map
(Myers et al., 2005) were used. All possible pairs of
blocks were tested. Intervals between blocks are
never exact multiples of 0.1 cM (see Fig. 2), and the
position of the distal block was chosen to give a re-
combination frequency minimally greater than the
required interval.

(v) Size of blocks

Choice of optimal block size is empirical. Small block
sizes are more subject to chance fluctuation, and also
increase the amount of calculation, which can be
important when considering all possible combinations
between chromosomes. On the other hand, a large
block size runs the risk that levels of LD will be low
between loci at the ends. Block sizes of 20, 50 and 100
were evaluated, and their utility was determined by
examining the shape of the curve connecting map dis-
tance and r(Het). The level of variability around the
curve was found to be higher at block size 20, and a
block size of 50 was used in calculations reported here.

The distribution of loci in Hapmap is not uniform
over the genome, and some argument could be made
for using a fixed map length to define the block rather
than a fixed block size. In practice this did not seem
to reduce the variability or to sharpen the curve con-
necting map distance and r(Het).

It might be advantageous to use a sliding window in
the calculations. However, this adds significantly to
the computation time. Therefore, fixed intervals were
used, so that, for example, the first block was located
at 1–50, then 51–100, 101–150, etc. The residual end
block was ignored.

3. Results

(i) Within chromosomes

Figure 2 summarizes the mean correlation in hetero-
zygosity up to 2 cM distance. The YRI (African)

r(
H

et
)

Fig. 2. Correlation of heterozygosity between linked
blocks of loci. Recombination values (c) are between ends
of blocks as shown for linked loci in Fig. 1. Blocks are of
size 50, and each point is based on 250 000–300 000 pairs.
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population has the lowest r(Het) at the lowest
recombination values. This difference is consistent
with higher historical effective population sizes of
African populations as previously found by Tenesa
et al. (2007). Above 0.04 cM, however, the situation is
reversed, with higher YRI r(Het) values, consistent
with lower population sizes in more recent times.
Hayes et al. (2003) showed that LD levels tend to re-
flect population sizes 1/2c generations in the past,
which implies a smaller African population size for up
to 1000 generations in the past.

The r(Het) values asymptote to a value close to zero
in Fig. 2. However, a closer look at higher scale
(Fig. 3) at the region above 2 cM shows that, although
r(Het) values are small, LD can be detected up till
around 10 cM. This is in contrast to calculated values
of r2, where a signal is difficult to detect over 0.5 cM
(Tenesa et al., 2007).

(ii) Between chromosomes

The distribution of r(Het) values for the YRI
population is shown in Fig. 4. The key indicator of
significant associations between genes on different
chromosomes would be the existence of extreme
positive values. While there are cases of high r(Het)

values, greater than 0.5, a notable feature of Fig. 4 is
the symmetry of the distribution, including extreme
negative values as discrepant as the positive values.

A permutation test of significance for high positive
values could be produced by permuting one or other
locus (SNP) between different individuals within a
population. Although eq (8) suggests that the expec-
tation of r(Het) should be positive, it is clear that
negative values are equally likely as positive ones
in the absence of any association, a conclusion in
agreement with Rosenberg & Blum (2007). The
symmetry of Fig. 4 indicates the non-significance of
any high associations, and makes a permutation test
unnecessary. The results for the remaining Hapmap
samples, CHB, JPT and CEU, were similarly nega-
tive, and are not shown.

Despite the apparent symmetry of Fig. 4, there is
a slight bias towards positive values. The first data
column of Table 1 summarizes the overall r(Het)
values. There is a bias towards positive values for the
CEU, JPT and YRI populations, and a non-significant
negative mean for the CHB population. These values
are plotted adjacent to the within-chromosome values
in Fig. 3, and are in good agreement with the asymp-
totic values for higher map distances.

Table 1 also shows a non-parametric test of the
significance of the departure of r(Het) from zero.
Each chromosome pair has been considered sepa-
rately, and r(Het) values have been summed over the
chromosome pair. There are (22r21)/2=231 such
pairs. Values are then summarized as either positive
or negative. The table shows a small bias towards
positive values, which is significant at the 0.1% level
in three of the four populations as shown by the x2

values of column 5. The negative value for the CHB
population is not significant, and in fact arises from
an excess of positive values. As indicated in the
Methods section, the significant positive bias is likely
to be indicative of departure from random mating,
e.g. with some subdivision within the populations.

4. Discussion

There are significant advantages to the use of r(Het)
as a measure of LD. The primary advantage is that

Fig. 3. Mean correlations for larger map
distances – continuation of Fig. 2 at a higher scale.

Fig. 4. Number of occurrences of r(Het) values for YRI
population. Class size for the r(Het) values is 0.001, and
observed numbers in the classes are cumulated over all
pairs of chromosomes.

Table 1. Mean r(Het) values (column 1) and numbers
of chromosome pairs with positive and negative mean
r(Het) values (columns 2, 3). *** Significant at 0.1%
level

Mean
r(Het) +ve xve

Total
Obs. x2

YRI 0.000063 148 83 231 18.29***
CHB x0.000102 130 101 231 3.64
JPT 0.000103 149 82 231 19.43***
CEU 0.000136 161 70 231 35.85***
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the statistic can be extended from the case of a single
locus pair to the calculation of LD between blocks of
loci. The HapMap calculations within chromosomes
have shown that significant levels of LD can be
detected at up to 10 cM distance.

It is possible that single locus pair r2 calculations
could be used to derive similar conclusions. As shown
in eq (8), the covariance between blocks is closely re-
lated to the sum ofD2 values of all locus pairs over the
two blocks. An analogous statistic could thus be cal-
culated from averaging all r2 values between the two
blocks, albeit in a more time-consuming calculation.

One difficulty of the r2 value is that it is subject to a
correction for sample size of order 1/n, where n is the
sample size (Hill, 1981). This correction can over-
whelm low population LD values. In contrast, the
covariance or correlation of heterozygosity is un-
biased by sample size. It is clear that negative and
positive covariance values are equally likely when
there is no LD, e.g. for unlinked genes where there
are no selection or segregation distortions, giving an
overall expectation of zero regardless of sample size.
It is unclear from Fig. 3 as to whether the value of
r(Het) actually asymptotes to zero or to some small
positive value. The same conclusion can also be
drawn from the significant excess of r(Het) values
from unlinked locus blocks as summarized in Table 1.
A small positive value can be expected due to devia-
tions from random mating (eq (10)). Some bias in r2

values might also be expected due to non-random
mating in the form of population mixing (Nei & Li,
1973).

A further theoretical disadvantage of the r2 calcu-
lation is that it requires haploid data that are rarely
available. In contrast, the covariance or correlation of
heterozygosity requires only diploid data. In practice,
in place of r2, the ‘composite LD measure’ (Weir,
1979) can be calculated from diploid data with little
loss of accuracy in applying the results to haploid LD
measures.

With reference to unlinked loci, it is perhaps not
clear as to why significant LD values should be ex-
pected. However, one such case for a single unlinked
locus pair has recently been uncovered (Rohlfs et al.,
2010), based on high gametic selection interaction.

The primary motivation for studying LD between
chromosomes in the present study has been to look
for the possibility of co-segregation of unlinked mark-
ers through some meiotic mechanism, a phenom-
enon given the name ‘affinity ’ (Mitchie, 1953).
Various models of chromosomal spatial organization
have been put forward, such as the ‘Immortal DNA
Strand Hypothesis ’ and the ‘Lark Hypothesis ’ (see
http://en.wikipedia.org/wiki/Immortal_DNA_strand_
hypothesis for a discussion of such hypotheses).
Under such hypotheses, the segregation of different
chromosomes would not necessarily be random.

There has, to date, been no large-scale test for such a
possibility. This would best be done using family data
(Kong et al., 2010). However, a positive signal of LD
in the absence of selective interactions would provide
evidence for such co-segregation. No such signal has
been detected in the present study (Fig. 4).

I am grateful for a number of comments and suggestions
from Bill Hill during the writing of this paper.
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