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Abstract

We show that the residue at s= 0 of the standard intertwining operator attached to a
supercuspidal representation π ⊗ χ of the Levi subgroup GL2(F )× E1 of the quasisplit
group SO∗6(F ) defined by a quadratic extension E/F of p-adic fields is proportional to
the pairing of the characters of these representations considered on the graph of the
norm map of Kottwitz–Shelstad. Here π is self-dual, and the norm is simply that of
Hilbert’s theorem 90. The pairing can be carried over to a pairing between the character
on E1 and the character on E× defining the representation of GL2(F ) when the central
character of the representation is quadratic, but non-trivial, through the character
identities of Labesse–Langlands. If the quadratic extension defining the representation
on GL2(F ) is different from E the residue is then zero. On the other hand when the
central character is trivial the residue is never zero. The results agree completely with
the theory of twisted endoscopy and L-functions and determines fully the reducibility
of corresponding induced representations for all s.

1. Introduction

One of the major tools in representation theory of reductive groups, over either a local or a global
field, is the theory of intertwining operators between parabolically induced representations. These
are vector-valued meromorphic functions which are basically a composite of functions of one
variable. Harish-Chandra’s theory of c-functions, which is merely another name for intertwining
operators, connects these important objects to both reducibility questions for the inducing spaces
as well as Plancherel measures [Har84, Sil79].

On the other hand, the work developed by the first author (cf. [Sha90]) connects these
questions to arithmetic through L-functions [Sha08] and their poles. In fact, one can use the
information gathered from harmonic analysis (poles of intertwining operators) to define these
L-functions and conversely [Sha92]. Following [Sha92], in a series of papers [GS98, GS01, GS],
Goldberg and the first author computed the residues at s= 0 for these operators in the cases
where the group is a quasisplit classical group, the parabolic subgroup is maximal and
the inducing data is supercuspidal. This gives the rank one setting necessary to determine the
Plancherel measure and R-groups of Knapp–Stein and Harish-Chandra, as well as the L-functions
(when the inducing data is generic).

One particularly important feature of this case is its connection with the theory of
(twisted) endoscopy of Kottwitz–Shelstad [KS99] and Langlands, which reflects itself in the
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Residues of intertwining operators

functorial transfer from quasisplit classical groups to GLn, as established in [CKPS04] in the
generic case and by Arthur [Art] in general. The corresponding L-functions are then those of
Artin [HT01, Hen93, Sou05].

While significant progress was made in [GS98, GS01, GS], the connection with endoscopy
remained conjectural. In fact, the residue was reduced to a sum of two terms RG and Rsing,
with RG as an integral of products of twisted orbital integrals on GLn with orbital integrals on the
classical group, related by the norm map, and Rsing as a limit in the boundary [GS98, GS01, GS].
But, how the non-vanishing of either term implies the connection with the inducing data being
transferred from each other, as predicted by endoscopy, was not clear.

On the other hand, the efforts of the second author who pursued the results in [GS98,
GS01, GS], with the goal of a precise interpretation of these residues, led to a very promising
reformulation of these in [Spa08].

The purpose of this paper is to completely verify these conjectures in a low-dimensional
but important case. The results are under no assumptions since the character identities
needed for the (twisted) endoscopic transfer in this case were already proved by Labesse–
Langlands [LL79, Lan80]. One remarkable identity appears when the central character of the
supercuspidal representation on the GL(2) part of the inducing Levi subgroup is quadratic, but
non-trivial. It expresses these residues precisely as Harish-Chandra’s orthogonality pairing, as
we explain below. The results are in complete agreement with what is predicted by the theory
of L-functions as explained in [Sha08] (appendix to [Spa08]).

Let E/F be a quadratic extension of a p-adic local field of characteristic zero. Let G̃= SO∗6 be
the quasisplit special orthogonal group of (split) rank two determined by E/F . Let B̃ = T̃ Ũ
be the Borel subgroup of upper triangular elements in G̃, where T̃ is the Cartan subgroup of
diagonals in B̃ and Ũ its unipotent radical. Let M = GL2 × SO∗2 be the Levi subgroup of G̃
generated by the root e1 − e2 of T̃ (or A0). If P is the parabolic subgroup of G̃ with a Levi
decomposition P = MN , N ⊂ Ũ , then the simple root α in N is simply the restriction of either
e2 − e3 or e2 + e3 to A0. We let α̃= 〈ρP , α〉−1ρP as in [Sha90], where ρP is half the sum of roots
in N .

Let π be an irreducible supercuspidal representation of G(F ) = GL2(F ) and χH a character of
the torus H(F ) = SO∗2(F ) = E1, the subgroup of elements of norm one in E×. We are interested
in

I(sα̃, π ⊗ χH) = IndG̃(F )
M(F )N(F ) π ⊗ χH ⊗ q

〈sα̃,HM ( )〉 ⊗ 1,

where s ∈ C. In particular, we would like to determine its points of reducibility by means
of Plancherel measures [Sha90]. This simply means determining the poles of the intertwining
operators A(sα̃, π ⊗ χH , w0) at s= 0, where w0 = w` · w−1

`,θ and θ = {e1 − e2}.

The operator will have poles only if w0(π)' π, i.e. π is self-dual or equivalently ω2
π = 1, where

ω = ωπ is the central character of π. Consequently, I(sα̃, π ⊗ χH) will have reducibility points
only if ω2 = 1.

When ω 6= 1, then π will be the Weil representation attached to IndWF
WE′

χ′, where E′ is
a quadratic extension of F and χ′ is a character of (E′)×. Moreover, if G+ is the subgroup
of GL2(F ) consisting of elements g for which det(g) is a norm from E′, then the restriction
π|G+ decomposes into the sum π+ ⊕ π− of two inequivalent representations. Write Θπ± for the
character of π±, and σ for the non-trivial automorphism of E.
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The main result of this paper is the following.

Theorem 1. The operator A(sα̃, π ⊗ χH) is holomorphic at s= 0, unless ω2 = 1.

(a) Assume that ω = 1. Then A(sα̃, π ⊗ χH) has a simple pole at s= 0. (We assume that the
residual characteristic of F is odd in this case, for simplicity.)

(b) Assume that ω2 = 1, but ω 6= 1. Let E′ and χ′ be as above. The residue of the operator
A(sα̃, π ⊗ χH) at s= 0 is zero unless E = E′ and the central character of π is sgnE . Then
χ′(x) = χG(x/σ(x)) for some character χG of E1. In this case the residue is proportional to∫

E1

χH(γ) ·∆E(γ̃)(Θπ+(γ̃)−Θπ−(γ̃)) dγ, (1.1)

where γ = σ(γ̃)/γ̃ is the norm of the element γ̃ ∈ E× through the norm map γ̃ 7→ γ of
Kottwitz–Shelstad, which in this case is the map F×\E×� E1 of Hilbert’s theorem 90.
Here ∆E is the discriminant for E× as a Cartan subgroup in GL2(F ). In particular,
using the character identities of Labesse–Langlands for the transfer χG→ π, the residue
is proportional to ∫

E1

χH(γ)(χG(γ) + χ−1
G (γ)) dγ,

and therefore the residue is non-zero precisely when π is attached to IndWF
WE

χH as predicted
by endoscopy and L-functions.

An immediate consequence of this theorem is the following reducibility criterion (cf. [Sha90]).

Proposition 1. The induced representation I(sα̃, π ⊗ χH) is irreducible unless ω2 = 1.

(a) Suppose that ω = 1. Then I(π ⊗ χH) is irreducible. In this case I(1
2 α̃, π ⊗ χH) is reducible

and there are no other points of reducibility for s > 0.

(b) Suppose that ω2 = 1, but ω 6= 1. Then I(π ⊗ χH) is reducible unless E = E′ and π is attached
to IndWF

WE
χH . If π is attached to IndWF

WE
χH , then I(α̃, π ⊗ χH) is reducible and there are

no other points of reducibility for s > 0.

Corollary 1. Our results are in complete agreement with those given in [Sha08] using
L-functions.

We remark that this paper gives a purely local proof of these results, whereas the method of
L-functions is necessarily global.

The proof of the theorem is to apply the general formula obtained in [Spa08] to this case.
This is fairly non-trivial. The non-vanishing in the case ω = 1 requires a bulky proof, as one
needs to use character values for π. In general, one clearly needs a more efficient way of proving
the non-vanishing by relating the residue to the non-vanishing of the corresponding singular
twisted orbital integral in [Sha92], which gives the poles for the second L-functions L(s, π, Λ2)
or L(s, π, Sym2), where π is the representation on GLn(F ).

We conclude our discussion of the case ω = 1 by pointing out that in this case the
residue becomes a pairing between the character of π, a representation of GL2(F ), and χH ,
a representation of SO∗2(F ), which is not a natural one. This could justify the bulky calculations
one has to deal with in proving the non-vanishing.

On the other hand, when ω 6= 1, the pairing (1.1) comes out very naturally, and assuming
the character identities generalizing those in [LL79, Lan80], (1.1) seems to be amenable to
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generalization. It seems that the residue formulas proven in [GS98, GS01, GS], as reformulated
in [Spa08], are naturally suitable to detect the poles of the first L-function L(s, π × χH) and
their generalizations, rather than the second L-functions L(s, π, Λ2) or L(s, π, Sym2). In this
paper, we have found that Rsing = 0, and the residue comes entirely from RG. In cases of higher
rank, we do not expect Rsing to vanish.

Although the present work only deals with a low-rank case, it still brings in many features of
the general case, and is the first case where such subtle character identities appear so explicitly
as a residue. With the reformulation presented in [Spa08], and the present example complete, we
plan to complete this project in our future work. In general, one has a contribution to the residue
for each maximal torus in H. One may treat the terms corresponding to compact tori through
the methods of this paper. A more difficult matter is to study the weight factors of [Spa08], which
diverge for non-compact tori. We expect to apply a more delicate limiting process for these, and
that weighted orbital integrals [Art88] will play the role that ordinary orbital integrals do in the
present paper. The result should again be a pairing of a twisted character value on G with an
ordinary character value on H at non-elliptic elements. One appeals to the theory of twisted
endoscopic transfer in this situation; if πG arises from πH via endoscopic transfer, this should
point to the non-vanishing of the residue. This is work in progress.

We now describe the layout of this paper.

In § 2, in addition to setting up notation, we describe the norm correspondence and compute
its Jacobian, for our particular case. We emphasize that the calculation of measures through
the Jacobian in particular is very delicate but vital for the matching that must occur with the
character identities.

In § 3, we recall the formula from [Spa08] for the residue. In our case it simplifies considerably.
The conclusion of this section is that the residue problem reduces to the integral

R(π, χH) =
1

2 log q

∫
E1

χH(γ)Θε
π(S(γ)−1) d∗γ.

Here Θε
π is the twisted character associated with the self-dual representation π. The measure

d∗γ is proportional to |Tr(γ)− 2|
1
2 dγ, where dγ is a normalized Haar measure on E1.

The case of non-trivial central character is dealt with in § 4. In this case the twisted character
value is a difference of two character values, and lines up directly with the work of Labesse and
Langlands as mentioned above.

Section 5 sets up the case of trivial central character. Here the twisted character value is
merely the usual character value at γ̃. However, the Jacobian weights the pairing to preclude
the vanishing for any choice of χH and χ′. Section 6 treats the case for which E 6= E′, and § 7
treats the case for which E = E′. These sections provide a direct annulus computation using the
character formulas of [Shi77, Sil70].

2. Preliminaries and notation

2.1 The group SO∗2
Let F be a p-adic field with ring of integers OF , maximal ideal pF and residue field k of order q.
Let G= GL2(F ). Write w for the matrix (0 1

1 0). For g ∈M2(F ), write g` for wtgw−1. Let ε be the
involution of G given by ε(g) = (g`)−1. We say that elements x, y ∈G are ε-conjugate if there is
a g ∈G so that gxg` = y.
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Fix a quadratic extension E of F . Write σ for the non-trivial automorphism of E, and Nm
and Tr for the norm and trace maps from E to F . Let E1 denote the elements of E of norm one.
We now specify a subgroup H of G isomorphic to E1. Assume the orthogonal form J = (1 0

0 −τ)
for some non-square τ ∈ OF − p2

F . Then our group H = SO∗2 = SO(J) is given by matrices of the
form (

a b
bτ a

)
(2.1)

corresponding to a+ b
√
τ ∈ E1. Note that if h ∈H then h` = h. Throughout this paper we will

often identify E with the set of matrices of the form (2.1) with a, b ∈ F . Write gθ = (1 0
0 −1); then

the full orthogonal group is H+ =O∗(J) =H ∪ gθH. Note that gθhg−1
θ = σ(h) for h ∈H. Since H

is commutative in this case, we also write T =H. Put T ′ = T − {1}.

2.2 The norm correspondence for SO∗6
Put

J̃ =

 w
J

w

 ∈GL6(F )

and G̃= SO(J̃) = {g ∈ SL6(F ) | gJ̃ tg = J̃}.
Let M be the Levi subgroup of G̃ consisting of matrices of the formg h

ε(g)

,
with g ∈G and h ∈H. Write P for the parabolic subgroup generated by M and the Borel
subgroup B̃ of upper triangular matrices in G̃. Then P = MN , where N is the subgroup of
matrices of the form

n(X, Y ) =

I X Y
I X ′

I


in G̃. Here X, X ′, Y ∈M2(F ). The condition that n(X, Y ) ∈ G̃ gives the equations

X ′ =−J tXw and Y + Y ` =XX ′. (2.2)

The integration over N defining our intertwining operator is decomposed into orbits via the
action of the Levi subgroup M in [GS98]. The set of these orbits is equivalent to the set of
ε-conjugacy classes of elements Y for which there is a solution to (2.2). We may parameterize
these classes very simply by means of the the norm correspondence from [GS98].

Lemma 1. Let (X, Y ) be a pair of invertible 2× 2 matrices satisfying (2.2), with Y invertible,
and put Norm(X, Y ) = I −X ′Y −1X.

(i) We have Norm(X, Y ) ∈ T ′.
(ii) If g ∈G, then the pair (g−1X, g−1Y ε(g)) satisfies (2.2), and

Norm(X, Y ) = Norm(g−1X, g−1Y ε(g)).

(iii) If X is invertible, and (X1, Y ) is also a solution to (2.2), then Norm(X1, Y ) = Norm(X, Y )
or Norm(X1, Y ) = Norm(Xgθ, Y ) = Norm(X, Y )−1.
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Proof. It is straightforward to see that Norm(X, Y ) ∈H+. Since each Norm(X, Y )− I is
invertible, we obtain (i). Part (ii) is a computation.

The hypothesis for part (iii) implies that XJ tX =X1J
tX1, which implies that X1 =Xh with

h ∈H+. It follows that Norm(X1, Y ) = h−1 Norm(X, Y )h, and the conclusion follows. 2

Write Nr for the set of ε-conjugacy classes [Y ] of invertible matrices Y for which (2.2) have
a solution for an invertible matrix X. Write T ′/σ for the quotient of T ′ under inversion (also
conjugation, since T = E1). Then Lemma 1 shows that Nε gives a well-defined map from Nr to
T ′/σ, given by Nε([Y ]) = {Norm(X, Y ),Norm(X, Y )−1}. We will show that this is a bijection.
To understand the fibres of this map over T ′/σ, we relate it to the map ν :G→G given by
ν(g) = g`g−1.

Lemma 2. Suppose that [Y1], [Y2] ∈Nr, and that Nε([Y1]) =Nε([Y2]). Then [Y2] contains an
element Y3 so that ν(Y1) = ν(Y3).

Proof. For i= 1, 2, pick invertible Xi satisfying condition (2.2) with Yi. Let γi = Norm(Xi, Yi).
The hypothesis implies that γ2 = hγ1h

−1, with h= 1 or h= gθ.
By Lemma 3.3 of [GS98], we have

Xiγi =−ν(Yi)Xi.

Put Y3 = (X1h
−1X−1

2 )Y2(X1h
−1X−1

2 )`; then a calculation shows that ν(Y1) = ν(Y3). 2

We therefore compute the fibres of the map ν.

Lemma 3. Fix a quadratic extension E over F , and let g1 ∈ E× with σ(g1) 6=±g1. Let δ1 = g1gθ
and γ = ν(δ1). Then the fibre of ν over γ is equal to Zg1, where Z is the center of G.

Proof. Note that γ ∈ E1 − {±1}. Suppose that δ2 ∈G with ν(δ2) = γ. This can be rewritten
as δ`2 = γδ2. Since γ` = γ, we obtain δ2 = δ`2 γ. Substituting, it follows that δ2 = γδ2γ. Now let
δ2 = g2gθ, for some g2 ∈G. This gives g2gθ = γg2gθγ = γg2σ(γ)gθ. This implies that g2 = γg2γ

−1,
and therefore g2 ∈ E×. Now this gives

σ(g1)
g1

=
σ(g2)
g2

= γ,

and it follows that (g1/g2) ∈ F×, as desired. 2

Note that if z ∈ Z, then g is ε-conjugate to z2g. Actually, we know a little bit more.

Lemma 4. Let δ ∈ E× · gθ, with ν(δ) = γ ∈ E1 − {±1}, and α ∈ F×. Then αδ is ε-conjugate to δ
if and only if α is a norm of E×.

Proof. Suppose that α= Nm(β) with β ∈ E×. Then combining the facts that β` = β, and that
βgθ = gθσ(β), we deduce that βδβ` = αδ. For the other direction, suppose that

gδg` = αδ, (2.3)

and apply ν to both sides. We obtain gγg−1 = γ, so that g commutes with γ, and it follows that
g ∈ E×. Viewing g as an element of E×, we write σ(g) for its conjugate. Now, as above, (2.3)
implies that gσ(g)δ = αδ, and therefore α is the norm of g. 2

In other words, there are two ε-conjugacy classes in the fibre of ν over such γ, corresponding
to the two elements of F×/Nm(E×). However, we will soon see that there is only one ε-conjugacy
class for the norm correspondence.
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Definition 1. For γ ∈ T ′, we define S(γ) = wJ−1(γ − 1).

The significance of S(γ) comes from the following proposition.

Proposition 2. The norm correspondence Nε :Nr→ T ′/σ is a bijection. More precisely, if
γ ∈ T ′, then the fibre of the norm correspondence over γ is the singleton [S(γ)−1].

Proof. Let Y = S(γ)−1 = (γ − 1)−1Jw−1. Then (I, Y ) satisfies (2.2), and Norm(I, Y ) = γ, since
Y + Y ` =−Jw and I − I ′Y −1 = γ, as the reader may verify.

By Lemma 2, if [Y1] ∈Nr with Nε(Y1) 3 γ, then we may assume that ν(Y1) = ν(Y ). Then,
by Lemma 3, there is an α ∈ F× so that Y1 = αY . Therefore, we must look for solutions X to
αY + αY ` =XX ′. This leads to the equation

αJ =XJXT ;

in other words, such an X exists if and only if the quadratic forms x2
1 − τx2

2 and αx2
1 − ατx2

2 are
F -equivalent. Following [Ser73], we compute the Hasse–Witt invariants. The invariant for the
first is (1,−τ) = 1 and the invariant for the second is (α,−ατ) = (α,−α)(α, τ) = (α, τ). We are
using here the Hilbert symbol and its elementary properties. Therefore, such an X exists if and
only if α is a norm of E×. But then, by Lemma 4, αY is ε-conjugate to Y . 2

The element S(γ)−1 is not in E×, but can be written in the form γ̃gθ, with γ̃ ∈ E×. The
relationship between γ and γ̃ will play an important role in this paper, so we gather together a
few properties. Let E = F [

√
τ ] be any quadratic extension of F , with τ a non-square in OF − p2

F .
Suppose that γ = a+ b

√
τ ∈ E1, with a, b ∈ F and γ 6=±1. Throughout this paper, we set

γ̃ =
√
τ

1− γ
.

Lemma 5. We have the following facts about γ and γ̃.

(i) σ̃(γ) =−σ(γ̃), γ̃ − σ(γ̃) =
√
τ and σ(γ̃)/γ̃ = γ.

(ii) We have Nm(γ̃) = τ/(Tr(γ)− 2) and Tr(γ̃) =−bτ/(a− 1).
For the next three items, suppose further that |γ − 1|< 1, and let x= a− 1.

(iii) If ord(τ) = 1, then ord(x) is odd, and ord(x) = 2k + 1⇔ ordE(γ − 1) = 2k + 1.

(iv) If τ is a unit, then ord(x) is even, and ord(x) = 2k⇔ ordE(γ − 1) = k.

(v) There is a square root λ ∈ F× of Nm(γ̃), so that λ−1 = (−b+ x2/2bτ) mod x2.

Proof. The first two, (i) and (ii), are immediate. The condition |γ − 1|< 1 implies that x ∈ pF .
Since γ ∈ E1, we have

τb2 = 2x+ x2. (2.4)

Therefore, we see that |x|= |τb2|, from which it follows that |γ − 1|= |τb2|
1
2 = |x|

1
2 . This gives

(iii) and (iv). As for (v), it is straightforward to check that Nm(γ̃)−1 = 2x/τ has a square root:
one may divide both sides of (2.4) by $2 ord(b)τ and then use Hensel’s lemma. The rest is an easy
calculation. 2

2.3 Jacobians and measures
As we shall see later, to get the residues as an orthogonality relation as predicted in [Sha08]
when the central character is non-trivial, the Jacobians and measures must match precisely. The
purpose of this section is to verify that this is in fact the case. We start by recalling the measures
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that show up in [GS98]. With notation as in § 2.2 and the discussion in [GS98], the invariant
measure for integration in (4.2) of [GS98] is

d∗(X, Y ) = |det Y |−〈ρP ,α̃〉
F d(X, Y ).

Here d(X, Y ) is the euclidean measure on N(F ). For us, Y = γ̃gθ and d(X, Y ) = dg dγ̃.
We first recall that in the situation in hand, M is generated by e1 − e2 and one can take either

α′ = e2 − e3 or e2 + e3 as the non-restricted root restricting to α. Note that ρP = 3
2(e1 + e2).

Then 〈ρP , α〉= 3
2 , so α̃= 〈ρP , α〉−1ρP = e1 + e2. Consequently, 〈ρP , α̃〉= 3. (We remark that for

GLn × SO∗n as Levi in SO∗3n, 〈ρP , α̃〉= n− 1
2 , when n > 2 is even.) This gives

d∗(X, Y ) = |det Y |−3
F d(X, Y )

= |det(γ̃)|−3
F dg dγ̃.

Now |det(γ̃)|F = |Nm(γ̃)|
1
2
E , so, by Lemma 5,

|det(γ̃)|−3
F =

∣∣∣∣Tr(γ)− 2
τ

∣∣∣∣ 32
E

.

From the identity γ̃(1− γ) =
√
τ , we obtain

dγ̃

dγ
=
∣∣∣∣ γ̃

1− γ

∣∣∣∣
E

=
∣∣∣∣ √

τ

Tr(γ)− 2

∣∣∣∣
E

.

For the rest of this paper, we will drop the subscript E from the norms.

Definition 2. Let d∗γ = |τ |−1| Tr(γ)− 2|
1
2 dγ.

We are therefore able to write

d∗(X, Y ) = d∗γ dg.

We need to compare this measure to other Jacobians which arise in the subject. Recall the
definition of Dε.

Definition 3. Let δ ∈G. We write Gδ,ε = {g ∈G | gδg` = δ}. Let dε : Lie(G)→ Lie(G) be the
differential of ε, given by dε(X) =−X`. Then

Dε(δ) = det(Ad(δ) ◦ dε− 1; Lie(G)/Lie(Gδ,ε)).

Proposition 3. We have Dε(γ̃gθ) = 2(Tr(γ)− 2).

Proof. Let G′ = SL2(F ). It is easy to see that Lie(Z) is an eigenspace for Ad(δ) ◦ dε− 1
with eigenvalue −2; therefore, we restrict our attention to Lie(G′). Write ε0(g) = (1/det(g))g;
recall that ε(g) = Ad(gθ) ◦ ε0. Therefore, on Lie(G′), dε is equal to Ad(gθ). We are reduced to
computing det(Ad(γ̃)− 1; Lie(G)/Lie(T )), where T is the usual centralizer of γ̃. The matrix of
the adjoint action of γ̃ has eigenvalues γ and σ(γ). Therefore,

Dε(δ) = −2(γ − 1)(σ(γ)− 1)
= −2(γσ(γ)− γ − σ(γ) + 1)
= 2(Tr(γ)− 2). 2
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It follows that
d∗(X, Y ) = |τ |−1|2|−

1
2 |Dε(S(γ))|

1
2 dγ dg.

Here is the definition of the discriminant ∆E mentioned in the introduction.

Definition 4. Let g be a matrix in GL2(F ) with distinct eigenvalues a, b in a quadratic
extension E. Then set

∆E(g) =
∣∣∣∣(a− b)2ab

∣∣∣∣ 12 .
The following is straightforward.

Proposition 4. Let γ ∈ E1 and γ̃ = ((σ(γ)− 1)
√
τ)/(Tr(γ)− 2). Then

∆E(γ̃) = |Tr(γ)− 2|
1
2 = |12Dε(γ̃)|

1
2 .

So, we may write d∗(X, Y ) in a third way, as
d∗(X, Y ) = |τ |−1∆E(γ̃) dγ dg.

3. The residue
3.1 Recollection
In this paper we are treating a low-dimensional example of a more general theory. Its history
includes [GS98, GS01, GS], which treat the quasisplit classical groups, in particular the case of
even orthogonal groups. The present set-up may be generalized by letting G̃ be an orthogonal
group SO6n, and the Levi subgroupM=̃ GL2n × SO2n of three equal-sized blocks. Again one takes
a self-dual supercuspidal representation πG of G= GL2n(F ) and a supercuspidal representation
πH of H = SO2n(F ), and studies parabolic induction to G̃ as in the introduction.

If the intertwining operator has a pole at zero, this pole will occur along a flat section of
functions f ∈ I(sα̃, πG ⊗ πH) assembled from some choice of matrix coefficients ψ of πG and fH
of πH , and a pair of compact subsets L, L′ of Mn(F ). (See [GS98] for details.) Denote the central
character of πG by ω. Choose a compactly supported function fG so that

ψ(g) =
∫
Z
ω(z)−1fG(zg) dz.

The residue obtained from these choices is denoted by R(fG, fH). The main result of [Spa08] is
the following theorem: the residue R(fG, fH) is equal to

Res
s=0

∑
T

|W (T )|−1
∞∑
k=0

q−2nks

∫
T

∑
S

∫
G/T

∫
T\H+

fG(gS(γ)−1g`)fH(h−1γh)Wk(g, h) dh dg d∗γ.

Here S runs over sections of the norm correspondence over γ, and Wk(g, h) is a certain ‘weight
function’ defined in [Spa08]. For us, the sum over S is a singleton by Proposition 2. Another
sum runs over conjugacy classes of maximal tori T in H, and |W (T )| denotes the order of the
Weyl group of T in H. By H+ we denote the full orthogonal group O2n. A slight variation on
the methods gives

Ress=0
∑

T |W (T )|−1
∑∞

k=0 q
−2nks

∫
T

∫
G/T

∫
T\H+

∑
α∈A

ω(α)−1fG(αgS(γ)−1g`)

× fH(h−1γh)wk(g, h) dh dg d∗γ,

where wk(g, h) = volT (T ∩$−kg−1Lh−1) and A is a set of representatives for F×/F×2.
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In our case, where H = T = SO∗2 and G= GL2(F ), a few simplifications occur. We have
wk(g, h) = wk(g, 1), and so may write wk(g) = wk(g, h). Since T is compact and L contains a
neighborhood of 0, we have limk→∞ wk(g) = vol(T ) = 1 for all g ∈G. The quotient T\H+ =
H\H+ has order two; we write the quotient as {1, gθ}. Write γ′ = g−1

θ γgθ. Moreover, we may
take fH to be a character χH on H. Write π for πG and f for fG. The residue then simplifies to

Res
s=0

∞∑
k=0

q−4ks

∫
T

(χH(γ) + χH(γ′))
∑
α∈A

ω(α)−1

∫
G/T

f(αgS(γ)−1g`)wk(g) dh dg d∗γ.

Proposition 5. In this case, we have

lim
k→∞

∫
T

(χH(γ) + χH(γ′))
∑
α∈A

ω(α)−1

∫
G/T

f(αgS(γ)−1g`)wk(g) dg d∗γ

=
∫
T

(χH(γ) + χH(γ′))
∑
α∈A

ω(α)−1

∫
G/T

f(αgS(γ)−1g`) dg d∗γ.

Proof. The switching of limits follows from the usual reasoning: normalized twisted orbital
integrals are bounded and have compact support on T . The result then follows by Lebesgue’s
dominated convergence theorem. 2

This combines nicely with the following elementary analysis.

Proposition 6. Let ak ∈ C be a sequence, and suppose that limk→∞ ak = a. Then

lim
s→0

s ·
∞∑
k=0

akq
−2nks =

a

2n log q
.

Proof. The change of variables x= q−2ns reduces the problem to computing

C · lim
x→1−

(log x)
∞∑
k=0

akx
k,

where C =−1/(2n log q). By comparison with geometric series, we see that the sum has radius
of convergence at least one, and thus converges absolutely for |x|< 1. So, in this interval we
may perform rearrangements. Since limx→1(log x/(x− 1)) = 1, we may replace log x with x− 1.
Therefore, we have

(x− 1)
∞∑
k=0

akx
k =−a0 +

∞∑
k=0

(ak − ak+1)xk.

By Abel’s limit theorem, this approaches −a as x→ 1−. 2

Corollary 2. The residue R(fG, fH) is independent of the choice of lattice L and equal to

1
4 log q

∫
T

(χH(γ) + χH(γ′))
∑
α∈A

ω(α)−1

∫
G/T

f(αgS(γ)−1g`) dg d∗γ.

3.2 The matrix coefficient
Proposition 7. We have∑

α∈A
ω(α)−1

∫
G/T

f(αgS(γ)−1g`) dg = |2|−1

∫
G/TZ

ψ(gS(γ)−1g`) dg.
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Proof. Putting δ = S(γ)−1, this follows from the equalities∑
α∈A

ω(α)−1

∫
G/T

f(αgδg`) dg =
∑
α∈A

ω(α)−1

∫
G/TZ

∫
Z/{±1}

f(αzgδg`z`) dz dg

=
1
2

∫
G/TZ

∫
Z

∑
α∈A

ω(α)−1f(αz2gδg`) dz dg

= |2|−1

∫
G/TZ

∫
Z
ω(z)−1f(zgδg`) dz dg

= |2|−1

∫
G/TZ

ψ(gδg`) dg

since ω2 = 1 and T ∩ Z = {±1}. 2

Corollary 3. The residue R(fG, fH) is equal to

1
2|2| log q

∫
T
χH(γ)

∫
G/Z

ψ(gS(γ)−1g`) dg d∗γ.

Proof. A simple computation shows that S(γ′)−1 = gθS(γ)−1g`θ , and therefore the orbital
integrals for ψ over the orbits of S(γ)−1 and S(γ′)−1 agree. Moreover, since gθwg

−1
θ =−w,

we have gθε(g)g−1
θ = ε(gθgg−1

θ ), which implies that Ad(gθ) ◦ ε= ε ◦Ad(gθ), and so

det(Ad(gθδg−1
θ ) ◦ ε− 1) = det(Ad(δ) ◦ ε− 1).

In particular, Dε(S(γ′)) =Dε(S(γ)). This allows us to replace the factor (χH(γ) + χH(γ′))/2
with χH(γ). We may drop the quotient by T since it is compact with normalized measure. 2

At this point, we may discard some cases of non-trivial ω.

Proposition 8. If ω restricted to the subgroup Nm(E×) is non-trivial, then R(fG, fH) = 0.
Thus, when ω is non-trivial, we conclude that R(fG, fH) = 0 unless E = E′.

Proof. Let δ ∈ E×gθ. Suppose that β ∈ E×, and that ω(βσ(β)) = ω(α) 6= 1. Then∫
ψ(gδg`) dg =

∫
ψ(gβδβ`g`) dg

=
∫
ψ(gβσ(β)δg`) dg

=
∫
ψ(αgδg`) dg

= ω(α)
∫
ψ(gδg`) dg,

the integrals being over G/Z. It follows that∫
G/Z

ψ(gδg`) dg = 0. 2

Definition 5. Let G be a p-adic reductive group, and ε :G→G an involution. Suppose that
(π, V ) is an irreducible admissible representation of G with a non-zero intertwining operator
Iε : π→ π ◦ ε satisfying I2

ε (v) = v.
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Let f ∈ C∞c (G) and write πε(f) : V → V for the operator defined by

πε(f)v =
∫
G
f(x)π(x)Iεv dx.

By [Clo87], there is a locally integrable function Θε
π defined on the regular elements of G so that

for all such f ,

Tr(πε(f)) =
∫
G

Θε
π(x)f(x) dx.

Note that if I is any intertwining operator from π to π ◦ ε, then I2 intertwines π. Therefore,
I2v = cv for some c ∈ C×; by dividing by a square root of c we obtain an involution Iε as above.

Proposition 9. Suppose in the above situation that π is supercuspidal. Pick v, ṽ ∈ V , and a
G-invariant inner product ( , ) which is also Iε-invariant.

Let ψ be the matrix coefficient defined by ψ(g) = (ṽ, gv). Let x be a regular element of G.
Then ∫

G/Z
ψ(gxε(g)−1) dg = Θε

π(x)(ṽ, Iεv) d(π)−1,

where d(π) is the formal degree of π.

Note that if ( , )1 is a G-invariant inner product, then the inner product ( , )2 defined by
(v, w)2 = (v, w)1 + (Iεv, Iεw)1 is both G-invariant and Iε-invariant.

We follow the proof of Theorem 9 in [Har70] closely.

Proof. Let f ∈ C∞c (G). We have∫
G/Z

ψ(gxε(g)−1) dg =
∫
G/Z

(g−1ṽ, xε(g)−1v) dg.

Note that π(ε(g)−1)v = Iεπ(g)−1Iεv for all v. Let {φi}i∈I be an orthonormal basis of V . Then

(g−1ṽ, xε(g)−1v) =
∑
i,j∈I

(g−1ṽ, φi)(φi, xIεφj)(φj , g−1Iεv)

=
∑
i,j

Qij(ṽ, gφi)(Iεv, gφj),

where Qij = (φi, π(x)Iεφj). So, our orbital integral becomes∫
G/Z

∑
i,j

Qij(ṽ, gφi)(Iεv, gφj) dg.

Integrating this over G against f gives∫
G

∫
G/Z

∑
i,j

Qij(ṽ, gφi)(Iεv, gφj)f(x) dg dx=
∫
G/Z

∑
i,j

Rij(ṽ, gφi)(Iεv, gφj) dg, (3.1)

where

Rij =
∫
G

(φi, π(x)Iεφj)f(x) dx.

By the orthogonality of matrix coefficients, (3.1) becomes(∑
i

Rii

)
d(π)−1(ṽ, Iεv).
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We note that ∑
i

Rii =
∑
i

∫
G

(φi, π(x)Iεφi)f(x) dx

=
∑
i

(φi, πε(f)φi)

= Tr πε(f).

The conclusion follows, since we have shown that∫
G

(∫
G/Z

ψ(gxε(g)−1) dg
)
f(x) dx= Tr πε(f) d(π)−1(ṽ, Iεv). 2

Corollary 4. If we choose our ψ with v, ṽ so that (ṽ, Iεv) = d(π), then∫
G/Z

ψ(gS(γ)−1ε(g)−1) dg = Θε
π(S(γ)−1).

Let us keep this assumption on ψ throughout the paper, for simplicity. Another choice of ψ
would involve multiplying the residue by a (possibly zero) scalar.

Returning to Corollary 3, note that Dε(αS(γ)) depends only on Ad(αS(γ)) = Ad(S(γ)),
so that Dε(αS(γ)) =Dε(S(γ)). Moreover, ψ(gαS(γ)−1g`) = ω(α)ψ(gS(γ)−1g`), where ω is the
central character of π. We deduce the following theorem. Recall that d∗γ = |τ |−1| Tr(γ)− 2|

1
2 dγ,

where dγ is the normalized Haar measure on T .

Theorem 2. If ω is trivial on the subgroup Nm(E×) of F×, then

R(fG, fH) =
1

|2| log(q)

∫
T
χH(γ)Θε

π(S(γ)−1) d∗γ. (3.2)

Since the right-hand side only depends on π and χH , we make the following definition.

Definition 6. Write R(π, χH) for the right-hand side of (3.2).

We will compute R(π, χH) in the sequel.

4. Case of non-trivial central character

By Proposition 8, we may assume that E = E′. To compute R(π, χH), we need to find an
intertwining operator Iε as in Definition 5. Write ε0(g) = (1/det(g))g; recall that ε= Ad(gθ) ◦ ε0.
This means that π ◦ ε0(g) = ω(det(g))π(g). Moreover, since π is self-dual with a non-trivial
central character, ω is the sign character sgnE associated with the extension E.

The following is from Theorem 4.8.6 of [Bum98]. Write G+ for the subgroup of matrices in G
whose determinant is a norm from E×; it is a subgroup of G of index two.

Proposition 10. The representation (π, V ) is induced from a representation (π+, V+) of G+.

The following lemma is familiar from Clifford theory.

Lemma 6. Let G be a group, and G+ a subgroup of index two. Pick an element s ∈G−G+.
Let (π+, V+) be a representation of G+. Write (π−, V−) for the G+-module whose representation
space is again V+ but where the action is given by π−(g) = π+(sgs−1). Now let (π, V ) = IndGG+

π+.
Then V is isomorphic to V+ ⊕ V− as a G+-module. Let χ be the non-trivial one-dimensional
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character of G which is trivial on G+. Consider the operator Iχ : V → V which is the identity
on V+ and −1 on V−. Then Iχ is an intertwining operator from (π, V ) to (χ · π, V ). Here χ · π
is the representation on V given by (χ · π)(g) = χ(g)π(g).

We may also write Iχ = P+ − P−, where P± is the projection from V to V± orthogonal to V∓.

Proposition 11. We have

Θε
π(S(γ)−1) = Θπ+(S(γ)−1gθ)−Θπ−(S(γ)−1gθ),

where π−(g) is the representation of G+ given by π−(g) = π+(sgs−1), where s ∈G−G+.

Proof. Pick an inner product on V which is G- and Iε-invariant. By the above, we may take
Iε = π(gθ) ◦ (P+ − P−). Let Iε0 = P+ − P−; we will first compute the twisted character Θε0

π with
respect to this intertwining operator. Note that ( , ) is also Iε0-invariant.

Suppose that f ∈ Cc(G) has support in G+. For v ∈ V , we have

πε0(f)v =
∫
G
f(x)π(x)P+v dx−

∫
G
f(x)π(x)P−v dx.

Let v+ ∈ V+ and v− ∈ V−. Since ( , ) is Iε0-invariant we have (v+, v−) = (v+,−v−), and
therefore the vectors are orthogonal. Therefore, there is an orthonormal basis of V , written
as a union {e+i } ∪ {e

−
i }, with e+i ∈ V+ and e−i ∈ V−. Then for all e+i we have

(πε0(f)e+i , e
+
i ) =

(∫
G
f(x)π(x)e+i dx, e

+
i

)
=
(∫

G+

f+(x)π(x)e+i dx, e
+
i

)
= (π+(f+)e+i , e

+
i ),

where we write f+ for the restriction of f to G+. Similarly, for all e−i we have

(πε0(f)e−i , e
−
i ) = −

(∫
G+

f(x)π(x)e−i dx, e
−
i

)
= −(π−(f+)e−i , e

−
i ).

It follows that tr πε0(f) = tr π+(f+)− tr π−(f+), and so for g ∈G+ we have

Θε0
π (g) = Θπ+(g)−Θπ−(g).

By translating by gθ, we find that for g ∈G+gθ we have

Θε
π(g) = Θπ+(ggθ)−Θπ−(ggθ).

The result follows, since S(γ)−1gθ ∈ E× ⊂G+. 2

Let us summarize this as the following proposition.

Proposition 12. Suppose that E = E′, and the central character of π is sgnE . Then we have

R(π, χH) =
1

|2| log q

∫
T
χH(γ)(Θπ+(γ̃)−Θπ−(γ̃)) d∗γ.

Next, we turn to [Lan80, Lemma 7.19], where Langlands computed

Θπ+(γ̃)−Θπ−(γ̃) =±λ(E/F, ψ) sgnE

(
γ̃ − σ(γ̃)√

τ

)
χ′(γ̃) + χ′(σ(γ̃))

∆E(γ̃)
.
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(This is also in [LL79].) Here λ(E/F, ψ) is the Gauss sum attached to sgnE , as in [Lan70]. In
fact, we have γ̃ − σ(γ̃) =

√
τ , so the sgnE term is 1. Since π has central character sgnE , we know

that χ′ must be trivial on F×. Therefore, it factors through the homomorphism α∨ : E×→ E1

given by α∨(x) = x/σ(x) by Hilbert’s theorem 90. This defines a character χG of E1 for which
χ′ = χG ◦ α∨. Also, note that since χ′(Nm(γ̃)) = 1 we have χ′(σ(γ̃)) = χ′(γ̃).

Proposition 13. We have χ′(γ̃) = χG(γ) in the above situation.

Proof. In fact, one has α∨(γ̃) = γ−1 by Lemma 5. 2

Using Definition 2 and applying Proposition 4, we see that the discriminant terms cancel,
and we obtain the following theorem.

Theorem 3. Suppose that E = E′, and the central character of π is sgnE . Then R(π, χH) is a
non-zero constant multiple of ∫

T
χH(γ)(χG(γ) + χG(γ)) dγ.

Corollary 5. This verifies (b) in [Sha08, Proposition 2].

5. Case of trivial central character

Let us henceforth assume that the central character ω of π is trivial. This is equivalent to the
condition that the restriction of χ′ to F× is the sign character sgnE′ of F× associated with E′. For
the rest of this paper we restrict ourselves to the case of odd residual characteristic for simplicity.
Again, our first step is to find an intertwining operator Iε as in Definition 5. This is simpler than
in the case of non-trivial ω; here ε= Ad(gθ) ◦ ε0. This means that π(ε(g)) = π(Ad(gθ)(g)), and
therefore Iε = π(gθ) intertwines π and π ◦ ε. We obtain the following proposition. Recall that
γ̃ = S(γ)−1gθ.

Proposition 14. The residue R(π, χH) is equal to

1
|2| log q

∫
T
χH(γ)Θπ(γ̃) d∗γ.

For the values of Θπ, we turn to the explicit character value computations which are in both
Shimizu [Shi77, Proposition 2] and Silberger [Sil70, § 2.6]. But we set up the integration first.

5.1 Measures of annuli
We follow [Shi77] and [Adl97] with the following definitions.

Definition 7. For an integer n > 0, write

Cn =


E1 ∩ (1 + p2n+1

E ) if E is ramified,
E1 ∩ (1 + pnE) if E is unramified and n is positive,
E1 if E is unramified and n= 0.

We write An for the ‘annulus’ Cn − Cn−1. Similarly, we write C ′n, A′n for the corresponding
subsets of E′. For a non-trivial character χ of the norm-one group E1 of a quadratic extension E
of F , write `E(χ) for the minimum n so that χ is trivial on Cn. We may drop the subscript E if
it is understood. For us, `E′(χ′) > 1 since χ′ induces a supercuspidal representation with trivial
central character.
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As in § 2.3, we put d∗γ = |τ |−1|Tr(γ)− 2|
1
2 dγ. Much of the forthcoming integral computations

reduce to the following lemmas.

Definition 8. Suppose that E is unramified over F , and χ is a character on E× with `= `E(χ).
Then let

I(`, n) =
∫
Cn

χ(γ) d∗γ.

The following follows from the usual annulus computation.

Lemma 7.

I(`, n) =


− q−2`+3

(q + 1)2
if n < `,

− q−2n+2

(q + 1)2
if n > `.

(5.1)

This expression is non-zero. If we choose instead a ramified extension E, the result is
proportional to this, and also non-zero.

Definition 9. Let E be ramified, and χ a character on E× with `= `(χ). Then let

Ir(`, n) =
∫
Cn

χ(γ) d∗γ.

Lemma 8.

Ir(`, n) =
q + 1
2
√
q
I(`, n).

6. Trivial central character, different tori

Theorem 4. Suppose that E is not isomorphic to E′. Then R(π, χH) 6= 0.

We will require some delicate information in the case when E and E′ are both ramified but
not isomorphic.

Definition 10. Let E be a quadratic extension of F . Given γ ≡ 1 mod p, let g(γ) = γ̃/λ, where λ
is as in Lemma 5(v).

This is a rescaling of γ̃ so that g(γ) ∈ E1.

Lemma 9. Suppose that E = F [
√
τ ] is a ramified quadratic extension of F , with ord(τ) = 1.

Then:

(i) Tr(g(γ))≡ (2 + x/2) mod xbτ , where γ = (1 + x) + b
√
τ ∈ E1;

(ii) the map from Cn to pnF taking γ to (γ − σ(γ))/
√
τ induces an isomorphism of groups

Bn : Cn/Cn+1 →̃ pnF /p
n+1
F .

Through this identification, we may view Cn/Cn+1 as a k-module. If µ ∈ k, and γ is in the
quotient, we write this action as µγ;

(iii) Tr(µγ)− 2≡ µ2(Tr(γ)− 2) mod p2n+2
F ;

(iv) Tr(g(µγ))− 2≡ µ2(Tr(g(γ))− 2) mod p2n+2
F .
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Proof. This is left to the reader. Note that if a+ b
√
τ ∈ Cn, then x= a− 1 ∈ p2n+1

F and b ∈ pnF . 2

Definition 11. Let E = F [
√
τ ] be a ramified extension of F , with ord(τ) = 1. Write θn :

pnF /p
n+1
F →̃ k for the isomorphism taking b to b/(−τ)n. Write φn : Cn/Cn+1 →̃ k for θn ◦Bn.

Note that if b /∈ pn+1
F , then sgnE(b) = sgnE(θn(b)) is equal to the Legendre symbol

(
θn(b)
k

)
and φn(σ(γ)) =−φn(γ). Also note that φn(γ) 6= 0 if γ ∈An. We now prove the theorem.

Proof.

Case I. E′ unramified and E ramified.

Let γ ∈H = E1. As in [Shi77], we take E = F [
√
−$]. Let `= `E(χH) and `′ = `E′(χ′). We

have

Θπ(γ̃) =

{
−2q`

′−1 if γ ∈ C`′−1,
0 otherwise.

Therefore, following Proposition 14, we obtain

R(π, χH) =
1

|2| log q

∫
T
χH(γ)Θπ(γ̃) d∗γ

= − 2q`
′−1

|2| log q
· Ir(`, `′ − 1) 6= 0. (6.1)

Case II. E′ ramified and E unramified.

This time we have

Θπ(γ̃) =

{
−(q + 1)q`

′−1 if γ ∈ C`′ ,
0 otherwise.

As in the previous proof, we obtain

R(π, χH) =− 1
|2| log q

(q + 1)q`
′−1 · I(`, `′) 6= 0. (6.2)

Case III. E′ and E both ramified and ` > `′.

The convention is that E′ = F [
√
−$ ] and E = F [

√
−ε0$ ], where ε0 ∈ O×F is a non-square.

We write Tr′ for the trace map from E′ to F . Let γ ∈H = E1 and `′ = `E′(χ′). We have

Θπ(γ̃) =


−(q + 1)q`

′−1 if γ ∈ C`′ ,

q`
′−1

∑
β∈C′

`′−1
/C′

`′

χ′(β) sgnE′(Tr(g(γ))− Tr′(β)) if γ ∈A`′−1,

0 otherwise.

(6.3)

The new feature here is the sum over β ∈ C ′`′−1/C
′
`′ . Since χH is non-trivial on C`′ , there is

an element γ0 ∈ C`′ with χH(γ0) 6= 1. For all γ ∈ C`′−1, we have Tr′(g(γγ0))≡ Tr′(g(γ)) mod p2`.
We also have Tr′(β)− 2 ∈ p2`′−1 and Tr(g(γ)) ∈ p2`′−1 − p2`′ for γ ∈A`′−1, and it follows that

Tr(g(γ))− Tr′(β) ∈ p2`′−1 − p2`′.
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Therefore, we have∫
A`′−1

χH(γ)
∑

β∈C′
`′−1

/C′
`′

χ′(β) sgnE′(Tr(g(γ))− Tr′(β)) dγ

=
∫
A`′−1

χH(γγ0)
∑

β∈C′
`′−1

/C′
`′

χ′(β) sgnE′(Tr(g(γ))− Tr′(β)) dγ,

and it follows that this term is 0. As above, we are done because

R(π, χH) =− 1
|2| log q

(q + 1)q`
′−1 · Ir(`, `′) 6= 0. (6.4)

Case IV. E′ and E both ramified and ` 6 `′.
Equation (6.3) is still valid, but here the integral over A`′−1 will be non-zero. In this case χH

is trivial on C`′ , and its restriction to C`′−1 may be viewed as a character on C`′−1/C`′ . Note
that χ′ restricts to a character on C ′`′−1/C

′
`′ . Given µ ∈ k, write χ′µ for the character

χ′µ(β) = χ′(µβ),

defined on this quotient. Of course, if µ= 0, then χ′0 is the trivial character.
Fix an element γ0 = a0 + b0

√
−$ε0 ∈A`′−1, and let

f(β) = sgnE′(Tr(g(γ0))− Tr′(β)),

viewed as a function on C ′`′−1/C
′
`′ . (In fact, Tr(g(γ0)) 6= Tr′(β) in all cases.) Write f̂(χ′µ) for the

Fourier coefficient of f with respect to the character χ′µ. That is,

f̂(χ′µ) =
∑

β∈C′
`′−1

/C′
`′

χ′µ(β) sgnE′(Tr(g(γ0))− Tr′(β)).

For µ 6= 0, we have

f̂(χ′µ) =
∑
β

χ′(β) sgnE′(Tr(g(γ0))− Tr′(µ
−1
β)).

But then by Lemma 9, we have

sgnE′(Tr(g(γ0))− Tr′(µ
−1
β)) = sgnE′(Tr(g(γ0))− 2 + µ−2(2− Tr′(β)))

= sgnE′(Tr(g(µγ0))− Tr′(β)).

Thus, ∑
β∈C′

`′−1
/C′

`′

χ′(β) sgnE′(Tr(g(γ))− Tr′(β)) = f̂(χ′µ), (6.5)

where γ = µγ0. On the other hand,

f̂(χ′0) =
∑

β∈C′
`′−1

/C′
`′

sgnE′(Tr(g(γ0))− Tr′(β))

=
∑
β

sgnE′
(
x0

2
− 2y

)
=
∑
β

sgnE′(2x0 − 8y).
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Here we write β = c+ d
√
−$, and put x0 = a0 − 1 and y = d− 1. This is equal to∑

β

sgnE′(−$ε0b20 + 4$d2) =
∑
β

sgnE′(4d
2 − ε0b20)

=
∑
β

sgnE′
(

4d2 − ε0b20
$2n

)
.

Now (4d2 − ε0b20)/$2n is a norm of F [
√
ε0], and so it is a norm of E′ if and only if it is a perfect

square in F . As it is a unit, we may replace sgnE′ with the Legendre symbol and obtain∑
µ∈k

(
µ2 − ε0φ`−1(γ0)2

k

)
.

This is −1 (see [IR90, Exercise 5.8]). Therefore, we have

f̂(χ′0) =−1.

Consider the integral∫
A`′−1

χH(γ)
∑

β∈C′
`′−1

/C′
`′

χ′(β) sgnE′(Tr(g(γ))− Tr′(β)) dγ.

Since χH is trivial on C`′ , this is equal to
1
2
q−`

′ ∑
γ∈A`′−1/C`′

χH(γ)f̂(χ′µ). (6.6)

Here µ= µ(γ) is defined by γ = µγ0. Fix an element β0 ∈A′`′−1. There is a µ0 ∈ k so that

χH(γ0) = χ′µ0(β0).

So, we may write (6.6) as

1
2
q−`

′ ∑
µ∈k×

χ′µ0µ(β0)f̂(χ′µ) =
1
2
q−`

′
[
−f̂(χ′0) +

∑
µ∈k

χ′µ0µ(β0)f̂(χ′µ)
]

=
1
2
q−`

′
(q · f(µ0β0) + 1),

by Fourier inversion. We have

f(µ0β0) = sgnE′(Tr(g(γ0))− Tr′(µ0β0)) =±1,

with the sign depending on the relationship between χ′ and χH .
Putting this together, we obtain∫

T
χH(γ)Θπ(γ̃) d∗γ =−(q + 1)q`

′−1Ir(`, `′) +
√
q

2
q−`

′+1q−`
′
(1± q).

This is equal to √
q

2
[q−`

′
+ q−2`′+1(1± q)],

and so we have the residue

R(π, χH) =
√
q

2|2| log q
(q−`

′
+ q−2`′+1(1± q)) 6= 0. (6.7)
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7. Trivial central character, same tori

Next we handle the cases where E = E′.

Proposition 15. Let E = F [
√
τ ] be unramified over F . Let χ : E×→ C× be a character whose

restriction to F× is sgnE . Then there is a character χG : E1→ C× so that for all γ ∈ E1 − {±1},

χG(γ−1) sgnE(b) = χ′(γ̃).

As usual, γ = a+ b
√
τ .

Proof. By Lemma 5, we have σ(γ̃)/γ̃ = γ. By Lemma 5(iv), either Nm(γ̃) is a square in F× or
the product of a square and τ . In the first case, we may write

χ(γ̃) = χ

(
γ̃√
γ̃σ(γ̃)

)
sgnE(

√
Nm(γ̃))

= χ

(√
γ̃

σ(γ̃)

)
sgnE(b)

= χ(
√
γ−1) sgnE(b).

Similarly, in the second case, χ(γ̃) = χ(
√
γ−1τ) sgnE(b). Therefore, the proposition holds

with

χG(γ) =

{
χ′(
√
γ) if γ is a square,

χ′(
√
γτ) if γτ is a square.

This defines a character on E1. 2

Remark . In fact, if `′ = `E(χ′) > 1 as in our case, then C2
`′ = C`′ , and it follows that `E(χG) =

`E(χ′). Also, note that χG(γ)2 = χ′(γ) for all γ ∈ E1.

Theorem 5. Suppose that E = E′ is the unramified quadratic extension of F . Then
R(π, χH) 6= 0.

Proof. Let χG be as in Proposition 15, applied to χ′. Let `′ = `E(χ′) and `= `E(χH). We have,
by [Shi77],

Θπ(γ̃) =

{
−2q`

′−1 if γ ∈ C`′ ,
(−1)`

′ |Tr(γ)− 2|−
1
2 (χG(γ) + χG(γ))(−1)ord(γ−1) otherwise.

Our integral
∫
TχH(γ)Θπ(γ̃) d∗γ is equal to

(−1)`
′
`′−1∑
k=0

(−1)k
∫
Ak

χH(γ)(χG(γ) + χG(γ)) dγ − 2q`
′−1I(`, `′). (7.1)

Write Tk for
∫
Ak
χH(γ)(χG(γ) + χG(γ)) dγ. Note that each Tk is a rational number by

orthogonality, since vol(Ak) is rational. Also, I(`, `′) is rational by Lemma 7, and therefore (7.1)
is a rational number. We simply wish to show that it is non-zero. Pick a prime number r
dividing q + 1, and say that ordr(q + 1) = e. Then ordr(I(`, `′)) =−2e but ordr(Tk) >−e for
all k. Suppose that r 6= 2. Then (7.1) has ordr =−2e and is therefore non-zero. (The case in
which q + 1 is a power of two is similar but left to the reader.) 2
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We will do something similar for the ramified case, but it is a little more complicated. Let E×

be a ramified extension of F . By Hensel’s lemma, any element x ∈ 1 + pE has a unique square
root in 1 + pE . It follows that there is a well-defined square root function r : C0→ C0, so that
r(γ2) = γ for γ ∈ C0.

Proposition 16. Let E be ramified over F . Suppose that χ : E×→ C× is a linear character
whose restriction to F× is sgnE . Then:

(i) if γ ∈ E1 − C0, then χ(γ̃) = sgnE(2)χ(
√
τ)(χ ◦ r)(−γ−1);

(ii) if γ ∈ C0, then χ(γ̃) = sgnE(−b)(χ ◦ r)(γ−1).

Proof. As usual, write γ = a+ b
√
τ . Then Nm(γ̃) = τ/(2a− 2)≡−τ/4 mod pτ . Let λ ∈ F× be

the square root of −Nm(γ̃)/τ which is congruent to 1
2 mod p. Note that(

γ̃

λ
√
τ

)2

=− γ̃2

γ̃σ(γ̃)
=−γ−1.

A computation shows that γ̃/λ
√
τ ≡ 1 mod p, and it follows that

γ̃

λ
√
τ

= r(−γ−1).

Therefore,

χ(γ̃) = sgnE(λ)χ(
√
τ)χ(r(−γ−1)),

as desired. The second part is easier (use Lemma 5(v)). 2

Gauss sums make an appearance in the ramified case.

Definition 12. Let χ : E1→ C× be a character, with `= `E(χ) > 1. Let Λχ : k→ C× be the
additive character given by χ ◦ φ−1

`−1, where φ`−1 is given in Definition 11. We put

τ(χ) =
∑
a∈k

(
a

k

)
Λχ(a) and ε(χ) =

τ(χ)
√
q
.

It is well known (see [IR90]) that ε(χ)2 = (−1/k).

Theorem 6. Suppose that E = E′ is a ramified quadratic extension of F , and the central
character of π is trivial. Then R(π, χH) 6= 0.

Proof. Let `′ = `E(χ′) and `= `E(χH). The convention is that E = F [
√
−$ ]. We have, by [Shi77],

Θπ(γ̃) =


−(q + 1)q`

′−1 if γ ∈ C`′ ,

q`
′−1
∑
β

χ′(β) sgnE(Tr(g(γ)− β)) if γ ∈A`′−1,

ε(χ′)(−1)`
′ |Tr(γ)− 2|−

1
2 (χ′(γ̃) + sgnE(−1)χ′(σ(γ̃))) otherwise.

The sum is over β ∈ C`′−1/C`′ with β 6= g(γ), g(σ(γ)) mod C`′ . Here ε(χ′) is the root of unity at-
tached to χ′ as in [Shi77]. Also, let τ(χ′) = ε(χ′)

√
q. Put χ1 = χH · (χ ◦ r)−1, χ2 = χH · (χσ ◦ r)−1,

and `i = `(χi). Using Proposition 16 and Fourier inversion on C`′−1/C`′ again, the integral
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T χH(γ)Θπ(γ̃) d∗γ is equal to the sum of the three terms

(√
q

2

)
q−2`+`′+1 if `′ < `,

(√
q

2

)
q−`

′
if `′ > `,

(7.2)

0 if `′ < `,√
q

2
q−`

′
(1± q) if `′ > ` and

(7.3)

1
2ε(χ

′)(−1)`
′
((q − 1)[sgnE(−1)τ(χ1)q−`1 ]1 + [τ(χ2)q−`2 ]2 + [±q]3). (7.4)

Here the [ ]1 term only appears if `1 6 `′ − 1, the [ ]2 term only appears if `2 6 `′ − 1 and the
[ ]3 term only appears if `1 or `2 = 0. Of these, it is clear that ordq of (7.4) is >−`′ + 1 + 1

2 .
The term (7.2) has ordq 6−`′ + 1

2 . If ` 6 `′, then ordq of (7.3) is also −`′ + 1
2 , but it is clear

that the sum of (7.2) and (7.3) will not have a lower ordq than (7.2). Therefore, the sum cannot
be zero, concluding the proof. 2

Corollary 6. This agrees with (a) in Proposition 2 in [Sha08].

Theorem 1 is now proved.
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