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The Ample Cone of the Kontsevich
Moduli Space

Izzet Coskun, Joe Harris, and Jason Starr

Abstract. We produce ample (resp. NEF, eventually free) divisors in the Kontsevich space

M0,n(Pr, d) of n-pointed, genus 0, stable maps to Pr , given such divisors in M0,n+d. We prove that

this produces all ample (resp. NEF, eventually free) divisors in M0,n(Pr, d). As a consequence, we con-

struct a contraction of the boundary
S⌊d/2⌋

k=1
∆k,d−k in M0,0(Pr, d), analogous to a contraction of the

boundary
S⌊n/2⌋

k=3
∆̃k,n−k in M0,n first constructed by Keel and McKernan.

1 Introduction

Positive-dimensional families of varieties specialize — non-general varieties in the

family exhibit special properties. Given a parameter space, the subset parametrizing

varieties with a special property is typically closed. Which special properties occur in
codimension 1, respectively for every 1-parameter family of varieties? More precisely,

when is the associated closed subset an effective divisor (resp. an ample divisor)?

These questions, among others, motivate the study of effective and ample divisors in
parameter spaces of varieties.

The parameter space we study is the Kontsevich moduli space of n-pointed,

genus 0, stable maps to projective space, denoted M0,n(Pr, d). Here we study the
ample cone, and more generally the NEF and eventually free cones. Using signif-

icantly different methods and under additional hypotheses, we study the effective
cone [CHS].

Our goal is to study families of curves in a general target X. Fortunately, this

largely reduces to the study for Pr : as the Kontsevich space is functorial in the target,
for every morphism X → Pr , NEF and basepoint-free divisors on M0,n(Pr, d) give

NEF and basepoint-free divisors on M0,n(X, β) (this functoriality is one of many

advantages of the Kontsevich space over the Hilbert scheme and the Chow variety).

Here is our main result.

Theorem 1.1 Let r and d be positive integers and n a nonnegative integer such that

n + d ≥ 3. There is an injective linear map,

v : Pic(M0,n+d)Sd

Q
→ Pic(M0,n(P

r, d))Q .
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The NEF cone of M0,n(Pr, d) (resp. the basepoint-free cone) is the product of the cone

generated by H,T,L1, . . . ,Ln and the image under v of the NEF cone of M0,n+d/Sd

(resp. the basepoint-free cone).

The action of Sd on M0,n+d permutes the last d marked points. The map v

generates NEF and basepoint-free divisors on the Kontsevich space from NEF and

basepoint-free divisors on M0,n+d/Sd. In particular, it generates contractions of the

Kontsevich space from contractions of M0,n+d/Sd.

Theorem 1.2 For every integer r ≥ 1 and d ≥ 2, there is a contraction,

cont : M0,0(P
r, d) → Y,

restricting to an open immersion on the interior M0,0(Pr, d) and whose restriction to

the boundary divisor ∆k,d−k
∼= M0,1(Pr, k) ×Pr M0,1(Pr, d − k) factors through the

projection to M0,1(Pr, d − k) for each 1 ≤ k ≤ ⌊d/2⌋. The following divisor is the

pullback of an ample divisor on Y ,

Dr,d = T +

⌊d/2⌋∑

k=2

k(k − 1)∆k,d−k.

Some connection between the ample cone of the Kontsevich space and the ample
cone of M0,n is natural, and certainly not surprising to experts. Chen proved a similar

connection between the Fulton–MacPherson space and M0,n .1 The primary impor-

tance of Theorem 1.1 is the precise simple description of v: with one exception, it
maps each boundary divisor of M0,n+d to the corresponding boundary divisor of the

Kontsevich space. This is used to construct the contraction in Theorem 1.2, which is
analogous to the “democratic” contraction of the boundary of M0,n first constructed

in an unpublished note of Keel and McKernan [KM].

Recently we were informed of different constructions of the contraction of The-
orem 1.2 in [Par] and by Anca Mustaţǎ and Andrei Mustaţǎ. One advantage of our

proof is that it uses only the existence of the map v, which is itself a formal con-

sequence of the definition of the Kontsevich space. The proof of Theorem 1.2 also
gives a new, very short construction of Keel–McKernan’s contraction of M0,n.

2 Statement of Results

The Kontsevich moduli space M0,n(Pr, d) compactifies the scheme parameterizing
smooth rational curves of degree d in Pr . Precisely, it is the smooth, proper, Deligne–

Mumford stack parameterizing families of data (C, (p1, . . . , pn), f ) of

• a proper, connected, at-worst-nodal, genus 0 curve C,
• an ordered sequence p1, . . . , pn of distinct, smooth points of C,
• and a degree-d morphism f : C → Pr satisfying the following stability condition:

every irreducible component of C mapped to a point under f contains at least

three special points, i.e., marked points pi and nodes of C.

1L. Chen, unpublished manuscript, The nef cone of the moduli space of curves and of a Fulton–
MacPherson space.
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R. Pandharipande gave generators of the Kontsevich space [Pa]:

(i) the class H of the divisor of maps whose images intersect a fixed codimension 2
linear space in Pr (provided r > 1 and d > 0),

(ii) the class Li of the pullback ev∗i (OPr (1)), for 1 ≤ i ≤ n, associated to the i-th

evaluation morphism, evi(C, (p1, . . . , pn), f ) := f (pi),
(iii) the classes ∆(A,dA),(B,dB) of the boundary divisors consisting of maps with re-

ducible domains. Here A⊔B is any ordered partition of the marked points, and
dA and dB are non-negative integers satisfying d = dA + dB. If dA = 0 (resp. if

dB = 0), we require #A ≥ 2 (resp. #B ≥ 2).

The divisor classes H and Li on M0,n(Pr, d) are NEF and basepoint-free. For

d ≥ 2, there is another NEF and basepoint-free divisor class T, the tangency divisor:
fixing a hyperplane Π ⊂ Pr , T is the class of the divisor parametrizing stable maps

(C, p1, . . . , pi , f ) for which f −1(Π) is not simply d reduced, smooth points of C. In

terms of Pandharipande’s generators, the class of T equals

T =
d − 1

d
H +

⌊d/2⌋∑

k=0

k(d − k)

d

(∑

A,B

∆(A,k),(B,d−k)

)
.

Finally, the map v from Theorem 1.1 is described in Section 3. Together, all

nonnegative-linear combinations of these divisors give a cone in Pic(M0,n(Pr, d))Q .

We use the method of test families to prove this is the entire cone of NEF divisors,
(resp. eventually free divisors). In other words, we find morphisms from test varieties

to M0,n(Pr, d)Q . Since every NEF divisor (resp. eventually free divisor) pulls back to

such a NEF divisor (resp. eventually free divisor), this constrains the NEF and even-
tually free divisors among all divisors. By producing sufficiently many test families,

we prove every NEF (resp. eventually free divisor) is in our cone.

Hypothesis 2.1 For the rest of the paper assume that the triple (n, r, d) in

M0,n(Pr, d) satisfies r ≥ 1, d ≥ 1, and n + d ≥ 3.

*C

L L L

f

P
r

L

p

Figure 1: The morphism α.
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2.1 The Morphism α

There is a 1-morphism α : M0,n+d × Pr−1 → M0,n(Pr, d) defined as follows. Fix a
point p ∈ Pr and a line L ⊂ Pr containing p. To every curve C in M0,n+d attach a

copy of L at each of the last d marked points and denote the resulting curve by C ′.

Consider the morphism f : C ′ → Pr that contracts C to p and maps the d rational
tails isomorphically to L (see Figure 1). Since the space of lines in Pr passing through

the point p is parameterized by Pr−1, there is an induced 1-morphism α : M0,n+d ×
Pr−1 → M0,n(Pr, d).

Since α is invariant for the action of Sd permuting the last d marked points, the

pullback map determines a homomorphism

α∗
= (α∗

1 , α
∗
2 ) : Pic(M0,n(P

r, d)) → Pic(M0,n+d)Sd × Pic(P
r−1).

We will denote the two projections of α∗ by α∗
1 and α∗

2 .

L*

C

pi

slide pi along L

Figure 2: The morphism βi .

2.2 The Morphisms βi

For each 1 ≤ i ≤ n, there is a 1-morphism βi : P1 → M0,n(Pr, d) defined as follows.
Fix a degree-(d − 1), (n − 1)-pointed curve C containing all except the i-th marked

point. At a general point of C, attach a line L. The resulting degree-d reducible

curve will be the domain of our map. The final i-th marked point is in L. Varying
pi in L gives a 1-morphism βi : P1 → M0,n(Pr, d) (see Figure 2). This definition

has to be slightly modified in the cases (n, d) = (1, 1) or (n, d) = (2, 1). When
(n, d) = (1, 1), we assume that the line L with the varying marked point pi constitutes

the entire stable map. When (n, d) = (2, 1), we assume that the map has L as the only

component. One marked point is allowed to vary on L and the remaining marked
point is held fixed at a point p ∈ L.

2.3 The Morphism γ

If d ≥ 2, there is a 1-morphism γ : P1 → M0,n(Pr, d) defined as follows. Take two
copies of a fixed line L attached to each other at a variable point. Fix a point p in

the second copy of L. Let C be a smooth, degree-(d − 2), genus 0, (n + 1)-pointed
stable map to Pr whose (n + 1)-st point maps to p. Attach this to the second copy

of L at p. Altogether, this gives a degree-d, n-pointed, genus 0 stable map with three

irreducible components. The n marked points are the first n marked points of C. The

https://doi.org/10.4153/CJM-2009-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-005-8


The Ample Cone of the Kontsevich Moduli Space 113

C L

P
r

C

L L

f

slide attachment point

Figure 3: The morphism γ.

only varying aspect of this family of stable maps is the attachment point of the two
copies of L. Varying the attachment point in L ∼= P1 gives a stable map parameterized

by P1, hence there is an induced 1-morphism γ : P1 → M0,n(Pr, d) (see Figure 3).

When (n, d) = (1, 2), we modify the definition by assuming that the map consists
only of the two copies of the line L and the marked point is held fixed at the point p

on the second copy of L.

Notation 2.2 If d ≥ 2, denote by Pr,n,d the Abelian group

Pr,n,d := Pic(M0,n+d)Sd × Pic(P
r−1) × Pic(P

1)n × Pic(P
1).

Denote by u = ur,n,d : Pic(M0,n(Pr, d)) → Pr,n,d the pullback map

ur,n,d = (α∗, (β∗
1 , . . . , β

∗
n ), γ∗).

If d = 1, denote by Pr,n,1 the Abelian group

Pr,n,1 := Pic(M0,n+d)Sd × Pic(P
r−1) × Pic(P

1)n

and denote by u = ur,n,1 : Pic(M0,n(Pr, 1)) → Pr,n,1 the pullback map

ur,n,1 = (α∗, (β1,
∗ , . . . , β∗

n ))

Theorem 1.1 is equivalent to the following.

Theorem 2.3 The map ur,n,d ⊗ Q : Pic(M0,n(Pr, d))Q → Pr,n,d ⊗ Q is an isomor-

phism. The image under ur,n,d ⊗ Q of the ample cone (resp. NEF, eventually free cone)

of M0,n(Pr, d) equals the product of the ample cones (resp. NEF, eventually free cones)

of Pic(M0,n+d)Sd , Pic(Pr−1), and the factors Pic(P1).

This is equivalent to Theorem 1.1 because the linear map ur,n,d is simply the inverse

of the product of the linear map v and the maps Q → Pic(M0,n(Pr, d))Q associated

with each generator H, T, and L1, . . . ,Ln.

Notation 2.4 Denote by n the set {1, . . . , n}. Denote by △ = △n,d the set of 4-

tuples ((A, dA), (B, dB)) of an ordered partition A ⊔ B of n and an ordered pair of
nonnegative integers (dA, dB) such that dA + dB = d and #A ≥ 2 (#B ≥ 2) if dA = 0

(resp. dB = 0). Denote by △ ′ the subset of △ of data such that #A + dA ≥ 2 and

#B + dB ≥ 2.
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Divisors in M0,n(Pr, d) α∗
1 α∗

2 β∗
i γ∗

T 0 0 0 OP1 (2)

H 0 OPr−1(d) 0 0

Li 0 0 OP1 (1) 0

L j 6=i 0 0 0 0

∆(∅,1),(n,d−1) c OPr−1(−d) OP1(−1) OP1 (4)

∆(∅,2),(n,d−2) ∆̃(∅,2),(n,d−2) 0 0 OP1 (−1)

∆({i},1),({i}c,d−1) ∆̃({i},1),({i}c,d−1) 0 OP1(−1) 0

∆(A,dA),(B,dB) ∆̃(A,dA),(B,dB) 0 0 0

all others

Table 1: The pullbacks of the standard generators

Recall that the group Pic(M0,n) is generated by boundary divisors ∆̃A,B, where
A⊔B is an ordered partition of n with #A ≥ 2 and #B ≥ 2. Let ∆̃k,n−k denote the sum

of the boundary divisors
∑

(A,B) ∆̃A,B, where the sum runs over pairs (A,B) such that

#A = k and #B = n − k. The group Pic(M0,n+d)Sd is generated by boundary divisors

∆̃(A,dA),(B,dB), where ((A, dA), (B, dB)) ∈ ∆
′. The divisor ∆̃(A,dA),(B,dB) denotes the

Sd-invariant sum of boundary divisors
∑

(A ′,B ′) ∆̃(A,A ′),(B,B ′), where the sum runs
over pairs (A ′,B ′) such that A ′ ⊔ B ′ is a partition of the last d points and #A ′

= dA

and #B ′
= dB.

To apply Theorem 2.3, we need to express the images of the standard generators
of Pic(M0,n(Pr, d)) in terms of the standard generators for Pic(M0,n+d)Sd , Pic(Pr−1)

and Pic(P1) factors.

Proposition 2.5 (i) Assume d ≥ 2 so that γ is defined. Then

γ∗T = OP1(2), γ∗H = 0, γ∗Li = 0, for 1 ≤ i ≤ n.

The pullback γ∗∆(A,dA),(B,dB) = 0 unless (#A, dA) or (#B, dB) is equal to (0, 1) or (0, 2).

Moreover, if (n, d) 6= (0, 3),

γ∗∆(∅,1),(n,d−1) = OP1(4) and γ∗∆(∅,2),(n,d−2) = OP1 (−1).

If (n, d) = (0, 3), then γ∗∆(∅,1),(n,d−1) = OP1(3).

(ii) Assume n ≥ 1 so that β1, . . . , βn are defined. Then

β∗
i H = 0, β∗

i Li = OP1 (1), β∗
i L j = 0 if j 6= i, and β∗

i T = 0.

For every 1 ≤ i ≤ n, the pullback β∗
i ∆(∅,1),(n,d−1) equals OP1 (1) if (n, d) 6= (1, 2),

and equals OP1 (2) if (n, d) = (1, 2). If (n, d) 6= (1, 2), then β∗
i ∆({i},1),({i}c,d−1) equals

OP1(−1). And β∗
i ∆(A,dA),(B,dB) equals 0 if neither (A, dA) nor (B, dB) equal (∅, 1) or

({i}, 1).
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(iii) α∗
H = (0,OPr−1(d)), α∗

Li = 0, for 1 ≤ i ≤ n, α∗
T = 0.

If #A + dA, #B + dB ≥ 2, then α∗
∆(A,dA),(B,dB) equals ∆̃(A,dA),(B,dB). The pullback

α∗
∆(∅,1),(n,d−1) equals (c,OPr−1(−d)), where c is the class

c =
−1

(n + d − 1)(n + d − 2)

∑

((A,dA),(B,dB))∈∆ ′

dA(dB + #B)(dB + #B − 1)∆̃(A,dA),(B,dB).

Proof (i) and (ii) follow from Lemma 3.5 and Lemma 4.1. (iii) is straightforward

except for the computation of c. The class c equals −
∑d

i=1 ψn+i . To rewrite this as
above, use [Pa, Lemma 2.2.1] (see also [dJS, Lemma 6.10]).

With the exceptions of (n, d) = (0, 3), (1, 2), and (1, 3), Proposition 2.5 is sum-

marized by Table 1. The phrase “all others” means, all pairs ((A, dA), (B, dB)) such
that neither ((A, dA), (B, dB)) nor ((B, dB), (A, dA)) already occur in the table. The

lines γ∗ and ∆(∅,2),(n,d−2) apply only if d ≥ 2. The lines Li , L j and ∆({i},1),({i}c,d−1)

only apply if n ≥ 1.

Kawamata associated an effective NEF Q-Cartier divisor L on M0,n with every n-

tuple of rational numbers (d1, . . . , dn) satisfying 0 < di ≤ 1 and d1 + · · · + dn = 2

[Kaw]. In an unpublished note, Keel and Mc Kernan proved the following.

Theorem 2.6 (Keel–McKernan) The Q-Cartier divisor L is eventually free.

In particular, when d1 = · · · = dn = 2/n, the divisor class of L equals

(1/n(n − 1))Dn, where

Dn =

⌊n/2⌋∑

k=2

k(k − 1)∆̃k,n−k.

This is the divisor class giving the democratic contraction of the boundary of M0,n,
see [Has, § 2.1.2]. One application of Theorem 2.3 is the construction of the analo-

gous contraction in Theorem 1.2, as well as a new, short construction of the demo-

cratic contraction.

Theorem 2.7 For every integer n ≥ 4, there is a contraction cont : M0,n → Y restrict-

ing to an open immersion on the interior M0,n and whose restriction to the boundary

divisor ∆k,n−k = M0,k+1 × M0,n+1−k factors through projection to M0,n+1−k for each

3 ≤ k ≤ ⌊n/2⌋. The divisor Dn is the pullback of an ample divisor on Y .

It follows easily that for every rational number b satisfying

2

(n − 1)
< b <

2

⌊n/2⌋
, resp. b =

2

⌊n/2⌋
,

setting B = b(cont)∗(∆̃2,n−2), KY + B is an ample Q-Cartier divisor, and (Y,B) is

Kawamata log terminal (resp. log canonical). (For this, one only needs the existence

of the contraction and the formula for L.)
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3 The Splitting Homomorphism

In this section we define a map v : Pic(M0,n+d)Sd → Pic(M0,n(Pr, d)) ⊗ Q that maps

the NEF divisors in Pic(M0,n+d)Sd to NEF divisors in M0,n(Pr, d). The map v gives a

splitting of the map α∗
1 defined in the introduction and is essential for the proof of

Theorem 2.3.

Let Π ⊂ Pr be a hyperplane not containing the point p used to define the mor-

phisms α and γ. Assume that the degree d − 1 curve used to define the morphisms
βi is not tangent to Π, and none of the marked points on this curve are contained in

Π. Finally, assume that the degree d − 2 curve used to define the morphism γ is not
tangent to Π and none of the marked points are contained in Π.

Denote by M0,n+d(Pr, d) the open substack of M0,n+d(Pr, d) parameterizing stable

maps with irreducible domain. Let evn+1,...,n+d : M0,n+d(Pr, d) → (Pr)d be the evalu-
ation morphism associated with the last d marked point. Denote by M0,n+d(Pr, d)Π

the inverse image of Π
d; denote by M0,n+d(Pr, d)Π the closure of M0,n+d(Pr, d)Π in

M0,n+d(Pr, d).
Now M0,n+d(Pr, d)Π is Sd-invariant under the action of Sd on M0,n+d(Pr, d) per-

muting the last d marked points. Denote by π : M0,n+d(Pr, d) → M0,n(Pr, d) the
forgetful 1-morphism that forgets the last d marked points and stabilizes the result-

ing family of prestable maps. This is Sd-invariant. Denote by

ρ : M0,n+d(P
r, d) → M0,n+d

the 1-morphism that stabilizes the universal family of marked prestable curves over

M0,n+d(Pr, d). This is Sd-equivariant.

Lemma 3.1 The 1-morphism π : M0,n+d(Pr, d)Π → M0,n(Pr, d) is étale. Denoting

the image by OΠ, the morphism π : M0,n+d(Pr, d)Π → OΠ is an Sd-torsor.

Proof Let (C, (p1, . . . , pn, q1, . . . , qd), f ) be a stable map in M0,n+d(Pr, d)Π. Then

(C, (p1, . . . , pn), f ) satisfies

(i) C is irreducible,

(ii) f −1(Π) is a reduced Cartier divisor,
(iii) none of the marked points pi is contained in f −1(Π).

Conversely, for every stable map (C, (p1, . . . , pn), f ) satisfying (i)–(iii) and for ev-

ery labeling of f −1(Π) as q1, . . . , qd, (C, (p1, . . . , pn, q1, . . . , qd), f ) is a stable map
in M0,n+d(Pr, d)Π. Thus OΠ is the open substack of stable maps satisfying (i)–(iii)

and M0,n+d(Pr, d)Π is the Sd-torsor over OΠ parameterizing labelings of the fibers of
f −1(Π).

Denote by q : M0,n+d → M0,n+d/Sd the geometric quotient. The composition

q ◦ ρ : M0,n+d(Pr, d)Π → M0,n+d/Sd is Sd-equivariant. Because M0,n+d(Pr, d)Π is an
Sd-torsor over OΠ, there is a unique 1-morphism φ′

Π
: OΠ → M0,n+d/Sd such that

φ′ ◦ π = q ◦ ρ.

Definition 3.2 Define UΠ to be the maximal open substack of M0,n(Pr, d) over

which φ′
Π

extends to a 1-morphism, denoted

φΠ : UΠ → M0,n+d/Sd.
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Define IΠ to be the normalization of the closure in M0,n(Pr, d) × M0,n+d/Sd of the
image of the graph of φ′

Π
, i.e., IΠ is the normalization of the image of (π, q ◦ ρ).

Define ĨΠ to be the normalization of the image of (π, ρ) in M0,n(Pr, d) × M0,n+d.

Finally, define ŨΠ to be the inverse image of UΠ in ĨΠ.

There is a pullback map of Sd-invariant invertible sheaves,

ρ∗ : Pic(M0,n+d)Sd → Pic(ĨΠ)Sd ,

which further restricts to Pic(ŨΠ)Sd . After étale base-change from UΠ to a scheme,
the morphism ŨΠ → UΠ is the geometric quotient of ŨΠ by the action of Sd.

Therefore the pullback map Pic(UΠ) → Pic(ŨΠ)Sd is an isomorphism after ten-

soring with Q ; in fact, both the kernel and cokernel are annihilated by d!. Because
M0,n+d/Sd is a proper scheme and because M0,n(Pr, d) is separated and normal, by

the valuative criterion of properness the complement of UΠ has codimension ≥ 2.

The smoothness of M0,n(Pr, d) and [Ha, Prop. 6.5(c)] imply that the restriction map
Pic(M0,n(Pr, d)) → Pic(UΠ) is an isomorphism.

Definition 3.3 Define v : Pic(M0,n+d)Sd → Pic(M0,n(Pr, d)) ⊗ Q to be the unique

homomorphism commuting with ρ∗ via the isomorphisms above.

The map v is independent of the choice of Π, hence it sends NEF divisors to NEF
divisors.

Lemma 3.4 For every basepoint-free invertible sheaf L in Pic(M0,n+d)Sd , v(L) is

basepoint-free. In particular, for every ample invertible sheaf L, v(L) is NEF. Thus,

by Kleiman’s criterion, for every NEF invertible sheaf L, v(L) is NEF.

Proof For every [(C, (p1, . . . , pn), f )] in M0,n(Pr, d), there exists a hyperplane Π

satisfying the conditions above and such that f −1(Π) is a reduced Cartier divisor
containing none of p1, . . . , pn. By Lemma 3.1, (C, (p1, . . . , pn), f ) is contained in

UΠ. Since L is basepoint-free, there exists a divisor D in the linear system |L| not
containingφΠ[(C, (p1, . . . , pn), f )]. By the proof of [Ha, Prop. 6.5(c)], the closure of

φ−1
Π

(D) is in the linear system |v(L)|; and it does not contain [(C, (p1, . . . , pn), f )].

Lemma 3.5 (i) The images of α, βi and γ are contained in UΠ.

(ii) The morphisms φΠ ◦ βi and φΠ ◦ γ are constant morphisms. Therefore β∗
i ◦ v and

γ∗ ◦ v are the zero homomorphism.

(iii) The composition of α with φΠ equals q ◦ prM0,n+d
. Therefore

α∗ ◦ v : Pic(M0,n+d)Sd → Pic(M0,n+d)Sd × Pic(P
r−1)

is the homomorphism whose projection on the first factor is the identity, and whose

projection on the second factor is 0.
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Proof (i) The image of α is contained in OΠ. Denote by q the intersection point of
L and Π.

The image βi(L − {q}) is contained in OΠ. The stable map βi(q) sends the i-th

marked point into Π. Up to labeling the d points of the inverse image of Π, there

is only one (n + d)-pointed stable map in M0,n+d(Pr, d)Π that stabilizes to this stable
map. It is obtained from βi(q) by removing the i-th marked point from L, attaching a

contracted component C ′ to L at q, containing the i-th marked point and exactly one
of the last d marked points, and labeling the d−1 points in C ∩Π with the remaining

d − 1 marked points.

Similarly, γ(L −{q}) is contained in OΠ. The stable map γ(q) has two copies of L

attached to each other at q. This appears to be a problem, because the inverse image
of γ(q) in M0,n+d(Pr, d)Π is 1-dimensional, isomorphic to M0,4. The stable maps

have a contracted component C ′ such that both copies of L are attached to C ′ and 2

of the d new marked points are attached to C ′. The remaining d − 2 marked points
are the points of C ∩ Π. However, the map ρ that stabilizes the resulting prestable

(n + d)-marked curve is constant on this M0,4. Indeed, the first copy of L has no

marked points and is attached to C ′ at one point. So the first step in stabilization will
prune L reducing the number of special points on C ′ from 4 to 3.

(ii) In the family defining βi , only the i-th marked point on L varies. After adding

the d new marked points, L is a 3-pointed prestable curve marked by the node p,

the i-th marked point, and the point q. For every base the only family of genus 0,
3-pointed, stable curves is the constant family. So upon stabilization, this family of

genus 0, 3-pointed, stable curves becomes the constant family.

In the family defining γ, only the attachment point of the two copies of L varies.

The first copy of L gives a family of 2-pointed prestable curves, marked by q and the
attachment point of the two copies of L. This is unstable. Upon stabilization, the

first copy of L is pruned and the marked point q on the first copy is replaced by a
marked point on the second copy at the original attachment point. Now the second

copy of L gives a family of 3-pointed prestable curves marked by the attachment point

p of the second and third irreducible components, the attachment point of the first
and second components, and q. For the same reason as in the last paragraph, this

becomes a constant family.

(iii) Each stable map in α(M0,n+d × Pr−1) is obtained from a genus 0, (n + d)-

pointed, stable curve (C0, (p1, . . . , pn, q1, . . . , qd)) and a line L in Pr containing p by
attaching to C − 0 a copy Ci for each 1 ≤ i < n, where p in Ci is identified with qi

in C0. The map to Pr contracts C0 to p, and sends each curve C to L via the identity

morphism. Denoting by r the intersection point of L and Π, the inverse image of Π

consists of the d points r1, . . . , rd, where ri is the copy of r in Ci .

The component Ci is a 2-pointed, prestable curve marked by the attachment point

p of Ci and by ri . This is unstable. So, upon stabilization, Ci is pruned and the

marked point ri is replaced by a marking on C0 at the point of attachment of C0 and
Ci , namely qi . Therefore, up to relabeling of the last d marked points, the result is the

genus 0, (n + d)-pointed, stable curve we started with, (C0, (p1, . . . , pn, q1, . . . , qd)).
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4 More Divisors

In the previous section we constructed a map (see Definition 3.3)

v : Pic(M0,n+d)Sd → Pic(M0,n(P
r, d)) ⊗ Q.

In this section we prove that the image of v together with the divisor classes H, T and

the tautological divisors Li , generate Pic(M0,n(Pr, d)) ⊗ Q .

The divisor class HΛ, [Pa, Prop. 1] is the class of stable maps whose image in-

tersects a fixed codimension 2 linear space Λ of Pr . This is defined to be the empty

divisor if r = 1. For convenience, assume Λ is contained in Π and does not intersect
L or the curves C used to define βi and γ. If n ≥ 1, the divisors Li,Π, i = 1, . . . , n,

[Pa, Prop. 1] are the pullback by evi of the Cartier divisor Π. If d ≥ 1, the last divisor
is TΠ, [Pa, § 2.3], the divisor of stable maps (C, (p1, . . . , pn), f ) such that f −1(Π) is

not a reduced, finite set of degree d. This is defined to be the empty divisor if d = 1.

Pandharipande [Pa] proved that HΛ, Li,Π and TΠ are irreducible Cartier divisors
(when they are nonempty).

Lemma 4.1 (i) The Cartier divisors TΠ, Li,Π and HΛ are NEF.

(ii) The pullbacks α∗(TΠ) and α∗(Li,Π) are zero. The pullback α∗(HΛ) equals

(0,OPr−1(d)) in Pic(M0,n+d)Sd × Pic(Pr−1); if r = 1, then OPr−1(1) is the trivial

invertible sheaf.

(iii) Assume n ≥ 1 so that βi is defined for 1 ≤ i ≤ n. The pullbacks β∗
i (TΠ) and

β∗
i (HΠ) are zero. For 1 ≤ j ≤ n different from i, β∗

i (L j,Π) is zero. Finally,

β∗
i (Li,Π) is OP1 (1).

(iv) Assume d ≥ 2 so that γ is defined. The pullbacks γ∗(HΛ) and γ∗(Li,Π) are zero,

and γ∗(TΠ) is OP1 (2) in Pic(P1).

Proof (i) By an argument similar to the one in Lemma 3.4, these divisors are
basepoint-free (whenever they are non-empty). The divisor HΛ is big if r ≥ 2, and

TΠ is big if d ≥ 2. The divisors Li are not big.

(ii) By the proof of Lemma 3.5, the image of α is in OΠ, which is disjoint from
TΠ. Also, evi ◦α is the constant morphism with image p, so the inverse image of Li is

empty. Finally, the pullback of HΠ equals the pullback under the diagonal ∆ of the

Cartier divisor
∑d

j=1 pr−1
j (Λ) in (Pr−1), where Λ is considered as a divisor in Pr−1

via projection from p.

(iii) Since the image of βi is disjoint from HΠ, TΠ and L j,Π for j 6= i, the corre-
sponding pullbacks are zero. The map evi ◦ βi : P1 → Pr embeds P1 as the line L in

Pr, hence β∗
i (Li,Π) = OP1(1).

(iv) Since neither the image curve nor the marked points vary under γ, clearly
γ∗HΛ and γ∗Li,Π are zero. To compute γ∗TΠ, use [Pa, Lemma 2.3.1].

The main observation of this section is the following.

Proposition 4.2 The Q-vector space Pic(M0,n(Pr, d)) ⊗ Q is generated by TΠ, HΛ,

Li,Π for 1 ≤ i ≤ n, and the image of v.
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Proof When r ≥ 2, Pandharipande proves that the classes of the divisors HΛ, Li,Π

for 1 ≤ i ≤ n, and the boundary divisors ∆(A,dA),(B,dB) for ((A, dA), (B, dB)) ∈ ∆

generate the Q-vector space Pic(M0,n(Pr, d)) ⊗ Q , see [Pa, Prop. 1]. The tangency
divisor T can be expressed in terms of H and the boundary divisors as follows [Pa,

Lemma 2.3.1]:

T =
d − 1

d
H +

⌊ d
2
⌋∑

j=0

j(d − j)

d

∑

((A,dA),(B,dB))
dA= j

∆(A,dA),(B,dB).

From Lemmas 4.1 and 3.5 and by pairing with one-parameter families, we see that

v(∆̃(A,dA),(B,dB)) = ∆(A,dA),(B,dB)

unless (#A, dA) or (#B, dB) equals one of (0, 2) or (1, 1). If (#A, dA) or (#B, dB) equals

(0, 2), then

v(∆̃(A,dA),(B,dB)) =
1

2
T + ∆(A,dA),(B,dB).

Finally,

v(∆̃({i},1),({i}c,d−1)) = ∆({i},1),({i}c,d−1) + Li,Π.

Consequently, it follows that the classes of the divisors H,T, Li,Π and the image of

v generate the classes of all the boundary divisors in the Kontsevich moduli space.
Hence, they generate Pic(M0,n(Pr, d)) ⊗ Q .

We can reduce the case r = 1 to the case r ≥ 2. Because L is disjoint from
Λ, there is a unique linear projection pr

Λ
: (Pr − Λ) → L whose restriction to L

is the identity. This is a vector bundle over L whose associated sheaf of sections is

OL(1)⊕(r−1). Composing a stable map to (Pr − Λ) with pr
Λ

gives a stable map to L.
This defines a 1-morphism,

M0,n(pr
Λ
, d) : (M0,n(P

r, d) − HΛ) → M0,n(L, d).

This is a vector bundle over M0,n(L, d) whose associated sheaf of sections is the sheaf

whose fiber at (C, (p1, . . . , pn), f ) equals H0(C, f ∗OL(1)⊕(r−1)). Thus the pullback

homomorphism,

M0,n(pr
Λ
, d)∗ : Pic(M0,n(L, d)) → Pic(M0,n(P

r, d) − HΛ),

is an isomorphism, see [Ful, Theorem 3.3(a)].
The hyperplane Π is the closure of pr−1

Λ
(L∩Π). Thus UΠ−HΛ∩UΠ (see Definition

3.2) is the inverse image of the corresponding open substack of M0,n(L, d) for L ∩ Π

inside L. The inverse image of TL∩Π (resp. Li,L∩Π) equals the restriction of TΠ (resp.
Li,Π). And φL∩Π ◦ M0,n(pr

Λ
, d) equals the restriction of φΠ. Thus

Pic(M0,n(P
r, d) − HΛ) ⊗ Q

is generated by TΠ, Li,Π for 1 ≤ i ≤ n, and the image of v if and only if the same is

true for Pic(M0,n(P1, d)) ⊗ Q .
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5 Proof of the Main Theorem

In this section we complete the proof of Theorem 2.3. Recall that Theorem 2.3 asserts
that the NEF cone of the Kontsevich moduli space M0,n(Pr, d) equals the NEF cone

in Pr,n,d ⊗ Q , where Pr,n,d is the Abelian group

Pr,n,d := Pic(M0,n+d)Sd × Pic(P
r−1) × Pic(P

1)n × Pic(P
1).

The identification of Pic(M0,n(Pr, d)) ⊗ Q with Pr,n,d ⊗ Q is given by the map

u = ur,n,d := (α∗, (β∗
1 , . . . , β

∗
n ), γ∗)

(see §1).

Denote by ṽ : Pr,n,d ⊗ Q → Pic(M0,n(Pr, d)) ⊗ Q the unique homomorphism
whose restriction to Pic(M0,n+d)Sd is v (see Definition 3.3), whose restriction to

Pic(Pr−1) sends OPr−1(1) to [HΛ], whose restriction to the i-th factor of Pic(P1)n

sends OP1(1) to [Li] if n ≥ 1, and whose restriction to the last factor Pic(P1) (as-

suming d ≥ 2) sends OP1(1) to 1/2 [TΠ]. By Lemma 3.5(ii), (iii) and by Lemma 4.1,

u ⊗ Q ◦ ṽ is the identity map. In particular, ṽ is injective. By Proposition 4.2, ṽ is
surjective. Thus ṽ and u ⊗ Q are isomorphisms.

Because α, βi and γ are morphisms, for every NEF (resp. eventually free) divisor
D in Pic(M0,n(Pr, d))⊗Q , α∗(D), β∗

i (D), and γ∗(D) are NEF (resp. eventually free).

Denote,

D1 = α∗
1 (D), a[OPr−1 (1)] = α∗

2 (D), bi[OP1 (1)] = β∗
i (D), c[OP1(1)] = γ∗(D),

where, by convention, a is defined to be 0 if r = 1 and c is defined to be 0 if d = 1. If D

is NEF (resp. eventually free), then D1 is NEF (resp. eventually free) in Pic(M0,n+d)Sd ,

and a, bi , c ≥ 0.

Conversely, by Lemma 3.4, for every NEF (resp. eventually free) divisor D1 in

Pic(M0,n+d)Sd , v(D1) is NEF (resp. eventually free). By Lemma 4.1(i), for a, bi , c ≥ 0,
a[HΛ], bi[Li,Π], and c/2[TΠ] are NEF and eventually free. Since a sum of NEF (resp.

eventually free) divisors is NEF (resp. eventually free), D = v(D1) + a[HΛ] + bi[Li] +

c/2[TΠ] is NEF (resp. eventually free). Therefore D is NEF if and only if u ⊗ Q(D) is
in the product of the NEF cones of the factors. This argument needs to be modified

in the obvious way when (n, d) = (0, 3) and (n, d) = (1, 2) to account for the slight

variations in the formulae.

Because the interior of a product of cones equals the product of the interiors of
the cones, by Kleiman’s criterion, D is ample if and only if u ⊗ Q(D) is contained in

the product of the ample cones of the factors.

Remark 5.1. Since the analogue of the F-conjecture is known for M0,d/Sd when

d ≤ 11 by Keel–McKernan, Theorem 2.3 provides an explicit description of the NEF

cone of M0,0(Pr, d) for r ≥ 2 and d ≤ 11. For example, when d = 2, 3, the NEF cone
is bounded by the rays H and T. When d = 4, 5, the NEF cone is generated by the

rays H, T, and H + ∆1,d−1 + 4∆2,d−2.
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6 The Contractions

Theorem 2.7(i)–(v) and Theorem 1.2 are proved simultaneously by induction on n

(resp. d) in the following two lemmas. Since the divisor Dn =
∑⌊n/2⌋

k=2 k(k− 1)∆̃k,n−k

is ample on M0,n for n = 4, 5, the base cases n = 4, 5 for Theorem 2.7 are immediate.
The base cases d = 2, 3 for Theorem 1.2 are also straightforward.

Lemma 6.1 Let d ≥ 4 be an integer. The existence of a contraction as in Theorem 2.7

for n = d implies the existence of a contraction as in Theorem 1.2 for d.

Proof The divisor Dr,d = T +
∑⌊d/2⌋

k=2 k(k − 1)∆k,d−k equals v(Dd). By hypothesis,

v(Dd) is eventually free, thus Dr,d is eventually free by Lemma 3.4. Define

contr,d : M0,0(P
r, d) → Yr,d

to be the associated morphism with connected fibers and normal target.

Denote by Or,d the maximal open subscheme of Yr,d over which contr,d is finite.

The claim is that cont−1
r,d (Or,d) contains M0,0(Pr, d). Every proper, irreducible curve

B in M0,0(Pr, d) contracted by contr,d has intersection number 0 with Dr,d. If B in-

tersects M0,0(Pr, d), the intersection number with every ∆k,d−k, k = 1, . . . , ⌊d/2⌋
is nonnegative. Since T is NEF, the intersection number of B with T is nonnega-

tive. Since Dr,d · B = 0, B has intersection number zero with T and ∆k,d−k, k =

2, . . . , ⌊d/2⌋. From the expression of T and the fact that H and ∆1,d−1 have non-
negative intersection with B, it follows that B has intersection number zero with H

and ∆1,d−1, as well. Since there exists an ample linear combination of these divisors,
we obtain a contradiction. Thus B is contained in the complement of M0,0(Pr, d),

proving the claim.

By Zariski’s Main Theorem, contr,d : cont−1
r,d (Or,d) → Or,d is an isomorphism. In

particular, contr,d : M0,0(Pr, d) → Or,d is an open immersion.

The 1-morphism φΠ from Definition 3.2 maps ∆k,d−k to ∆̃k,d−k compatible with

the boundary maps. Thus contr,d satisfies the conclusion of Theorem 1.2.

Lemma 6.2 Let n ≥ 6 be an integer. The existence of a contraction as in Theorem 1.2

for d = n − 2 implies the existence of a contraction as in Theorem 2.7 for n.

Proof Denote by ev: M0,n(Pn−2, n − 2) → (Pn−2)n the evaluation 1-morphism.
Denote by Φ : M0,n(Pn−2, n − 2) → M0,n the forgetful 1-morphism. Denote by

U ⊂ (Pn−2)n the open subset parameterizing n-tuples of points in linear general

position, i.e., the span of every (n − 1)-tuple equals Pn−2. Kapranov proved that the
1-morphism,

(ev,Φ) : M0,n(P
n−2, n − 2) → (P

n−2)n × M0,n,

is an isomorphism over U × M0,n, [Kap]. Fix a general point q in U , and identify

M0,n with the fiber over {q} × M0,n.

The forgetful 1-morphism π : M0,n(Pn−2, n− 2) → M0,0(Pn−2, n− 2) restricts to
a 1-morphism p : M0,n → M0,0(Pn−2, n − 2). Denote by cont : M0,n → Y the Stein

factorization of

contn−2,n−2 ◦p : M0,n → contn−2,n−2(p(M0,n)).
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It is straightforward that p−1(∆k−1,n−1−k) = ∆̃k,n−k for every 2 ≤ k ≤ ⌊n/2⌋
compatibly with the boundary maps. Thus cont satisfies the conclusion of Theo-

rem 2.7.

Remark 6.3. Pairing with test curves gives that

v
( 1

n − 1
Dn

)
=

1

n − 1
Dr,n and p∗

( 1

n − 3
Dn−2,n−2

)
=

1

n − 1
Dn.

The image of the ample cone of M0,0(Pn, n) under p∗ is not all of the ample cone of

M0,n+2, already for n = 6.

Acknowledgments We would like to thank B. Hassett and A. J. de Jong for suggest-

ing helpful references and for useful discussions.

References

[CHS] I. Coskun, J. Harris, and J. Starr, The effective cone of the Kontsevich moduli space. Canad. Math.
Bull., to appear. http://www.math.uic.edu/∼coskun/reveff.pdf

[dJS] A.J. de Jong and J. Starr, Divisor classes and the virtual canonical bundle.
http://arxiv.org/abs/math/0602642

[Ful] W. Fulton, Intersection Theory, Second edition. Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1998.

[Ha] R. Hartshorne,, Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New
York, 1977.

[Has] B. Hassett, Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2003), no. 2,
316–352.

[Kap] M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space M0,n. J. Algebraic
Geom. 2(1993), no. 2, 239–262.

[Kaw] Y. Kawamata, Subadjunction of log canonical divisors for a subvariety of codimension 2. In:
Birational Algebraic Geometry. Contemp. Math. 207, American Mathematical Society,
Providence, RI, 1997, pp. 79–88.

[KM] S. Keel and J. McKernan, Contractible extremal rays on M0,n. Preprint, 1996.
http://arxiv.org/abs/alg-geom/9607009.

[Pa] R. Pandharipande, Intersections of Q-divisors on Kontsevich’s moduli space M0,n(Pr, d) and
enumerative geometry. Trans. Amer. Math. Soc. 351(1999), 1481–1505.

[Par] A. Parker, An elementary GIT construction of the moduli space of stable maps. Ph.D. thesis,
University of Texas at Austin, 2005.

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
69607
e-mail: coskun@math.uic.edu

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
e-mail: jstarr@math.sunysb.edu

Department of Mathematics, Harvard University, Cambridge, MA 02138
e-mail: harris@math.harvard.edu

https://doi.org/10.4153/CJM-2009-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-005-8

