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ON A QUESTION OF GROSS CONCERNING UNIQUENESS
OF ENTIRE FUNCTIONS

HonGg-XUN Y1

In this paper, we prove that there exist two finite sets S1 (with 1 element) and S;
(with 3 elements) such that any two entire functions f and g satisfying E;(S;) =
Eq4(S;) for 3 = 1,2 must be identical. This answers a question posed by Gross.
Examples are provided to show that this result is sharp.

1. INTRODUCTION

Let h be a nonconstant entire function, and let S be a subset of distinct elements
in C. Define (see [10])

E,(S) = U {z | M{z) = a, counting multiplicities},
a€S

En(S) = U {z | h(2) = a, ignoring multiplicities}.
aES

Let f and g be two nonconstant entire functions, and let S be a subset of distinct
elements in C. If E¢(S) = E4(S), we say f and g share the set S CM (counting
multiplicity). If E¢(S) = E4(S), we say f and g share the set S IM (ignoring
multiplicity). As a special case, let S = {a}, where a € C. If Ef({a}) = E,({a}), we
say f and g share the value a CM. If Ef({a}) = E,({a}), we say f and g share the
value a IM (see [2]).

In 1976, Gross asked the following question:

QUESTION 1. (See (1, Question 6].) Can one find two finite sets S; (j =1,2) such
that any two entire functions f and g satisfying Ef(S;) = Ey(S;) for j = 1,2 must
be identical?

In 1994, the present author [6] proved the following theorem, which answered the
above Question 1 in the affirmative.
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THEOREM A. Let S; = {w|w"-1=0} and S; = {a}, where n > 5, a # 0 and
a’™ # 1. If f and g are entire functions such that E4(S;) = Eg(S;) for j = 1,2, then
f=g.

In [1) Gross wrote: “If the answer to Question 6 is affirmative, it would be inter-
esting to know how large both sets would have to be.”

Now it is natural to ask the following question:

QUESTION 2. What are the smallest cardinalities of S; and S, respectively, where
S, and Sz are two finite sets such that any two entire functions f and g satisfying
E¢(S;) = E4(S;) for j = 1,2 must be identical?

In this paper, we prove the following theorems, which answer Question 2.

THEOREM 1. Let S; = {0} and S, = {w | wiw+a)—b= 0}, where a and
b are two nonzero constants such that the algebraic equation w?(w+a) — b = 0 has

no multiple roots. If f and g are two entire functions satisfying E¢(S;) = E4(S;) for
j=1,2,then f=g.

REMARK. Let §; = {0} and S; = {2,-3,-6}. It is easy to see that S» = {w |
Wi w+7) - 36 = 0}. From Theorem 1 we immediately obtain that if f and g are
entire functions satisfying E(S;) = E4(S;) for j =1,2, then f=g.

THEOREM 2. If S§; and Sy are two finite sets such that any two entire func-
tions f and g satisfying Ef(S;) = E4(S;) for j = 1,2 must be identical, then
max{#(S1),#(S2)} > 3, where #(S) denotes the cardinality of the set S.

REMARK. From Theorem 2 we immediately obtain that the smallest cardinalities of S;
and S2 are 1 and 3 respectively, where S; and S, are two finite sets such that any two
entire functions f and g satisfying E¢(S;) = E,(S;) for 7 = 1,2 must be identical.
This shows that Theorem 1 is sharp.

2. SOME LEMMAS

In this paper, we use the usual notations of Nevanlinna theory of meromorphic
functions as explained in [3].

LEMMA 1. (See [9, Lemma 5].) Let f and g be two nonconstant meromorphic
functions, and let ¢y, c; and c3 be three nonzero constants. If

le + c29 = c3,

then
T(r, f) < N(r, %) +N(r, g) + N(r, f) + S(r, f).
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Let h be a nonconstant meromorphic function. We denote by Na(r, h) the counting
function of poles of h, where a simple pole is counted once and a multiple pole is counted
two times (see [7]).

LEMMA 2. (See (7, Theorem1).) Let F and G be two nonconstant meromorphic
functions such that F and G share the value 1 CM. If

(2.1) lim sup Ny(r,1/F) + Na(r, F) + Na(r,1/G) + Na(r,G) -1

rr—éolo T(’I‘) ’

where T(r) = max{T(r, F), T(r, G)}, I denotes any set of infinite linear measure of
O<r<oo,then F=Gor F-G=1.

LEMMA 3. Let

2 2
2.2) pfUta o g+t
b b
where f and g are two nonconstant entire functions, a and b are two nonzero constants.
Then F -G # 1.

Proor: If F-G =1, from (2.2) we have
FAf +a)g?(g+a) =02
From this we know that 0 and —a are Picard exceptional values of f, which is impos-

sible. Thus F -G # 1. 0

LEMMA 4. Let f and g be two nonconstant entire functions which share the
value 0 IM. If F = G, where F and G are given by (2.2), then f =g.

PRroOF: Since F = G, we have from (2.2)

(2.3) Hf+a)=g*g+0).

Noting f and g share the value 0 IM, from (2.3) we know that f and g share 0 CM.
From (2.3) we have

(2.4) 2 -g*=—a(f*-g%.
If f3 # g3, from (2.4) we obtain

a(h+1)

9 7 TGk

where h = f/g and u = exp((2ni)/3). From (2.5) we know that h is a nonconstant
meromorphic function. Noting f and g share the value 0 CM, from h = f/g we know
that 0 and oo are Picard exceptional values of h. Since g is a nonconstant entire
function, from (2.5) we know that u and u? are Picard exceptional values of h, which
is impossible. Thus f3 = g% and f? = g2. From this, we get f =g. a
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3. PROOF OF THEOREM 1
Let F and G be given by (2.2). Thus,

(3.1) T(r,F)=3T(r,f)+S8(r,f), T(r,G)=3T(r,g)+ S(r,g).
Set

F’ G’
(3:2) H=f3-e-1v

We discuss the following two cases.

CASE 1. Suppose that H = 0. By integration we have from (3.2)
(3.3) F-1=A(G-1),

where A is a nonzero constant. We discuss the following two subcases.

CASE 1.1. Assume that A = 1. From (3.3) we have FF = G. By Lemma 4 we get
f=g

CAsE 1.2, Assume that A # 1. Suppose 0 is not a Picard exceptional value of f and g.
Since f and g share the value 0 CM, then there exists zp such that f(zg) = g(20) = 0.
From (2.2) we obtain F(z) = G(29) = 0. From this and (3.3) we get A =1, which is
a contradiction. Thus, 0 is a Picard exceptional value of f and g. From (3.3) we have

(3.4) F—-AG=1-A.
From this we have
(3.5) T(r,G) = T(r, F) + O(1).

By Lemma 1, we obtain from (2.2), (3.1), (3.4) and (3.5)

- 1 —( 1
3T(r, f) < N(r, f+a) +N(r,g+a) + S0 )
< 2T(r, f) + S(r, f),

which is impossible.

CASE 2. Suppose that H Z0. Then F # G. By E¢(S3) = E4(S2), we know that F
and G share the value 1 CM. From (3.2) we have

(3.6) T(r,H)=m(r,H) + N(r,H) = S(r, F) + S(r, G).
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Since f and g share the value 0 CM, f and g have the same zeros. Let 29 be a zero
of f and g. From (2.2) and (3.2) we know that zp is a zero of H. From this and (3.6)
we get

N(r,%) :]_\7(1', é) < N(r,%) < S(r,F) + 8(r,G).

From this, (2.2) and (3.1) we obtain

1 1 1 1
NZ(T,F) +N2(1‘, a—) gN(T, m) +N(T,g+a> +S(7",F)+S(T,G)

1
<3TC )+ %T(r, G) + S(r, F) + S(r, G).
Thus,
1 1
N2<T,F> +N2(T,F)+N2<T,6) +N2(T,G) 2
. <z
hrrxl}sol;p ) <3 < 1,

rel

where T(r) = max{T(r,F),T(r,G)}, I denotes any set of infinite linear measure of
0 < 7 < co. By Lemma 2, we obtain F -G = 1. Again by Lemma 3, we get a
contradiction.

This completes the proof of Theorem 1. I

4. PROOF OF THEOREM 2
4.1. SoME EXAMPLES.

EXAMPLE 1. Let S; = {a} and S = {b}, where a and b are any two finite distinct
complex numbers. Let

Fz) =a+(b—a)e®, g(z)=a+(b—a)e P,

where h(z) is a nonconstant entire function. It is easy to show that E¢(S;) = E4(S;)
(j=1,2),but f#g.

EXAMPLE 2. (See [8].) Let S; = {a} and S = {b1,b2}, where a, b, and b, are any
three finite distinct complex numbers. Let

f@y=a+ (b - a)eh(z), g(z)=a+ (b - a)e—h(z),

where h(z) is a nonconstant entire function. It is easy to show that E(S;) = E4(S;)
(i=12),but f£g.
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EXAMPLE 3. (See [4].) Let S; = {a,,a2} and S3 = {b1,b2}, where a;, a3, b; and b,
are any four finite distinct complex numbers satisfying a; + ay # b1 + by. Let

f(z)=d+(d~ al)eh(Z)’ g(z)=d+(d- az)e—h(z),

where h(z) is a nonconstant entire function, d = (ayaz — b1b2)/(a1 + az — by ~ by). It
is easy to show that Ef(S;) = E4(S;) (j =1,2),but f#g.

EXAMPLE 4. (See [5].) Let Sy = {a1,a2} and S, = {b1,b2}, where aj, a2, b; and
by are any four finite distinct complex numbers satisfying a; + a; = b; + bgz. Let
f(z) be a nonconstant entire function, g(z) = a1 + a2 — f(z). It is easy to show that

Es(S;) = Eg(S;) (1=1,2),but f#g.

4.2. PROOF OF THEOREM 2.

Suppose that max{#(S1), #(S2)} < 3. We proceed to get a contradiction. If
#(S1) = #(S2) = 1, from Example 1 we have a contradiction. If #(S;) = 1 and
#(S2) =2 or #(51) = 2 and #(S2) = 1, from Example 2 we have again a contradiction.
If #(S1) = #(S2) = 2, from Example 3 and Example 4 we can get a contradiction.
This completes the proof of Theorem 2. 0

5. CONCLUDING REMARK

In fact, in Section 3 of this paper we proved the following theorem, which is an
improvement of Theorem 1.

THEOREM 3. Let S; = {0} and $; = {w |w?(w+a) — b =0}, where a and b
are two nonzero constants such that the algebraic equation w?(w +a) — b = 0 has no
multiple roots. If f and g are two entire functions satisfying E;(S1) = E4(S1) and
Ef(S2) = Eg(S2), then f=g.

Proceeding as in the proof of Theorem 1, we can prove the following result, which
is an extension of Theorem 3.

THEOREM 4. Let S; = {0} and S; = {w | w™(w+a) — b = 0}, where n(>2)
is an integer, a and b are two nonzero constants such that the algebraic equation
w™(w + a) — b = 0 has no multiple roots. If f and g are two entire functions satisfying
E;(S1) = E4(S1) and E¢(S2) = E4(S2), then f=g.

Let n(> 2) be an integer, and let a and b be two nonzero constants. It is easy to
show that if b # (n"a™*')/(n + 1)™*!, the algebraic equation w™(w+a) — b = 0 has
no multiple roots. Specially, if b # 4a3/27, the algebraic equation w?(w+a) —b =10
has no multiple roots.
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