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ANALYTIC TOEPLITZ AND COMPOSITION 
OPERATORS 

JAMES A. D E D D E N S 

1. Introduction. This paper is a continuation of [1] where we began the 
study of intertwining analytic Toeplitz operators. Recall that X intertwines 
two operators A and B if XA = BX. Let H2 be the Hilbert space of analytic 
functions in the open unit disk D for which the functions fr{6) = f{reie) are 
bounded in the L2 norm, and Hœ be the set of bounded functions in H2. For 
(p G Hœ, 7^ (or 7^(2)) is the analytic Toeplitz operator defined on H2 by the 
relation {T,pf)(z) = <p(z)f(z). For <p £ Hœ, we shall denote {<p(z): \z\ < 1} 
by Range (<p) or <p(D). Then <Tv(Tf) 3 <£>(£>) where £>(z) = <p(z) and o-(TV) = 
Closure(<p(D)) [1]. If <p Ç iF° maps D into Z), then we define the composition 
operator C<p on iJ2 by the relation (Qf) (z) = f(<p(z)). J. Ryff has shown [11, 
Theorem 1] that Ĉ , is a bounded linear operator on H2. In § 2 we investigate 
intertwining operators between analytic Toeplitz operators using composition 
operators, and in § 3 we study a special class of composition operators. 

Acknowledgement. I would like to thank Professor J. Caughran for several 
helpful conversations concerning the proof of Theorem 2. 

2. Intertwining analytic Toeplitz operators. 

THEOREM 1 (see [1]). Let <p, \fr £ Hœ. If \f/(D) <£ <T(TV), then the only bounded 
linear operator X satisfying XTV = T^X is X = 0. 

COROLLARY 1. If <p, yp £ Hœ are such that there exists X 9^ 0, Y 9^ 0 satisfying 
XT<p = T^X and T^Y = YTf, then viT^) = a(T$). 

Proof. Applying Theorem 1 we see that \[/(D) CI a(Tv) and <p(D) C o-(7^). 
Since a(Tv) = Closure(<p(D)), cr(r^) = <r(7^). 

PROPOSITION 1. Let <p, \p £ Hœ. If there exists an analytic function œ mapping 
D into D such that <p(co(z)) = \p(z), then there exists a nonzero X such that 
XTy = i^X. 

Proof. Since Cw is clearly nonzero and since for/ £ H2 

{(C„Tç)f)(z) = <p(œ(z))f(œ(z)) = *(*)/(«(*)) = (T*G.f)(z), 

we have that 
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THEOREM 2. Let cp, \p G 7700, <p univalent in D. Then \p(D) $£ <p(D) if and 
only if XT<p = T^X implies X = 0. In addition, ip(D) = av{T(p^). 

Proof. Suppose f(D) £ <p(D). 
Case 1. \j/ is constant, \p(z) = X. Then either X € v{T<p) in which case X = 0 

by Theorem 1, or X G a(T<p)\<p(D). Suppose X satisfies XTV = T^X = XX. 
Then (TV - X*)X* = 0, so that Range X* C N u l l ( ^ * - X*) = Range 
(7^ — X)1-. Since X (? <p(D), the univalent function ^ — X never vanishes in D. 
Hence cp — X contains no Blaschke products, and by Theorem 3.17 in [4] (see 
also [9]) <p — X contains no singular inner factor. Thus the decomposition of H2 

functions into the product of an inner and an outer function [7, p. 67] implies 
that (p — X must be outer. But if ^ — X is outer, then Range (7^ — X) is dense in 
772 [7, p. 101], so that Range X* = {0}. Thus X = 0. This also establishes 
that o* (770 = êiP). 

Case 2. \p is not constant. Now N = \f/(D) P\ C\<p(D) is nonempty by 
hypothesis. Since <p is a univalent analytic function, <p(D) is an open simply 
connected set, hence C\<p(D) contains no isolated points. Since \p is non-
constant, \//(D) is an open set. Thus N is the nonempty intersection of an 
open set and a closed set containing no isolated points, and hence X must be 
uncountable. The proof of Theorem 1 then implies X = 0. 

Suppose \I/(D) ÇI <p(D). Since <p is univalent, F(z) = <p~l(\l/(z)) is an analytic 
function mapping D into D such that <p(F(z)) = \p(z). Hence Proposition 1 
implies there exists a n l ^ O such that XT^ = T^X. 

PROPOSITION 2. Let <p, \p G 77°° map D into D. If C^H2 reduces Tç and if there 
exists K > 0 such that 

(*) \\C+g\\^K\\C,g\\forallgtH\ 

then there exists a bounded X ^ 0 such that XT^ = T^X. (We remark that 
(*) is equivalent to the existence of F G Se (JEF) satisfying YCV = Q and to 
CfH* ç C*H* [2].) 

Proof. Write 772 = CJP ® (QH2)1- and define X on CJP ® (CJP)*- by 

X{C,g) = C+giorgeiP 
Xf = 0 for / _L Q772. 

Then X is well defined and (*) implies that X is bounded, so we can continu­
ously extend it to all of 772. Also 

(xr,)f = xT9(cvg e h) = X(^Q> e *>*) 
= X{<pCvg) = "AQg 

and 
(TfX)f = r ^ ( C ^ g 0 * ) = TVX-Crf 

= TVQg = ^Qg. 

Hence I F , = 7>X on C f̂f2 0 (C^H)-1 and thus on H\ 
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Remarks. 1. There is no loss of generality in assuming <p, \p map D into D, 
since £ = ^/2Af and # = ^/2M, where M = maxJU^I^, |M|œ}, map D 
into D, and XT$ = T$X if and only if XT^, = T^X. 

2. Cpi72 is always invariant for 7^, since T^Cp = C<pT\. However, C^H2 need 
not always reduce Tv (example: if <p(z) = \z2 + \z% then £1(2) = z £ Null 

(c,*) = (ey?2)1- but c;*7>i = è*i ̂  o). 
3. Nevertheless there are examples where C<pH2 reduces T^. If C f̂f2 is dense, 

then CpH2 trivially reduces T<p. If <p is an inner function, then C<pH2 reduces 
Tv since, in this case, T*C<p = C^^T* + ^(0)£) where (Ef)(z) = / ( 0 ) . 
Also, if co is an inner function and Q i / 2 is dense in H2, then Ĉ H*2 reduces Tv 

for ^>(z) = ^(co(s)). 
COROLLARY 2. L ^ p, ^ £ i?œ , <p aw iwwer junction. Then \p(D) $£ <jv{T<p*) 

if and only if XT<p = T^X implies X = 0. 

Proof. If <p is constant the statement is clear, so we assume <p is nonconstant. 
Hence ap(T/) = D[5, p. 230]. 

Suppose $(D) C D. By Remark 3, C<pH2 reduces 7^, and by Theorem 1 
in [10], Cp is bounded below, hence Proposition 2 implies there exists X 9e 0 
such that XT y = T^X. An alternative proof is to observe that there exists 
F =̂  0 such that F7^ = T^F, since Tv and 7% are both isometries. Hence 
X = C+Y j* 0 satisfies i r , = T+X. 

Suppose $(D) Çt D. The result then follows from Corollary 1 in [1] with (i) 
replaced by 

(i)' Interior (Closure{(rp{T^))) = av{T<*). 

In [1] we conjectured that $(D) ÇÇ vp{T<p*) is necessary and sufficient for 
XT9 = T+X to imply X = 0. Theorem 2 and Corollary 2 establish this con­
jecture if ç is univalent or inner. In case <p is a polynomial, <p(D) = (rp(T<p*) 
(see [3]). Since it can be shown that Interior (Closure(cp(D))) = <p(D), 
Corollary 1 in [1] implies the sufficiency of our conjecture in case <p is a poly­
nomial. 

3. Composition operators. In this section we study the special class of 
composition operators C? of the form <p(z) = a + f3z, that is, \a\ < 1, \a\ + 
|/31 S 1. E. Nordgren [10] has studied Q, when <p is an inner function, while 
H. Schwartz [12] has obtained numerous results concerning composition 
operators. 

THEOREM 3. (i) If |/3| = 1, then Ca+pz is a unitary operator whose spectrum 
is the closure of the set {1, /3, /32, . . . }. 

(ii) If \a\ + |/31 < 1, then Ca+pz is a compact operator whose spectrum is the 
closure of {1, (3, /32, . . .} . 

(iii) If \a\ + |/3| = 1, |/3| 9^ 1, jS W0£ positive, then Ca+pz is a noncompact 
operator, whose square is compact, and whose spectrum is the closure of 
{ l , 0 , j 8 s , . . . } . 
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(iv) If \a\ + |/31 = 1, |/3| 7e 1, fi positive, then Ca+^z is a cosubnormal operator 
whose spectrum is the closed disk of radius fi~* centered at the origin. 

Proof. Before beginning the proof, notice t h a t under the natura l identification 
between H2 and l+

2 (i.e.,^n°Lo anz
n —» {^}o°), Ca+pz has a matr ix representat ion 

as 
1 a a2 a3. . . 

P 2a/3 3a2P . . 
P2 3af32 . . 

on l+
2 

Ca+/3z 

0 
t h a t is, Ca+pz ~ (an) where atj = 0 if j < i and atj = (^)ai_*/3* if j ^ i. 

Proof of 3( i ) . Since \(3\ = 1, a equals 0. Hence Ca+pz corresponds to a diagonal 
matr ix all of whose entries have modulus 1. T h u s Ca+pz is un i ta ry with spec­
t rum = Closure (Diagonal) = Closure(1, /3, ft2, . . . ) . 

Proof of 3(i i) . Since \a\ + \/3\ = r < 1, we have \a + (3z\ ^ r < 1 for 
\z\ ^ 1. Hence Theorem 5.2 in [12] implies t h a t Ca+pz is compact with spec­
t rum = Closure} 1, /3, (32, . . . } , and t h a t if (3 ̂  0 then each /3W is a simple 
eigenvalue. An al ternat ive proof is to first notice t h a t ap (Ca+pz) 2 {1, (3, /32, . . . } . 
In fact, if fn{z) = (z - a/(I - /3))n then Ca+Pefn = Pnfn. Nex t notice t h a t the 
matr ix (atj) of Ca+^z satisfies 2 ^ = o | a ^ | = 1/(1 — r) < GO , so t h a t C«+/3z 
is compact . F rom this it is not hard to conclude t h a t spectrum = Closure 
j l , f3, /32, . . .} and t h a t each eigenvalue is simple if /3 9^ 0. 

Proof of 3(hi ) . Since |a| + \/3\ = 1, \/3\ 9e 1, and /3 is not positive, we have 
|1 + /3| < 1 + \P\ and hence | a ( l + /3)| + |/32| < 1. Because Ca+/32

2 = 
Ca(i+^)+^2

2, 3(ii) and the spectral mapping theorem [5, p . 38] imply t h a t 
Ca+pz

2 is compact and t h a t 

(a(Ca+pz))
2 = <r(Ca+i3Z

2) = o-(Ca(i+/3)+/3
2

2) = Closure{l , /32 , /34, . . . } . 

Hence 
o-(C«+<3z) £ Closuref =fc 1, ± 0, =b /32, . . . } . 

As usual, o>(Ca+/3Z) 2 {1, 0, P2, • • • } . Recall t h a t f32n is a simple eigenvalue for 
Ca+t2 with eigenvector/» (2) = (z - a(l + 0 ) / ( l - /32))n = (2 - a / ( l - 0))», 
which is also the eigenvector for Ca+$z corresponding to the eigenvalue /3n. 
Hence 

JV = N u l l ( C a + ^ 2 - /32*) = Null(Ca + / 3 2 - 0»), 
and 

N u l l ( C a + ^ + 0») = {0}, 

since Null(C«+/ ïz + £w) Ç Nu\\(Ca+0z
2 - p2n) and 

t h a t - 0» £ v\ca+pz) for n = 0, 1, 2, 
— /3W Ç do-(Ca+/3z) C (Ta(Ca+(3Z) [5, p . 39]. Hence there exist ym, 
such t h a t 

11 (Ca+fiz + (3n)ym\ I -> 0 as m -
so 

| |(Ca+/32
2 - 0 2 W ) ^ | | - ^ O a s m ^ 

/3 ^ 0. W e need to show 
If - 0 » 6 eKC-HS,), then 

IbJI = 1 

00 

0 0 . 

https://doi.org/10.4153/CJM-1972-085-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-085-8


ANALYTIC TOEPLITZ OPERATORS 863 

Let ym = y'm © y" m 6 J/ © J/\ Since Ca+pz
2 is compact and (3 ^ 0, Ca+/32

2 — 
/32n is bounded below on ^K 1 [5, p. 91]. Hence ym" -» 0. Because 1 = \\ym\\2 + 
\\ym\\2, there is a subsequence \yr

mk) that converges weakly to gn where gn £ yK, 
||gn|j = 1. Hence 

which contradicts Null(Ca+/3Z +/3W) = {0}. Thus a(Ca+^2) = Closure{1, 0, 
/32, . . . } . 

In order to see that Ca+/32 is not compact, we employ the argument on page 23 
of [12]. By hypothesis \a\ + |0| = 1, |0| ^ l,_so that a = peid and & = (l-p)eiv 

where 0 < p < 1. If we define fn(z) = 1/V" 0** - z + z/n)'1 then /n Ç if2, 
J rg 11 All2 = 1, and /w —> 0 uniformly on compact subsets of D. Also 
||Ca+/32/w||2 ^ \\fn\\2 ^ I- Theorem 2.5 in [12] then implies that Ca+pz is not 
compact. 

Proof of 3 (iv). We first consider the case when a is positive. Then a + fi = 1. 
Define Co* to be that operator on H2 whose matrix representation under the 
natural identification between H2 and l+

2 is 

1 2 3 • • . 

Co* - Q * J • •. 

That is, Co* ~ (btj) where &^ = 0 if 7 < i and 6^ = 1/j if j ^ i. Then C0* 
is a bounded linear operator on H2 and a simple calculation shows that Ca+pz 

commutes with Co*. The operator Co on l+
2 is called the Cesaro operator [6, 

p. 96]. A theorem of Shields and Wallen [13] then implies that there is a 
bounded analytic function F on {z: |1 — z\ < 1} such that Ca+pz = F (Co*), 
a(Ca+pz) = Closure}F(z): |1 — z| < 1} and ||C«+/j2|| = sup{|X|: X £ <r(Ca+pz)}. 
Since we obviously must have F(l/n) = fin~l for n = 1, 2, . . . ; ^(2) = 
0(1/20-1 is the required function. Hence 

0-(Ca+/32) = Closure{F(z)\ |1 — s| < 1} 
= C l o s u r e } ^ - 1 : |1 - z\ < 1} 
= {X: |X| ^ / H } . 

and 

||Ca+/32|| = sup{|X|: X 6 cr(C«^,)} = 0-*. 
A theorem of Kriete and Trutt [8] states that Co is a subnormal operator with 
a cyclic vector and hence every operator commuting with Co is subnormal [14]. 
Thus Ca+pz is cosubnormal. We remark that Ca+pz is the adjoint of the Euler 
summability matrix of order a/(I — a) [6, p. 178]. Thus the spectrum of the 
Euler matrix of order a/(l — a) on I2 is {z: \z\ ^ (1 — a)~~*}. 

We next consider the case when a is not positive. Then a = \a\eid and 
|a| + j8 = 1. However, it is easily checked using the unitary operator Ce^z 

that Ca+pz is unitarily equivalent to C\a\+pz. Hence Ca+p2 is again a cosubnormal 
operator whose spectrum is the closed disk of radius fi"1 centered at the origin. 
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An alternative proof for 3(iv) would be to first try and prove that ||Ca+/32|| = 
/3 - ( ¥ ) and then notice that (1 — JS) ( 1 / X ) - 1 is an eigenvector for Ca+pz corre­
sponding to the eigenvalue /3(1/x)-i where |1 — X| < 1. 

Notice that if /3 ^ 1 then a/(l — /3) is the only fixed point of <p(z) = 
a + /3z. We remark that the real distinction between 3(iv) and 3(i-iii) is that 
in 3(iv) the fixed point of <p is on the unit circle, while in 3(i-iii) the fixed point 
of cp is in D. 

Theorem 3(hi) can be generalized in the following manner. If ç> G Hœ 

maps D into D, def ine^ Ç Hœ inductively by <pi (z) = <p(z),(pn(z) = (pn_i(<p(z)). 

PROPOSITION 3. Suppose that <p £ Hœ maps D into D and that for some 
integer n there is an r, 0 < r < 1, such that \<pn(z)\ ^ r < 1 for all \z\ < 1. 
Then C / is compact. Furthermore, if <p has a fixed point z0 in D and /3 = <pf (z0), 
then <r{C,p) = Closure} 1, 13, /32, . . . } . 

Proof. By Theorem 5.2 in [12], C/ = C<pn is compact. The last statement 
follows as in Theorem 3(iii). 

Remarks. 4. H. Schwartz in [12] proves that if cp Ç Hœ maps D into D and 
has a fixed point z0 in D and if <p'(ZQ) T^ 0 then {^>/(s0)

w}^Lo are eigenvalues 
for Cç and these are the only eigenvalues. In Theorem 3(iv) and Theorems 5 
and 6 in [10] the eigenvalues are related to the fixed points of <p on the unit 
circle. Is there some general connection between fixed points of <p on the unit 
circle and eigenvalues for Cp? 

5. Using Schur's test [5, p. 22] one can show that ||Ca+/32|| ^ (1 — M)~¥-
Is this an equality? 

6. Theorem 3(iii) yields perhaps the worst possible example of a noncompact 
operator T whose square is compact, since T and T2 possess common simple 
eigenvectors that span H2. 
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