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ANALYTIC TOEPLITZ AND COMPOSITION
OPERATORS

JAMES A. DEDDENS

1. Introduction. This paper is a continuation of [1] where we began the
study of intertwining analytic Toeplitz operators. Recall that X intertwines
two operators A and B if XA = BX. Let H? be the Hilbert space of analytic
functions in the open unit disk D for which the functions f,(0) = f(re*?) are
bounded in the L2 norm, and H® be the set of bounded functions in H2. For
o € H®, T,(or T,) is the analytic Toeplitz operator defined on H? by the
relation (7,f)(2) = ¢(2)f(2). For ¢ € H®, we shall denote {¢(2): |2 < 1}
by Range (¢) or ¢(D). Then o,(T,*) 2 (D) where 3(2) = ¢ (&) and o(T,) =
Closure (¢ (D)) [1]. If ¢ € H® maps D into D, then we define the composition
operator C, on H? by the relation (C,f)(z) = f(¢(2)). J. Ryff has shown [11,
Theorem 1] that C, is a bounded linear operator on H2 In § 2 we investigate
intertwining operators between analytic Toeplitz operators using composition
operators, and in § 3 we study a special class of composition operators.

Acknowledgement. 1 would like to thank Professor J. Caughran for several
helpful conversations concerning the proof of Theorem 2.

2. Intertwining analytic Toeplitz operators.

THEOREM 1 (see [1]). Let o, ¢ € H*. If Y(D) € o(T,), then the only bounded
linear operator X satisfying XT, = TyX is X = 0.

CoROLLARY 1. If o, ¢ € H® are such that there exists X # 0, Y # 0 satisfying
XT, = T)X and T,Y = YT, then o(T,) = o(Ty).

Proof. Applying Theorem 1 we see that ¢ (D) C ¢(7,) and ¢(D) € o(Ty).
Since ¢(7,) = Closure(¢(D)), o(T,) = o (Ty).

PROPOSITION 1. Let o, ¢ € H®. If there exists an analytic function w mapping
D into D such that ¢(w(2)) = ¢(2), then there exists a nonzero X such that
XT, = TuX.

Proof. Since C, is clearly nonzero and since for f € H?
(GTp)f) (2) = ¢(w(2)) flw(z)) = ¥ (2)f(w(2) = (TyCf) (2),

we have that
CoTp = TyC.
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THEOREM 2. Let ¢, ¢ € H®, ¢ univalent in D. Then (D) & o (D) if and
only if XT, = TyX implies X = 0. In addition, (D) = a,(T*).

Proof. Suppose (D) & o (D).

Case 1. ¢ is constant, ¢(z) = A. Then either A ¢ ¢(7,) in which case X = 0
by Theorem 1, or \ € o(T,)\¢(D). Suppose X satisfies X7, = 7, X = \X.
Then (T,* — M*)X* =0, so that Range X* C Null(R,* — \*) = Range
(T, — \)L. Since N ¢ (D), the univalent function ¢ — \ never vanishes in D.
Hence ¢ — )\ contains no Blaschke products, and by Theorem 3.17 in [4] (see
also [9]) ¢ — \ contains no singular inner factor. Thus the decomposition of H?
functions into the product of an inner and an outer function {7, p. 67] implies
that ¢ — A must be outer. But if ¢ — X is outer, then Range (7, — \) is dense in
H?[7, p. 101], so that Range X* = {0}. Thus X = 0. This also establishes
that a,(7,*) = (D).

Case 2. ¢ is not constant. Now N = ¢(D) N C\¢(D) is nonempty by
hypothesis. Since ¢ is a univalent analytic function, ¢(D) is an open simply
connected set, hence C\¢(D) contains no isolated points. Since ¢ is non-
constant, ¢ (D) is an open set. Thus NV is the nonempty intersection of an
open set and a closed set containing no isolated points, and hence N must be
uncountable. The proof of Theorem 1 then implies X = 0.

Suppose ¢ (D) C ¢ (D). Since ¢ is univalent, F'(z) = ¢~ 1(¥(2)) is an analytic
function mapping D into D such that ¢(F(z)) = ¢(z). Hence Proposition 1
implies there exists an X # 0 such that X7, = 7,X.

PRrorosITION 2. Let ¢, ¢ € H” map D into D. If C,H? reduces T, and if there
exists K > 0 such that

*) | 1Cuel | = K| [Cogl | for all g € H?,

then there exists a bounded X # 0 such that XT, = TyX. (We remark that
(*) is equivalent to the existence of ¥ € & (H) satisfying YC, = C, and to
Cy*H? C C,*H? [2].)

Proof. Write H? = C,H? @ (C,H?)* and define X on C,H®* @ (C,H?)* by
X (Cog) = Cyg for g € H?
Xf=0 for f L C,H>.
Then X is well defined and (*) implies that X is bounded, so we can continu-
ously extend it to all of H2. Also
XT,)f = XT,(Cog @ h) = X(eCog @ oh)
= X(eCg) = ¥Cyg
and
(13 X)f = TyX (Cog @ h) = TyXCpg
= TyCyg = ¥Cyg.

Hence XT, = TyX on C,H?* @ (C,H?)* and thus on H?2.
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Remarks. 1. There is no loss of generality in assuming ¢, ¥ map D into D,
since ¢ = ¢/2M and ¢ = ¢/2M, where M = max{||¢||,, |[¥|l-}, map D
into D, and X7 = 73X if and only if X7, = Ty, X.

2. C,H? is always invariant for 7, since 7,C, = C,T,. However, C,H* need
not always reduce 7, (example: if ¢(z) = 322 + 32* then ei(z) = 2z € Null
(C*) = (C,H*)* but C*T,er = 3e1 # 0).

3. Nevertheless there are examples where C,H? reduces 7,. If C,H? is dense,
then C,H? trivially reduces T,. If ¢ is an inner function, then C,H? reduces
T, since, in this case, 1,*C, = C,(T.* + @(0)E) where (Ef)(2) = f(0).
Also, if w is an inner function and CyH? is dense in H?, then C,H? reduces T,
for ¢(2) = ¢(w(2)).

COROLLARY 2. Let ¢, ¢ € H®, ¢ an inner function. Then §(D) & o,(T*)
if and only if XT, = TyX implies X = 0.

Proof. If ¢ is constant the statement is clear, so we assume ¢ is nonconstant.
Hence ¢,(7T,*) = DI[5, p. 230].

Suppose ¥ (D) € D. By Remark 3, C,H* reduces T,, and by Theorem 1
in [10], C, is bounded below, hence Proposition 2 implies there exists X # 0
such that X7, = TyX. An alternative proof is to observe that there exists
Y # 0 such that Y7, = 7.7, since T, and 1, are both isometries. Hence
X = G Y # 0 satisties X7, = Ty X.

Suppose ¥ (D) & D. The result then follows from Corollary 1 in [1] with (i)
replaced by

1)’ Interior (Closure(o,(7,*))) = 0,(1*).

In [1] we conjectured that (D) & a,(7,*) is necessary and sufficient for
XT, = TyX to imply X = 0. Theorem 2 and Corollary 2 establish this con-
jecture if ¢ is univalent or inner. In case ¢ is a polynomial, (D) = 0,(7,*)
(see [3]). Since it can be shown that Interior (Closure(¢(D))) = o(D),
Corollary 1 in [1] implies the sufficiency of our conjecture in case ¢ is a poly-
nomial.

3. Composition operators. In this section we study the special class of
composition operators C, of the form ¢(z) = a 4 Bz, that is, |¢| < 1, |a] +
[8] = 1. E. Nordgren [10] has studied C, when ¢ is an inner function, while
H. Schwartz [12] has obtained numerous results concerning composition
operators.

TueoreM 3. (i) If |8] = 1, then Cuyp. is a unitary operator whose spectrum
is the closure of the set {1,8,6% ... }.
(i) If |a| + 8] < 1, then Cuyg. is a compact operator whose spectrum is the
closure of {1, 8, 8%, ...}.
(i) If |a| 4+ |8] = 1, |B8] & 1, B not positive, then Cuts, s a noncompact
operator, whose square is compact, and whose spectrum 1is the closure of

{1,8,8,...}.
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(v) If la| 4+ B8] = 1, 18] # 1, B positive, then Cors, is a cosubnormal operator
whose spectrum is the closed disk of radius 8=* centered at the origin.

Proof. Before beginning the proof, notice that under the natural identification
between H? and 1,2 (i.e.,) mo @n2" — {@y}¢"), Cazs. has a matrix representation

on [,% as
1 a a od. ..
B 2a8 3a%8...
Catper ~ B2 3ap?...
0 -

that is, Caysz ~ (as;) where a;; = 0if j < 2and a;; = ()’ if j = 4.

Proof of 3(i). Since |8] = 1, @ equals 0. Hence C,4, corresponds to a diagonal
matrix all of whose entries have modulus 1. Thus C,y. is unitary with spec-
trum = Closure(Diagonal) = Closure(1, 8, 8%, ...).

Proof of 3(ii). Since |a| + |8] =7 <1, we have |a 4+ 82| =7 < 1 for
|z] £ 1. Hence Theorem 5.2 in [12] implies that Ceyg, is compact with spec-
trum = Closure{1, 8, 82, ...}, and that if 8 ¢ 0 then each $" is a simple
eigenvalue. An alternative proof is to first notice that o, (Coys.) 2 {1,8,8% . . .}.
In fact, if f,(2) = (2 — a/(1 — B))" then Coyp.fn = B*f.. Next notice that the
matrix (a4;) of Cays. satisfies D 5,0 |ay;] = 1/(1 — 7) < 00, so that Cays:
is compact. From this it is not hard to conclude that spectrum = Closure
{1, 8, 82, ...} and that each eigenvalue is simple if 8 = 0.

Proof of 3(iii). Since || 4+ |8 = 1, |8] # 1, and B is not positive, we have
[l +8] <1+ |8 and hence |a(l 4 B)| 4+ |82 < 1. Because C,s.2 =
Courap+822, 3(i1) and the spectral mapping theorem [5, p. 38] imply that
Cuyp.? 1s compact and that

(0(Catp2))? = 0(Carp.?) = 0(Carapy+6?.) = Closure{l, g2 g4, .. .}.
Hence
0 (Coyp.) C Closure{ &= 1, &= 8, &= 6%, .. .}.
As usual, 0, (Corp:) 2 {1, 8, 82 . ..}. Recall that 8" is a simple eigenvalue for
Cuoyg.? with eigenvector f,(2) = (2 —a(1 + 8)/(1 — B2))*= (2 — /(1 — B))",
which is also the eigenvector for C,.s, corresponding to the eigenvalue (.
Hence
N = NUH(CH+522 —p*) = NUII(Ca+Bz - ),
and
Null (Cays: + 6*) = {0},
since Null (Coyg. + 8") C Null(Coyp.> — 82*) and B # 0. We need to show

that — " ¢ 6(Cayp.) for =10, 1, 2,.... If — "€ 0(Cayp.), then
— B € 906(Cop:) C 04(Coys.) [5, p.- 39]. Hence there exist y,, ||ly.||l =1
such that

[| (Caspz + B")¥m|| — 0 as m — oo
)
[|(Cozp? — BT)ym|| > 0 as m — 0.
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Let Yy = 'm @ y'm €N @ AL Since Coyp.? is compact and 8 # 0, Coyp,2 —
B2 is bounded below on AL [5, p. 91]. Hence y,,”” — 0. Because 1 = ||y,||* +
[|yml|[?, there is a subsequence {y’y,} that converges weakly to g, where g, € A4/,
llg.]| = 1. Hence

(Ca+ﬁz + 3n)ymk - (Ca+ﬂz + ﬁ")gn = 0,

which contradicts Null(Cays. + 6*) = {0}. Thus ¢(Cuys.) = Closure{l, B,
B2, ...},

In order to see that C,,4, is not compact, we employ the argument on page 23
of [12]. By hypothesis |a| + |8| = 1, || # 1, so thata = pe*® and 8 = (1—p)e®"
where 0 < p < 1. If we define f,(z) = 1/+v/n (¢? — z + z/n)~! then f, € H?,
L < ||fll £ 1, and f, — 0 uniformly on compact subsets of D. Also
||Caspz ful|? Z |1 fa]]? = 3. Theorem 2.5 in [12] then implies that Chyg. is not
compact.

Proof of 3(iv). We first consider the case when « is positive. Thena + 8 = 1.
Define Co* to be that operator on H? whose matrix representation under the
natural identification between H? and .2 is

1
Co* ~ O

That is, Co* ~ (by;) where b;; = 0if j <2 and b;; = 1/j if j = 4. Then Co*
is a bounded linear operator on H? and a simple calculation shows that C,ys.
commutes with Co*. The operator C, on ;2 is called the Cesaro operator [6,
p. 96]. A theorem of Shields and Wallen [13] then implies that there is a
bounded analytic function F on {z: |1 — 2| < 1} such that C,ys, = F(C¢*),
0(Capp:) = Closure{ F(z): |1 — z| < 1} and ||Cays:|| = sup{|M: N € ¢(Casp.)}-
Since we obviously must have F(1/z) = 8! for n =1, 2,...; F(zg) =
B1/2=1 is the required function. Hence

0 (Coypz) = Closure{ F(z): [1 — 2| < 1}
= Closure{1/»~1: |1 — 2| < 1}
= (N =87

W b=
ol col=t colm

and
|| Casgel| = sup{|\: X € 0(Cayp.)} = B77.

A theorem of Kriete and Trutt [8] states that C, is a subnormal operator with
a cyclic vector and hence every operator commuting with Cy is subnormal [14].
Thus Caqp, is cosubnormal. We remark that C,yg, is the adjoint of the Euler
summability matrix of order /(1 — @) [6, p. 178]. Thus the spectrum of the
Euler matrix of order /(1 — ) on 2is {z: |z] = (1 — o)1),

We next consider the case when a is not positive. Then a = |a|e?® and
|e] + 8 = 1. However, it is easily checked using the unitary operator C,s,
that C,yg. is unitarily equivalent to Ci4+.. Hence C,14; is again a cosubnormal
operator whose spectrum is the closed disk of radius 8~* centered at the origin.
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An alternative proof for 3(iv) would be to first try and prove that ||Cays:|| =
B—H and then notice that (1 — 2)A)~! is an eigenvector for C,s, corre-
sponding to the eigenvalue 8™ ~1 where [1 — \| < 1.

Notice that if 8 1 then a/(1 — B) is the only fixed point of ¢(z) =
a + Bz. We remark that the real distinction between 3 (iv) and 3 (i-iii) is that
in 3(iv) the fixed point of ¢ is on the unit circle, while in 3 (i-iii) the fixed point
of pisin D.

Theorem 3(iii) can be generalized in the following manner. If ¢ € H®
maps D into D, define ¢, € H® inductively by ¢1(2) = ¢(2), ¢.(2) = ¢n_1(0(2)).

ProrosiTiON 3. Suppose that ¢ € H” maps D into D and that for some
integer n there is an r, 0 < r < 1, such that |¢,(2)] < r < 1 for all |3 < 1.
Then C," is compact. Furthermore, if ¢ has a fixed point zo in D and B = ¢’ (2o),
then ¢ (C,) = Closure{l, 8, 82, ...}.

Proof. By Theorem 5.2 in [12], C,* = C,, is compact. The last statement
follows as in Theorem 3 (iii).

Remarks. 4. H. Schwartz in [12] proves that if ¢ € H® maps D into D and
has a fixed point g, in D and if ¢'(2¢) # 0 then {¢'(20)"}7=0 are eigenvalues
for C, and these are the only eigenvalues. In Theorem 3(iv) and Theorems 5
and 6 in [10] the eigenvalues are related to the fixed points of ¢ on the unit
circle. Is there some general connection between fixed points of ¢ on the unit
circle and eigenvalues for C,?

5. Using Schur’s test [5, p. 22] one can show that ||Ceys:|| £ (1 — |a]) %
Is this an equality?

6. Theorem 3 (iii) yields perhaps the worst possible example of a noncompact
operator 1" whose square is compact, since 7" and 72 possess common simple
eigenvectors that span H?2.
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