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BUCKLING ANALYSIS OF PLATES OF
ARBITRARY SHAPE
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Abstract

A simple and efficient numerical technique for the buckling analysis of thin elastic plates
of arbitrary shape is proposed. The approach is based upon the combination of the
standard Finite Element Method with the constant deflection contour method. Several
representative plate problems of irregular boundaries are treated and where possible, the
obtained results are validated against corresponding results in the literature.

1. Introduction

In the analysis of buckling of thin, isotropic elastic plates, one is confronted with
the solution of an intricate fourth order partial differential equation over a
prescribed region with appropriate constraints on the boundary of the region. Up
till now, the work on buckling of plates has been mainly restricted to plates of
relatively simple geometrical shape and boundary conditions. This is confirmed
by the paucity of closed-form solutins currently available in the literature.

When an analytic solution is unavailable one generally resorts to numerical
techniques, two of the most popular being the Finite Difference [17] and the
Finite Element [20] methods. Although it is now well-recognized that the Finite
Element Method is an extremely powerful and versatile tool for solving
arbitrary-shaped plate problems, it can suffer certain disadvantages of general
nature. Of course, most of these, such as the large amount of programming effort
peculiar to the initial implementation stages followed by the tedious task of
entering vast quantities of pertinent data, have largely been resolved by the
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development of general Finite Element packages. However, one particular disad-
vantage inherent in the method is the fact that each element comprises a large
number of degrees of freedom. Consequently when analysing plates of arbitrary
shape, many such elements may be required for a realistic model, thus leading to
a substantial demand in total storage requirement. While this poses no apparent
problems in the case of larger machines, it may prove somewhat restrictive with
the increasingly-popular smaller computers.

In an attempt to eliminate the above shortcoming, and thus enhance the
viability of smaller computers, especially with regard to the efficient solution of
plate problems, a number of simpler and economically attractive alternative
methods have recently been proposed. One such method is concerned with the
judicious use of nodal lines in favour of nodal points to generalize the definition
of an element, thus leading to a substantial decrease in storage requirements [5,
12], while another focuses on the application of boundary-integral [1, 14] and
boundary-element [18] techniques to the problems of linear plate theory.

More recently, a novel approach based on the combination of the conventional
Finite Element Method with the deflection contour technique has been presented
and exemplified with reference to the bending and vibration analysis of
arbitrary-shaped plates [8, 9]. The purpose of this paper is to study the extension
of the above approach to analyse buckling problems of thin plates with simply
supported or clamped boundaries. It is shown that the proposed method yields
accurate results with relatively few elements. A number of illustrative examples
are included to demonstrate the numerical accuracy of the results.

2. Theory

Consider a thin elastic plate, bounded by a piecewise-smooth curve and simply
connected. Let a Cartesian coordinate system be defined so that the plane oxy
corresponds to the undeformed middle plane of the plate, and the z-axis is
directed positively downward.

When the plate is subjected to in-plane loads, the profile of the plate's deflected
surface may be described by a family of lines of constant deflection. Hence, at
any instant T, a set of contours is defined by the intersection of the parallels,
z = constant, with the deflected surface. After projection onto the oxy plane,
these contours become a set of level curves, u{x, y) = constant (Figure 1).

Consider an element to contain that region Q of the plate bounded by any two
contour lines, u = M, and u = u2, such that w, ¥= u2 (Figure 2). These will be
taken as the two nodal lines for the element. Since the displacement function w is
a function of u, the continuity requirement across the element boundaries is
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u(x,y)=const.

FIGURE 1. Iso-deflection contour lines

u=u, . i =0

FIGURE 2. Plate bending element

satisfied by stipulating both w and dw/du as unknown degrees of freedom at each
node. This implies that the total number of degrees of freedom for each element is
only four.

Assuming a cubic variation for the displacement w within each element, one
obtains

w=[JV]{5} (1)

where the components of [iV] are given by
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{6} =

[4]

The total potential energy 7rr of the plate element due to the in-plane forces and
transverse loading may be expressed in the form [15]

- f Jq(x,y)wcm

dx
/ \

dx dy (2)

where Nx, Ny and Nxy represent the in-plane forces, q(x, y) is the transverse load
per unit area, h denotes the thickness of the plate and {a}, {e} are respectively the
generalized stress and strain vectors defined by

92w '

= I M,
> h

M,xy

(3)

In the above relations, Mx, My and Mxy represent the bending moments while the
integrations are taken over the domain of the element.

If the material of the plate is assumed elastic and orthotropic, then, in
accordance with Hooke's law, the generalized stresses and strains are related by
the equation

{o) = [D){e}, (4)

where the elasticity matrix has the form [5]

D, A,
0
0

0 0 D
xy

(5)

and the orthotropic plate constants are given by

Eyh
3

1 2 ( 1 - V , ) ' 12(1 -

D = Gh'/U, Dx = vxDx = vyDy.
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In the above expressions, Ex,Ey,vx, vy and G are elastic constants dependent on
the physical characteristics of the plate material.

By virtue of equation (1), the generalized strains can be expressed in the form

{«} = [*]{«}. («)
where the strain matrix [B] is given by

d[N]

[B]=j -u yy

2uxv 2uxuv/lx yf

(7)

While deriving the above expression, use is made of the following transformation
relations;

&,_u^d[N](^

etc.

Upon substitution of equations (1), (4) and (6) into the total potential energy
expression, one obtains

where the stiffness matrix [K] and the stability coefficient matrix [Ks] are
respectively defined by

[K]=fJ[B]T[D][B]dQ,

[Ks]=hfJ[G]T[o][G]dU,

while the consistent load vector is defined by

{F)=fJ[N]Tq(x,y)dQ.

In the above expressions, the matrix [G] has the form

while [a] contains the in-plane loads in the manner

*x "xy

Ky Ny

(9)

(10)

(11)

(12)

(13)
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Minimizing the total potential energy, mT, with respect to the nodal degrees of
freedom, {5}, yields the equilibrium equations of the plate subjected to both
lateral and in-plane forces as

( [* ] + [*,]){«} = {*•}• (14)

Consequently, the general process of assembly [20] finally leads to

{[*]+[*,]){* } = {F)> 05)
where [A"] is the structural stiffness matrix, [Ks] is the overall stability coefficient
matrix, {F} is a column vector of externally applied nodal forces and moments
while {8} is a vector comprising all the nodal degrees of freedom of the
discretized plate.

Of particular practical interest is the class of problems obtained by assuming
zero lateral load and uniform compressive in-plane forces in the form Nx = Ny =
-A, Nxy = 0. The system of equations, given by (15), now reduces to

( [ * ] - X [ S ]){«} = {<>} (16)

where the matrix [S] is defined by

[*J = -A[S]. (17)
Thus the plate buckling problem reduces to an eigenvalue problem, the solution
of which can be achieved quite efficiently with the aid of any standard eigenvalue
routine.

Equation (15) can be readily extended to enable the analysis of vibrating plates
under the influence of in-plane loads. In this case, the use of D'Alembert's
Principle yields

where to represents the frequency of free vibration and [M] is the overall
consistent mass matrix derived in reference [4].

3. Determination of the contour function u(x, y)

It is clear that isodeflection contour lines form a family of non-intersecting
closed curves starting with the boundary of the plate as one of the lines, especially
when the boundary is either clamped or simply suppported or a combination of
both. In principle, it is always possible to determine the exact equation of such
lines. In some cases, the equation of these lines can be selected by symmetry
considerations or by intuition [11]. However, for the cases in which the preas-
signed equation of the contour function u(x, y) is not an exact one, we get an
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approximate solution to the problem and obviously this approximation will be as
close to the exact solution as the assigned equation to the contour lines has been
selected close to the exact one.

Guidelines for arriving at a suitable contour function u(x, y) have already been
amply set out in reference [10]. However, as pointed out therein, only the case for
which Nx = Ny = constant, Nxy = 0, received attention. In this regard, the proce-
dure essentially relies on the solution of a second order partial differential
equation for « over the region of interest, depending on which buckling mode is
being analysed. Obviously for practical reasons, only the fundamental buckling
mode needs to be investigated, which, in fact, is the subject of the present study.

Heuristically, it has been found that a suitable approximate form of the
function describing the contours to the above class of problems can be con-
structed on the basis of the equation of the plate boundary. Thus, if the boundary
of the plate is generated by the equation g(x, y) = 0 and the function g is
different from zero everywhere within the region of the plate, then a first
approximation to the expression for u has the form

u(x,y) = g(x,y). (19)

It should be mentioned here that if one speaks of the rule rather than the
exception, then the considerations adduced above for selecting a contour function
appear sufficiently convincing.

4. Illustrative examples

To test the accuracy of the proposed method, the buckling of plates of various
boundary shapes will now be considered and, where possible, the ensuing results
will be compared to previously published results.

(a) Equilateral triangular plate

As a first example of the method, consider the deformation of a simply
supported equilateral triangular plate under the influence of compressive in-plane
forces given by Nx — Ny = -A, Nxy = 0, where X is a constant. The problem here
is to find the critical value of the compressive forces, \cr, at which the plane stress
system becomes unstable and the plate buckles. In general, there exists as many
values of \cr as there are degrees of freedom for the plate structure, but it is the
lowest value of \cr which is of vital importance in practice.

It will be assumed that the lines of constant deflection for the first buckling
mode of a thin elastic plate subject to hydrostatic edge loading coincide with the
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[ 8 ]

u(x,y) =const.

FIGURE 3. Equilateral triangular plate idealized by four elements

lines of constant deflection for the same plate under uniform transverse loading
and with identical boundary conditions. Thus, the expression for the contour
function, in this case, has the form [3]

( 4 a 3 \ / 4
x3 - 3xy2- ax2 - ay2 + -^-11 -^a2 - x2 - (20)

where a denotes the perpendicular height of the triangle as depicted in Figure 3.
If the material of the plate is assumed isotropic and only four elements are

considered in the discretization process, then, after imposing the appropriate
boundary conditions the solution to equation (16) gives the value of the critical
buckling load Xcr as

TT2D
= 4.024, (21)

where D = Eh3/\2(l - v2) is the flexural rigidity of the plate while E, v repre-
sent Young's modulus and Poisson's ratio, respectively. The above value of
a2Xcr/ir

2D compares very well with the corresponding value of 4.00 obtained by
Woinowsky-Krieger [19].

Corresponding results for the same plate composed of orthotropic material are
presented in Table 1. The material constants assumed in the analysis coincide
with those adopted in an earlier paper [4].
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TABLE 1: Critical buckling load for an orthotropic equilateral triangular plate simply supported on

all edges (y = 0.3).

Material

Veneer
Glass-Epoxy
5-Plywood
Grooved Steel

14.143
2.963
2.690
1.265

H/Dy

3.286
1.156
0.620
0.958

0.874
0.672
0.378
0.852

a2\cr/-n
2D

26.133
7.139
6.187
4.381

(b) Limacon-shaped plate

As a second example, consider the problem of determining the critical buckling
load, Acr, of a hydrostatically compressed thin elastic plate, the boundary of
which is rigidly clamped and described by the general equation

r{6) = a(l +ecos0) , (22)

where r, 0 are polar coordinates and a, e are parameters characteristic of the
limacon (Figure 4). In fact, a range of shapes from the circle (e = 0) to the
cardioid (e = 1) may be generated by the above equation.

Since the boundary of the plate is clamped and analysis is confined to the
non-nodal or fundamental buckling mode, then the contour function u must
satisfy [10]

V2M = constant = -2 (say), (23)

r=a(1<-ecose)

FIGURE 4. Limacon-shaped plate
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where the Laplacian operator V 2() is defined by

[10]

VM ) = -

The solution to equation (23), subject to the condition that u = 0 on the
boundary, may be expressed in the following form [9];

)t (24)

where

a2t2 ae

The numerical values of critical buckling loads, obtained with the aid of
equation (24) are displayed in Table 2 for various values of the shape parameter e.
Since in the authors' knowledge, there are no exact theoretical or experimental
results for buckling of thin limacon-shaped plates with which comparisons of our
results can be made, one may as a basis for comparisons and also as confirmation
of the proposed method consider the limiting case (e = 0) when the plates
become circular. It is interesting to note from the results of Table 2 that the value
of the critical parameter coincides exactly with the corresponding value of 14.68
available in the literature [16].

TABLE 2: Critical buckling load \cr for a clamped limacon-shaped plate with shape parameter E.

£

0.0
0.1
0.2
0.3
0.4
0.5

Kro
2/D

14.682
14.582
14.308
13.914
13.820
13.327

e

0.6
0.7
0.8
0.9
1.0

\cra
2/D

12.487
12.015
11.586
11.232
10.956

(c) Skew plate

As a final example, consider the buckling analysis of a clamped skew plate.
Since the plate boundary is assumed to be rigidly clamped, the contour function
u(x, y) can be obtained by solving the equation (23) over the region of the plate
with the condition that it vanishes on the edges. A solution to this problem in
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non-dimensional skew coordinates has recently been given by Coleby and
Mazumdar in reference [6] as

u =

m=l,3,5... amslnnsm

m=i,3,5,... coscmcoshjm

( l - | 2 ) s i n 2 y , (25)

where

) , <j>2m = cosh(T]5m),

(26)

am = WTT/2.

In the above formulation, the coordinate transformations are carried out via
the relations

I - 2x'/a, v = 2y'/b,
where a, b are the dimensions of the plate and

x' = x—ycoty, y =
while Y denotes the skew angle as depicted in Figure 5.

(27)

(28)

Y * Y

FIGURE 5. Skew-shaped plate
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The coefficients Am and Bm are obtained by solving a system of coupled linear
equations. For numerical purposes in this study, these coefficients were computed
for several values of the skew angle y, namely, 45°, 60°, 75° and 90°. The case
y = 90°, which corresponds to a rectangular plate, resulted in the conclusion that
both Am and Bm are identically zero for all values of m. This indicates that the
contour function, for this case, reduces to the well-known expression for the
torsion of a beam having a rectangular shaped boundary [13]. The values of Am

and Bm for y = 45° and 75° are presented in Table 3. The corresponding values
of these coefficients for y = 60° are not included in the table as they have been
previously reported in reference [6].

m

1
3
5
7
9
11

TABLE 3

Am

-.5557
-.2643
-.2492

.1755

.1934

.9954

: Value of coefficients /

r =

X 10°
X 10"'
X lO"2

X 10"2

X 10"2

X 10"3

= 45°
Bml

.1179
-.4815
-.2486

.1602

.1145

.9255

X
X
X
X
X
X

lm/<*m

m

10°
lO-2

10"2

10"3

10"2

lO-3

and Bm/am

Am

-.4468
.3781

-.4969
-.1160

.1683

.8838

for y = 45

y =
/am

X 10°
X 10"'
X IO"2

X lO-2

X 10"2

X 10"3

° and 75°.

75°
Bm/ocm

.9654 X 10"'

.1156 X 10"2

.1090 X lO"2

-.1392 X IO-2

.8113 X 10"3
-.1535 X 10"3

Once the coefficients Am and Bm are known for a particular plate geometry, the
contour function u can then be utilized, in conjunction with the Finite Element
method, to determine the critical buckling load, \cr, at which the plate buckles.
Table 4 summrizes the critical buckling load so obtained as a function of aspect
ratio a/b as well as skew angle y. For the sake of comparison, the corresponding
results given in reference [2] are also included in the table.

TABLE 4: Critical buckling load \crb
2/D for a clamped skew plate of varying skew angle y.

y

90°

75°

60°

45°

a/b

1.0
1.5
2.0

1.0
1.5
2.0

1.0
1.5
2.0

1.0
1.5
2.0

Present

53.16
41.31
38.99

56.82
44.12
41.89

70.63
54.60
52.48

103.71
82.57
78.31

Reference [2]

53.2

39.1

56.6

41.8

68.9

51.8

99.6

77.5
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Consider now the problem of determining the fundamental frequency of free
vibration of the same skew plate subjected to a compressive normal in-plane load.
Using equation (18), the fundamental frequency parameter Q = (ua2/w2)^ph/D,
for various values of the non-dimensional parameter F = XO2/TT2D and for the
particular case in which a/b = 1, is displayed in Table 5. The numerical values
given in the table are derived by the use of skew angles of 90° and 75°. For the
case, y = 90°, corresponding results given by Dickinson [7] are also included in
the table for comparison, while for y = 75°, a thorough search of the literature
failed to provide results other than for the case F = 0.

Suppose now that the contour function u, as given in equation (25), was not
available in this case. Then, in accordance with the rationale presented in Section
3 for selecting this function, it is plausible to write

«0 = (e - (29)

where £, TJ are defined in equation (27), and u0 which in fact is the equation of the
boundary, is assumed as an approximation to w. Using this expression for the
equation of the contour lines enables the fundamental frequency parameter
fi0 = (w0 a

 2/IT 2 )jph/D to be computed. All results are displayed in Table 5.

TABLE 5: Fundamental frequency of vibration for a clamped skew plate under the influence of
in-plane forces, Nx = Ny = -X, Nxy = 0.

r

2
0

-10
-20
-50

-200

r

2
0

-10
-20
-50

-200

Case y = 90°

Present Method

2.90
3.65
6.07
7.72

11.21
21.08

2.92
3.66
6.08
7.72

11.21
21.07

Case y = 75°

Present Method
Qo Q

3.17
3.90
6.34
8.01

11.59
21.73

3.16
3.89
6.33
8.01

11.58
21.72

Reference [7]

2.89
3.64
6.07
7.71

11.26
21.37

Reference [8]

3.87

The results presented in the above table clearly demonstrate the accuracy
achievable by the present method.
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5. Conclusion

A simple and accurate method for the buckling analysis of plates of arbitrary
shape subject to in-plane forces has been proposed. It has been shown that the
problem of determining the lowest buckling load for a particular plate can be
studied in a very simple manner by a Finite Element-Contour Method. The
proposed method has the advantage of using only relatively small matrices,
thereby requiring a reduction in core storage over conventional Finite Element-
Methods and minimum time for execution of problems. However, this is not to
claim that the proposed method is always superior to the conventional Finite
Element Method because the latter method has a much wider applicability than
to the class of problems that are being discussed in the present study.
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