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We consider local level and local linear estimators for estimation and inference
in time-varying parameter (TVP) regressions with general stationary covariates.
The latter estimator also yields estimates for parameter derivatives that are utilized
for the development of time invariance tests for the regression coefficients. Our
theoretical framework is general enough to allow for a wide range of stationary
regressors, including stationary long memory. We demonstrate that neglecting time
variation in the regression parameters has a range of adverse effects in inference, in
particular, when regressors exhibit long-range dependence. For instance, parametric
tests diverge under the null hypothesis when the memory order is strictly positive.
The finite sample performance of the methods developed is investigated with the
aid of a simulation experiment. The proposed methods are employed for exploring
the predictability of SP500 returns by realized variance. We find evidence of time
variability in the intercept as well as episodic predictability when realized variance
is utilized as a predictor in TVP specifications.

1. INTRODUCTION

Structural change is the subject of a vast literature in statistics, econometrics,
empirical economics, and finance. Early work in this area has mainly focused
on abrupt changes that are typically modeled in terms of structural breaks in
regression parameters. Nevertheless, smooth time-varying parameter (TVP) mod-
els have gained a lot of attention recently (see, e.g., Robinson, 1989, 1991;
Dahlhaus, 2000 for earlier work in this area, and for more recent developments,
Kristensen, 2012; Giraitis, Kapetanios, and Price, 2013; Giraitis, Kapetanios,
and Yates, 2014; Phillips, Li, and Gao, 2017; Dahlhaus, Richter, and Wu, 2019;
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Petrova, 2019; Giraitis, Kapetanios, and Marcellino, 2021; Demetrescu et al.,
2022, among others). Most studies consider TVP models in the context of locally
nonstationary time series autoregressions (e.g., Giraitis et al., 2014; Dahlhaus
et al., 2019; Petrova, 2019). Although these processes are nonstationary due to
TVPs, boundness restrictions on the autoregressive parameters ensure that they
behave asymptotically as stationary sequences. TVPs can be estimated by kernel
methods (see, e.g., Giraitis et al., 2014; Dahlhaus et al., 2019 and estimators have
Gaussian limit distributions). The latter implies that conventional inference applies
(e.g., limit distributions of various test statistics are either N(0,1) or χ2). The
recent work of Giraitis et al. (2021) considers IV estimation in structural non-
autoregressive TVP regressions with nonstationary covariates that satisfy mixing
conditions. Similar to locally nonstationary autoregressions, the methods proposed
in the aforementioned study yield conventional inference due to weak dependence
assumptions.

Despite these developments, TVP models with strongly dependent data have
attracted less attention. In a recent work, Phillips et al. (2017) consider structural
TVP regressions with I(1) processes. The aforementioned study establishes that
kernel methods yield consistent estimation of regression parameters in the non-
stationary case, but inference is nonconventional. In the presence of unit roots,
the limit distribution of kernel estimators is comparable to that of OLS for fixed
parameter models with I(1) regressors, that is, limit distributions are determined
by stochastic integrals. To overcome this problem, these authors consider FMLS-
type (see, e.g., Phillips, 1995) of kernel estimators that enjoy mixed Gaussian
distributions and as a result yield conventional tests. In another recent work, Deme-
trescu et al. (2022) develop inferential methods for the predictability hypothesis in
predictive regressions that allow for smooth time-varying slope parameters under
the alternative hypothesis (nonpredictability) and predictors that can be stationary
or nearly integrated processes. The methods considered in the aforementioned
work do not involve estimation of TVP parameters. Instead, these authors consider
sup t-statistics based on parametric estimators. In particular, regression parameters
are estimated by a combination of IVX instruments (see, e.g., Magdalinos and
Phillips, 2009; Kostakis, Magdalinos, and Stamatogiannis, 2015; Yang et al.,
2020) and time trend variables (see Breitung and Demetrescu, 2015). Due to IVX
instrumentation, limit distributions are nuisance parameter free, irrespective of the
stationarity properties of the data. Therefore, despite the fact limit distributions
are nonconventional,1 simulation and bootstrap methods can be used for obtaining
p-values.

In this work, we consider deterministic TVP predictive and structural regres-
sions with general stationary covariates. We derive the limit properties of local
level (LLev hereafter) and local linear (LLin hereafter) nonparametric estimators,
and related test statistics, under high-level conditions that involve stationary,
ergodicity, and existence of moments, thereby avoiding mixing requirements

1Limit distributions are determined by sup functionals of Gaussian processes.
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that rule out stationary long memory (cf. Kolmogorov and Rozanov, 1960). In
particular, the basic paradigm under consideration entails specifications of the form

yk = μ(k/n)+
p−1∑
j=1

βj (k/n)xk−1,j +σkuk, k = 1, . . . ,n,

where the regressions error is a conditionally heteroscedastic martingale difference
sequence (e.g., GARCH(p,q), ARCH(∞)) with respect to certain filtration and
xk−1,j strictly stationary and predetermined with respect to the regressions error.
Our assumptions allow for a general class of stationary processes (see eq. (13) for
more details), for example,

xk,j = fj(wk,j), wk,j =
∞∑

i=0

φi,jξk−i,j with ξk,j ∼ iid(0,σ 2
ξ,j) and

∞∑
i=0

φ2
i,j < ∞. (1)

It can be readily seen that (1) allows for models nonlinear in variables, that is,
regression functions of known form fj when wk,j is observable (see, e.g., Park and
Phillips, 1999). Further, the square summability of the coefficients of the MA(∞)
process encompasses stationary long memory.

Although our focus is on predictive regressions, the proposed methods can be
easily extended to structural regressions, where the regressors and the regression
error are contemporaneously generated, with the aid of conventional instruments
(e.g., Giraitis et al., 2021).2 Our framework provides a generalization to Robinson
(1989) who considers TVP regressions with stationary mixing covariates and a
partial generalization to Kristensen (2012) and Giraitis et al. (2021) who consider
nonstationary covariates that satisfy mixing assumptions. Further, the results are
complementary to Phillips et al. (2017) who focus on a different part of the
regression space, that is, I(1) models.

We demonstrate (Section 2) that neglecting time variation in regression param-
eters has severe adverse effects on inference. It can be easily seen that neglecting
time variation leads to inconsistent estimates. It is less obvious, however, that in the
presence of TVPs, parametric test statistics are divergent under the null hypothesis,
when there are covariates of long memory. Size distortions can be very severe
with deteriorating test performance in larger sample sizes. For example, if there
is time variation in the regression intercept and predictors are of long memory,
parametric t-tests for the predictability hypothesis3 diverge in probability, under
the null, as the sample size tends to infinity.4 Moreover, neglecting time variation
in general undermines the power of tests. Therefore, it is important to account for
time variation in parameters, particularly when regressors are persistent processes.

2Limit theory for structural TVP regressions is provided in Section 5, Theorems 6 and 7 of this work.
3That is, H0 : βj = 0 for some j = 1, . . . ,p−1.
4We demonstrate this size distortion phenomenon under stationary long memory, however, standard asymptotic
arguments together with Hu, Kasparis, and Wang (2021, Thm. 3), suggest that this is also true under nonstationary
long memory and nearly integrated arrays.
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This work considers models with stationary covariates. Some preliminary
results suggest that the proposed methods also provide valid inference when data
are weakly nonstationary (e.g., fractional d = 1/2 or mildly integrated processes)
(see Phillips et al., 2017; Duffy and Kasparis, 2021). It should be emphasized,
however, that the methods under consideration do not yield pivotal tests under
nonstationarity in general, for example, for covariates that are I(d), d > 1/2. As
noted above, in this case, limit distributions are determined by stochastic integrals
as per Phillips et al. (2017), and different methods will be required for obtaining
pivotal tests.

Existing methods in this area only consider LLev estimators. Another contri-
bution of the current work is the study of LLin methods. LLin estimators are
known to result in reduced bias and also provide derivative estimators for the
TVPs. Moreover, these estimators can be easily used to construct nonparametric
t-tests to test for time variation in the slope parameters. Nonparametric t-statistics
based on LLev and LLin estimation are considered with an emphasis on the
predictability hypothesis in the context of predictive regressions. Kristensen (2012)
also provides a test for structural change for TVP models with smooth regression
parameters. The test proposed in the aforementioned work is based on an F-statistic
that compares the RSS of a fully nonparametric TVP fit to those of a partly
nonparametric fit. We expect that the F-statistic attains faster divergence rates
than the nonparametric derivative test proposed in this work.5 However, the
implementation of the proposed derivative test is very easy, that is, the test statistic
is simply a studentized LLin estimator. Furthermore, the derivative test statistic
can be calculated for each regression point yielding a series of rolling test
statistics that can distinguish between periods of parameter stability and parameter
instability.

The proposed methods are relevant to TVP predictive regressions with stationary
predictors. Predictive regressions is an important area of research in econometrics
and empirical finance. Many studies in this area focus on predictive regressions
with nonstationary persistent data (for recent developments in this area, see, e.g.,
Kostakis et al., 2015; Yang et al., 2020; Demetrescu et al., 2022 and the references
therein). Nevertheless, there is evidence that certain predictors such as realized
volatility and inflation are stationary long memory or very close to the stationarity
boundary, that is, of memory parameter d ≈ 0.5.6 Amihud and Hurvich (2004),
Christensen and Nielsen (2006), Ang and Bekaert (2007), Bollerslev, Tauchen,
and Zhou (2009), Chen and Deo (2009), Bollerslev et al. (2013), Bandi et al.
(2019) among others, develop methods for predictive regressions with stationary
predictors.

The remainder of this work is organized as follows: Section 2 provides some
theoretical results for the performance of parametric inference in the presence of

5It is well-known that nonparametric derivative estimators attain slower convergence rates. This in turn affects the
asymptotic power rates for related tests.
6See Section 6 for more details.
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TVPs. Section 3 develops basic limit theory for kernel functionals of stationary
processes. This limit theory is utilized in Sections 4 and 5 for the development
of estimation and inferential procedures for predictive and structural regressions,
respectively. Finally, an empirical application to the predictability of stock returns
is the subject of Section 6. Proofs of all the results in the paper and additional
derivations for Section 2 are provided in the Supplementary Material (Hu et al.,
2024). An extensive simulation study appears in the Supplementary Material as
well.

Throughout this paper, we make use of the following notation. For two
deterministic sequences an and bn, an ∼ bn denotes limn→∞ an/bn = 1. 1{A} is
the indicator function on set A. For a vector or a matrix A, A′ denotes its transpose.
The norm of a vector x is ‖x‖ = (

x′x
)1/2

. Further, for an l×m-dimensional matrix

A = [aij], ‖A‖ = ∑l
i=1

∑m
j=1

∣∣aij

∣∣. By [x], we denote the integer part of a positive
number x. As usual, ⊗ denotes the Kronecker product and N(0,

∑
) the multivariate

normal variate with mean 0 and covariance matrix
∑

. For an integrable function
K,

∫
K stands for

∫
R

K(x)dx, unless otherwise specified. Finally, diag{a1, . . . ,ap}
denotes a p × p diagonal matrix with elements {a1, . . . ,ap} on the main
diagonal.

2. CONSEQUENCES OF NEGLECTING TIME VARIATION IN
REGRESSION PARAMETERS

In this section, we provide some theoretical results on the consequences of
neglecting time variation in regression parameters of predictive models, using
univariate specifications with a long memory covariate. Our objective is to high-
light the consequences of this type of misspecification on inference. For this
reason, our presentation is somewhat informal. Precise derivations are stated in
Section B (e.g., Lemmas 2 and 3) of the Supplementary Material. Simulations that
support these theoretical findings are reported in Section C of the Supplementary
Material.

Neglecting time variation in the parameters has consequences to both estimation
and testing, even if time variation is present only in some nuisance regression
parameter—that is, not a focus of empirical interest such as the intercept or
the slope coefficient of another covariate. In general, neglecting time variation
in the parameter of interest leads to inconsistent estimates and undermines the
power of tests. Surprisingly, neglecting time variation in a nuisance parameter
may have even more severe consequences. It can be shown that the latter type
of misspecification not only results in size distortions but also renders t-statistics
divergent under the null hypothesis when the predictor has memory parameter
strictly greater than zero, that is, d > 0. We demonstrate the above for OLS-
based inference for regressions with stationary predictors, but we expect that
similar phenomena also apply to other methods (e.g., IV), and in models with
nonstationary long memory (see footnote 4).
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2.1. Consequences on Power

We start with the consequences of neglecting time variation in the parameter of
interest under the alternative hypothesis by considering the following simple linear
regression:

yk = β(k/n)xk−1 +uk, (2)

where {uk,Fk}k≥1 is a conditionally homoscedastic martingale difference
sequence. In particular, we will use the following set of technical conditions
together with (2).

Assumption P (power).

(a) yk is generated by (2).
(b) {uk,Fk}k≥1 is a martingale sequence such that:

(i) for all k ≥ 1,E
(
u2

k | Fk−1
) = σ 2

u < ∞ a.s.,
(ii) u2

k is uniformly integrable.
(c) β : [0,1] → R is Riemann integrable on [0,1].
(d) xk is Fk-measurable, strictly stationary and ergodic with Ex2

1 < ∞.

It is shown in Lemma 2 in the Supplementary Material (see Section B there) that,
under Assumption P, the OLS estimator β̃OLS from regressing yk on xk−1 satisfies

β̃OLS =
∑n

k=1 yk xk−1∑n
k=1 x2

k−1

→P

∫ 1

0
β(τ)dτ . (3)

The OLS estimator converges to the pseudo-true value
∫ 1

0 β(τ)dτ, which is a
chronological average of the TVP. As a result, OLS-based t-tests for the parameter
significance hypothesis/ predictability hypothesis (i.e., H0 : β = 0) are likely to
have poor power in situations where predictability is episodic. Indeed, under the
alternative hypothesis (predictability), for the OLS-based t-statistic t̃OLS, we have

n−1/2 t̃OLS = β̃OLS√
σ̂ 2

u

[
n−1

∑n
k=1 x2

k−1

]−1
→P

∫ 1
0 β(τ)dτ√
σ 2∗

[
Ex2

1

]−1
, (4)

where σ̂ 2
u = 1

n

∑n
k=1

[
yk − β̃OLSxk−1

]2
and σ 2∗ is a pseudo-true value that is given

by (see Lemma 2 in the Supplementary Material)

σ 2
∗ =

[∫ 1

0
β2(τ )dτ −

(∫ 1

0
β(τ)dτ

)2
]

Ex2
1 +σ 2

u .

In the context of predictive regressions, the pseudo-true value
∫ 1

0 β(τ)dτ will tend
to be small as episodic predictability events are averaged out over time. Further,
it is possible that positive predictability events (i.e., β(.) > 0) are canceled out by
negative ones (i.e., β(·) < 0) (see Figure 15 in Section C of the Supplementary
Material for simulation results that illustrate these adverse power effects).
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2.2. Consequences on Size

We next illustrate the effects of neglecting time variation in the intercept under
the null hypothesis, when the parameter of interest is the slope coefficient in the
following model:

yk = μ(k/n)+βxk−1 +uk, (5)

where uk is given as in model (2) and xk a linear process, possibly of long memory.
The following assumption introduces a set of technical conditions that define (5)
precisely.

Assumption S (size).

(a) yk is generated by (5).
(b) Condition (b) of Assumption P holds.
(c) μ : [0,1] → R is of bounded variation on [0,1].
(d) xk is an Fk-measurable linear process of the form xk = ∑∞

i=0 φiξk−i with
ξk ∼ iid(0,σ 2

ξ ), and either:
(i) φi ∼ c0id−1, with 0 < d < 1/2 , or

(ii) 0 <
∑∞

i=0 |φi| < ∞.

Under Assumption S(d.i), xk is a type I fractional long memory process (LM),
while under Assumption S(d.ii), xk is short memory (SM) (see, e.g., Phillips and
Shimotsu, 2004). We note that Assumption S entails a specific parametric model
for the covariate (i.e., a linear process). The assumptions on xk and the regression
error will be relaxed in the subsequent sections.

Set

δ2
n := Var

( n∑
k=1

xk

)
∼

{
c2

0 σ 2
ξ c(d) ·n1+2d, under LM,(∑∞
i=0 φi

)2
σ 2

ξ n, under SM

(see, e.g., Wang, 2015, Exam. 2.12), where

c(d) = 1

d(1+2d)

∫ ∞

0
(x(1+ x))d−1dx.

It is known that δ−1
n

∑n
k=1 xk →d N(0,1) (see, e.g., Ibragimov and Linnik,

1971, Thm. 18.6.5 or Wang, 2015). Suppose that we are interested in testing
H0 : β = β0 ∈ R using OLS-based inference. It can be shown that, under
Assumption S(a)–(d.i), the OLS estimator

√
n

(
μ̃OLS −

∫ 1

0
μ(τ)dτ

)
→d N(0,σ 2

u ), (6)

and

n

δn

(
β̃OLS −β

)
→d

(
Ex2

1

)−1
[

1, −
∫ 1

0
μ(τ)dτ

]
·N(0,	), (7)
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where 	 is the matrix

	 = 1

c(d)

∫ 1

−∞

⎡⎣ {∫ 1
r∨0 μ(s)(s− r)d−1 ds

}2∫ 1
r∨0 μ(s)(s− r)d−1 ds · ∫ 1

r∨0 (s− r)d−1 ds∫ 1
r∨0 μ(s)(s− r)d−1 ds · ∫ 1

r∨0 (s− r)d−1 ds{∫ 1
r∨0 (s− r)d−1 ds

}2

⎤⎦dr, (8)

with 0 < d < 1/2 (see Lemma 3 in the Supplementary Material for more details).
An n/δn-convergence result also holds under SM with a different 	 variance
matrix7. It follows from the above that the OLS estimator for β is consistent,
but there is a reduction in the convergence rate when the predictor is a stationary
fractional process with memory parameter strictly greater than zero. This reduction
in the convergence rate does not affect asymptotic power rates8 but nonetheless
results in severe size distortions under the null hypothesis. To see this, note first
that the regression error variance estimator is

1

n

n∑
k=1

ũ2
k →P σ 2

u +
∫ 1

0
μ(τ)2dτ −

(∫ 1

0
μ(τ)dτ

)2

, (9)

where ũk denotes the OLS residuals. Combining (6)–( 9), it follows that under the
null hypothesis that for d > 0,∣∣t̃OLS

∣∣ →P ∞. (10)

More details for the validity of (6)–(10) can be found in Lemma 3 in the
Supplementary Material. Figure 16 given in the Supplementary Material provides
simulation results that highlight these effects. The actual divergence rate of the
t-statistic in (10), under the null hypothesis, is determined by the sequence

δn/n1/2 ∼
{

C1nd, under LM;
C2, under SM,

where 0 < C1,C2 < ∞. Clearly, when xk is a short memory process, the test
statistic is bounded under the null but fails to have a standard normal distribution.9

Therefore, OLS-based t-tests exhibit size distortions even in this case.

3. ASYMPTOTICS FOR KERNEL FUNCTIONALS

This section develops basic limit theory for functionals of stationary processes
weighted by kernels of time trend variables. Let {xk}k≥0 be an R

p time series

7We do not provide any derivations for the SM case, but the proof of Lemma 3 in the Supplementary Material can be
easily extended to the case that xk is i.i.d. (and therefore a short memory) random sequence.
8It follows from (6) to (9) that t̃OLS attains a

√
n-divergence rate under H1.

9In the SM case, the t-statistic is convergent with a normal limit distribution. Notice, however, that 1
n

∑n
k=1 ũ2

k is
inconsistent, therefore limit variance does not equal one.
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process. Further, let K be an integrable function and m ∈ {0,1,2}, and set

Sn := cn

n

n∑
k=1

xk−1x′
k−1σ

m
k K [cn(k/n− τ)],

Mn :=
√

cn

n

n∑
k=1

xk−1K [cn(k/n− τ)]σkuk,

where cn is a diverging bandwidth sequence of positive constants and uk (scalar)
together with an appropriate filtration {Fk} forms a martingale difference sequence
so that xk is Fk-measurable and σk is (scalar) Fk−1 -measurable. Note that we
can alternatively formulate the kernel functionals in terms of vanishing bandwidth
terms, that is, cn = h−1

n with hn → 0. The asymptotics of {Sn,Mn} are utilized
in Sections 4 and 5 for the asymptotic analysis of the kernel estimators. The
vector xk and σk are set to be strictly stationary. In view of this, σkuk exhibits
conditional heteroscedasticity and can be a GARCH(p,q) or an ARCH(∞) process.
To facilitate our basic limit results, we make use of the following conditions.

A1 (Innovations): {uk,Fk}k≥1 forms a martingale difference satisfying the follow-
ing conditions:
(a) supk≥1 E(u2

kI(|uk| ≥ M)|Fk−1) = oP(1), as M → ∞;
(b) for all k ≥ 1, E(u2

k |Fk−1) = 1 a.s.
A2 (Stationary process): (xk−1,σk)k≥1 is a sequence of ergodic (strictly) sta-

tionary random vectors with E
{‖x0‖2 +σ 2

1

(
1+‖x0‖2

)}
< ∞ so that xk is

Fk-measurable and σk is Fk−1-measurable, where Fk is defined as in A1.
A3 K(x) is a positive, locally Riemann integrable and eventually monotonic

function10 with 0 <
∫

K < ∞.

We remark that the innovation process {uk,Fk}k≥1 in A1 is standard in the
literature. Due to Assumption A1, Mn has a martingale structure (see, e.g., Park
and Phillips, 1999, 2000, 2001; Wang, 2014; Wang and Phillips, 2009; Duffy
and Kasparis, 2021). The uniform integrability condition (a) is weak in com-
parison with the high moments used in previous works. In A1(b), we impose
E(u2

k |Fk−1) = 1, a.s. for convenience of notation. In fact, if σ 2
u := E(u2

k |Fk−1) �= 1,
it is routine to see that our results still hold when σk is replaced by σk σu. Ergodicity
and strict stationarity (cf. Assumption A2), together with an existence of moments
requirement postulate that the underlying processes (i.e., xk and σk) satisfy a law
of large numbers (see, e.g., Shiryaev, 1996, Thm. 3, p. 413). A wide range of
time series models relevant to econometrics satisfy A2. For instance, under A2,
xk can be a short/long memory linear process.11 Furthermore, under A1 and A2,
σkuk is allowed to be a strictly stationary GARCH or ARCH(∞) model (e.g.,
Francq and Zakoian, 2010, Sect. 2.2). More details about the time series models

10That is, K(x) is Riemann integrable in any finite interval and there exists an A1 > 0 such that K(x) is monotonic
on (−∞, −A1) and (A1,∞).
11For example, xk = ∑∞

i=0 φiξk−i,ξi ∼ iid(0,σ 2
ξ ),

∑∞
i=0 φ2

i < ∞.
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that can be accommodated by A1–A3 are provided in the next section. Finally, the
monotonicity condition of A3 is a technical requirement that is commonly satisfied
in applications.

We now present the limit theory for the sample functionals Sn and Mn.

Theorem 1. Suppose A2 and A3 hold. For each τ ∈ (0,1), we have

Sn →P E[σ m
1 x0x′

0]
∫

K, (11)

as cn → ∞ and cn/n → 0. If in addition A1 holds, then

Mn →d N
(

0, E
[
σ 2

1 x0x′
0

]∫
K2

)
. (12)

Remark 1. (a) If {xk}k≥0 is a scalar weakly nonstationary process (i.e., I(1/2))
and mildly integrated process, where FCLTs do not apply (see, e.g., Phillips and
Magdalinos, 2007; Duffy and Kasparis, 2021), we conjecture that

cn

n

n∑
k=1

(
d−1

n xk−1
)2

σ 2
k K [cn(k/n− τ)] →d E(σ 2

1 )

∫
R

(x+X−)2ϕσ 2+(x)dx
∫

K,

where dn → ∞, ϕσ 2+(x) is the density of an N
(
0,σ 2+

)
variate (σ 2+ > 0) and

X− ∼ N
(
0,σ 2−

)
(σ 2− ≥ 0). Analysis of this generalization is left for future work.

(b) The limit result of Theorem 1 also holds true for the boundary values τ = 0,1
with

∫
K and

∫
K2 replaced by one-sided integrals, for example, (11) holds for

τ = 0 and τ = 1 with
∫ ∞

0 K(x)dx and
∫ 0
−∞ K(x)dx, respectively. Following Phillips

et al. (2017), we present results only for τ ∈ (0,1).

4. ESTIMATION AND INFERENCE IN TVP MODELS

In this section, we present estimation and inferential methods for models with
TVP covariates by using the theoretical results of Section 3. We start our analysis
with predictive (i.e., reduced form) models. Extensions to structural regressions
are provided in the next section. Consider the TVP predictive regression

yk = μ(k/n)+
p−1∑
j=1

βj (k/n)xk−1,j + ek, ek = σkuk, k = 1, . . . ,n, (13)

where μ,βj : [0,1] → R, and the predictor xk,j is a strictly stationary ergodic
process. Define the vector

x′
k = [

1,xk,1, . . . ,xk,p−1
]

.

In particular, we assume that uk, xk and σk satisfy assumptions A1 and A2. It can
be readily seen that under these assumptions, (13) is a reduced form regression
where the predictors are pre-determined with respect to the regression errors. This
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assumption entails weak endogeneity. Generalizations to the case where covariates
and ek are contemporaneously determined (i.e., to strong endogeneity) will be
provided in Section 5. Under the current assumptions, the regressions error term ek

can be a stationary conditionally heteroscedastic process, for example, ARCH(∞).
A similar specification has been considered by Robinson (1989) with covariates

being stationary strong mixing. Further, Kristensen (2012) and Giraitis et al. (2021)
assume nonstationary mixing covariates in the context of structural TVP models.
Our moment requirements on the processes are quite weak. For deriving limit
distribution theory for the LLev and LLin estimator, we require existence of two
moments for xk and σk. This requirement will be strengthened to four moments for
the obtaining limit theory for nonparametric t-tests and F-tests (see also Remark 7).
In comparison, Giraitis et al. (2021) assume more than eight moments for the
model covariates. As remarked earlier, our assumptions are general enough to
allow for nonlinear in variables regression models with regressors being, for
example, strongly dependent or heavy tailed weakly dependent processes. For
example, suppose that xk,j = fj(wk,j), j = 1, . . . ,p−1, with

wk := (wk1, . . . ,wk,p−1)
′ =

∞∑
i=0

�iξk−i, �i = diag{φi,1, . . . ,φi,p−1},

and
(
ξk,1, . . . ,ξk,p−1,σk+1

)
:= (

ξ ′
k,σk+1

) ∼ iid. Further, suppose that either FR or
HT conditions below hold:

FR: ξk ∼ iid(0,�) and
∑∞

i=0 φ2
i,j < ∞.

HT: (a) ξk follows a multivariate α-stable distribution with α ∈ (0,2),∑∞
i=0

∣∣φi,j

∣∣α′
< ∞ for some α′ ∈ (0,α);

(b) E|fj(w1,j)|q < ∞, q ≥ 2.

Note that under conditions FR, wk,j can be a fractional process of memory order
|d| < 1/2. On the other hand, condition HT(a) entails that wk,j is a heavy tailed
linear process that possess a finite α′ moment.12 In the latter case, wk,j may not

12Under HT, wk exists a.s. and in Lp-sense with p = α′, and is strictly stationary. To see this, first note that
Samorodnitsky and Taqqu (1994, Thm. 2.3.1) implies that each component series ξk,j, j = 1, . . . ,p − 1, follows

univariate alpha stable distribution with the same stability parameter and hence E
∣∣ξk,j

∣∣α′
< ∞. Now, we show that

each component series in wk exists in Lp-sense and a.s. For the former, it suffices showing that
∑n

j=0 φi,jξk−i,j is a
Cauchy sequence (due to the completeness of Lp (�,F,P); e.g., Brockwell and Davis, 1991, pp. 68–69). Suppressing
the occurrence of the index j, we have as n,m → ∞

E

∣∣∣∣∣
n∑

i=m

φiξk−i

∣∣∣∣∣
α′

≤(1) 2
∞∑

i=m

|φi|α′
sup

k
E |ξk|α′ → 0,

where ≤(1) follows from the Loève inequality for α′ ∈ (0,1] and from the Bahr–Esseen inequality otherwise. Similarly,
for a.s. convergence note that

E

∣∣∣∣∣
∞∑

i=0

φiξk−i

∣∣∣∣∣
α′

≤ lim
n→∞E

n∑
i=0

|φi|α′ |ξk−i|α′
< ∞.

Strict stationarity follows easily from the fact that ξk is i.i.d.
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12 ZHISHUI HU ET AL.

have a finite mean or variance nevertheless due to HT(b), the transformed process
fj(wk,j) has a qth moment. In general, if fj satisfies the reduced growth requirement∣∣fj(x)∣∣ ≤ C(1 +|x|η), C ∈ (0,∞), η ∈ (0,1), HT holds for all α ∈ (ηq,2). Further,
fj(x) = ln(x)+ satisfies the aforementioned requirement for all values of the tail
parameter α in (0,2).13 Logarithmic transformations and reduced polynomial
growth regression functions have been used in a number of studies in the pre-
dictability of stock returns (see, e.g., Lewellen, 2004; Marmer, 2008; Bollerslev
et al., 2013; Andersen and Varneskov, 2021). To some extent, our methods are
complementary to those of Phillips et al. (2017) who focus on a different area of the
regressor space. The regressor space under consideration is comparable to that of
Christensen and Nielsen (2006), Bollerslev et al. (2013), Bandi et al. (2019) among
others, who consider predictive regressions with stationary fractional predictors.

We first consider an LLev kernel regression estimator (cf. Li and Racine, 2006,
Sect. 2.1) (see also Robinson, 1989; Phillips et al., 2017; Giraitis et al., 2021 among
others). Set

θ(τ )′ := [
μ(τ),β1(τ ), . . . ,βp−1(τ )

]
.

We can write (13) as

yk = θ(k/n)′xk−1 + ek. (14)

The LLev is obtained from minimization of the following objective function:

θ̂(τ ):=argmin
a∈Rp

n∑
k=1

(
yk −a′xk−1

)2
K [cn (k/n− τ)], (15)

where cn is a diverging bandwidth sequence of positive constants. Define

Q = E(x0x′
0) and � = E

(
σ 2

1 x0x′
0

)
.

The following theorem gives the limit distribution of the LLev estimator.

Theorem 2. Suppose that:

(a) {yk}k∈N is generated by (13).
(b) A1 and A2 hold.
(c) θ(.) is Hölder continuous on [0,1] of order γ ∈ (0,1], that is, ‖θ(x)− θ(y)‖ ≤

C‖x− y‖γ for x,y ∈ [0,1] and some C ∈ (0,∞).
(d) K satisfies A3 and

∫
xγ K < ∞.

(e) cn/n+n/c1+2γ
n → 0.

(f) Q is a positive definite matrix, that is, Q−1 exists.

13ln(x)+ := max(ln(x),0).
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Then, for each fixed τ ∈ (0,1),√
n

cn

(
θ̂(τ )− θ(τ )

)
→d N

(
0,Q−1

1 �1Q−1
1

)
, (16)

where Q1 = Q
∫

K and �1 = �
∫

K2.

We next introduce an LLin estimator for θ(τ ). Write the vector of derivatives
θ(1)(τ ) := ∂θ(τ )/∂τ . The LLin estimator is defined by[

θ̃ (τ )

θ̃ (1)(τ )

]
:= argmin

(a′,b′)′∈R2p

n∑
k=1

(
yk −a′xk−1 −b′̃xk−1

)2
K [cn (k/n− τ)], (17)

where x̃k−1 = (k/n− τ)xk−1, and θ̃ (τ ) and θ̃ (1)(τ ) are estimators for θ(τ ) and
θ(1)(τ ), respectively. LLin estimators in general exhibit reduced asymptotic bias,
relative to LLev estimators (cf. Li and Racine, 2006, Sect. 2.5), and also provide
estimates for the derivatives of the regression function when the latter exist. For
the analysis of the LLin estimator, we need to introduce some additional notation.
Define

K1 =
[ ∫

K
∫

xK∫
xK

∫
x2K

]
and K2 =

[ ∫
K2

∫
xK2∫

xK2
∫

x2K2

]
.

The limit properties of the LLin estimator is given below.

Theorem 3. Suppose that:

(a) {yk}k∈N is generated by (13).
(b) A1 and A2 hold.
(c) θ(.) has a uniformly bounded second derivative on [0,1].
(d) In addition to A3, K satisfies

∫
x3K < ∞.

(e) cn/n+n/c5
n → 0;

(f) Q−1 and K−1
1 exist.

Then, for each fixed τ ∈ (0,1),

Dn

([
θ̃ (τ )

θ̃ (1)(τ )

]
−
[

θ(τ )

θ(1)(τ )

])
→d N

(
0,Q−1

2 �2Q−1
2

)
, (18)

where Dn = diag

{√
n
cn

,
√

n
c3

n

}
⊗ Ip (Ip a p-dimensional identity matrix), and

Q2 = K1 ⊗Q and �2=K2 ⊗�.

Remark 2. The smoothness assumptions on the TVP θ(.) of Theorems 2 and 3
(i.e., (c) in both theorems) are standard. For the LLin estimator, a more restrictive
regularity condition is required so that it attains smaller “asymptotic bias” in
comparison with the LLev estimator. In general, kernel regression estimators entail
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nonlinearity induced asymptotic “bias.” In the current framework, this type of bias
is due to increments of the form

n∑
k=1

{θ(τ )− θ(k/n)} .

In particular, the l.h.s. of (16) entails an asymptotic bias term of order

OP(

√
n/c1+2γ

n ), while the corresponding bias term in (18) is OP(
√

n/c5
n), under

the corresponding settings on the TVP θ(.). Note that both bias terms disappear in
the given results due to the assumption (e) on cn. An additional advantage of the
LLin is that the derivatives of the TVPs can be estimated. These estimates can be
readily utilized for testing hypotheses about parameter constancy with respect to
time (see also Remark 9).

Remark 3. The condition in (e) of Theorem 2 is equivalent to cn/n → 0 and
c1+2γ

n /n → ∞, where, as explained in Remark 2, the latter condition is used to
remove the bias. There is a trade-off between the selection of cn and γ , where the
latter depends on (c) in that theorem. In practice, if γ is fixed, the optimal choice
of cn is that cn = n1/(1+2γ )an, where an → ∞ so that (16) has a fast convergence
rate. A similar explanation applies to (e) of Theorem 3.

Remark 4. The existence of Q−1 in (f) of Theorems 2 and 3 is natural when
xt is a stationary process. Phillips et al. (2017) show that, if xk is an I(1) process,
the LLev estimator in Theorem 2 necessarily has a singular form with multiple
rates of convergence arising from that singularity. This degeneracy is manifest
for all fractional d > 1/2, as well as nearly integrated arrays. Indeed, under
nonstationarity (xk ∼ I(d),d > 1/2), it can be shown that the counterpart of the
limit matrix Q1 is of the form (see, e.g., Hu et al., 2021, Thm. 3)[

1 X′
τ

Xτ Xτ X′
τ

]∫
K,

where Xτ is some limit Gaussian process (e.g., fractional Brownian Motion) at
time τ . Notice that the matrix above is necessarily singular just as in Phillips et al.
(2017).

Remark 5. Preliminary theoretical results suggest that Theorem 2 holds true
when the predictor is a weakly nonstationary process (i.e., fractional d = 1/2 or
MI). Suppose that p = 2. In particular, we conjecture that (16) holds with Q1

Q1 =
[

1 X−
X− ∫

R
(x+X−)2ϕσ 2+(x)dx

]∫
K,

where ϕσ 2+(x) and X− as in Remark 1. Note that Q1 here is in general nonsingular.
We therefore expect that the proposed methods are valid even if the data are weakly
nonstationary.
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Remark 6. It is worth noting that Theorems 2 and 3 demonstrate that the limit
variances of the TVP estimators are independent of the regression point τ . This is
in contrast to nonparametric density and regression estimators where limit variance
does depend on location, and as a result, there is a deterioration in estimation
accuracy when functionals are estimated at regression points away from the origin.
For TVP estimates, however, confidence intervals are not affected by the value
of the chronological point τ even if the latter assumes boundary values. This
theoretical result is also corroborated by our simulation study, that shows only
minor oversizing close to boundary values in large sample sizes.

We next consider nonparametric t-tests, and F-tests based on the LLev and LLin
estimators. Before presenting the test statistics under consideration, we introduce
some notation. For a vector a, let ai, i = 1, . . . ,p, be its ith element, and for a square
matrix A, [A]ii denotes its ith diagonal element. Further, θi(τ ) denotes ith element
of θ(τ ). For single restrictions, we consider test hypotheses of the form

H0 : θi(τ ) = η(τ), (19)

and

H0 : θ
(1)
i (τ ) = η(τ), (20)

for some prespecified η : (0,1) → R. In particular, (19) entails some hypothesis
for μ(τ) or βi(τ ), while (20) concerns the derivatives of the aforementioned
parameters. The proposed tests utilize the estimators of (16) and (18). Set{
Q̂n,�̂n

}
:=

{
n∑

k=1

xk−1x′
k−1Kkn,

n∑
k=1

ê2
kxk−1x′

k−1K2
kn

}

with êk := êk(τ ) := yk − θ̂(τ )′xk−1, and recall that Kkn = K [cn (k/n− τ)]. Further,
we let{
Q̃n,�̃n

}
:=

{
n∑

k=1

x̂k−1̂x′
k−1Kkn,

n∑
k=1

ẽ2
k x̂k−1̂x′

k−1K2
kn

}
,

where x̂k = (
x′

k,̃x
′
k

)′
and ẽk = yk − θ̃(τ )′xk−1. The proposed test statistics are

t̂i(τ ) = θ̂i(τ )−η(τ)√[
Q̂−1

n �̂nQ̂−1
n

]
ii

, t̃i(τ ) = θ̃i(τ )−η(τ)√[
Q̃−1

n �̃nQ̃−1
n

]
ii

, i = 1, . . . ,p,

for the null hypothesis (19), and

t̃(1)
i (τ ) = θ̃

(1)

i (τ )−η(τ)√[
Q̃−1

n �̃nQ̃−1
n

]
jj

, i = 1, . . . ,p, j = i+p,

for the null hypothesis (20).
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Similarly, we can use nonparametric F-tests for testing multiple restrictions. In
particular, in the context of LLev estimation, we consider joint restrictions of the
form

H0 : Rθ(τ ) = η(τ), (21)

where R is a q×p (q ≤ p) matrix and η(τ) a predetermined function such that η :
(0,1) →R

q. Testing general restrictions based on the LLin estimator is technically
challenging due to the fact that multiple convergence rates are attained in this
case. Given than one of the advantages of LLin relative to the LLev is derivative
estimation, we only consider restrictions on the parameter derivatives of the form

H0 : Rθ(1)(τ ) = η(τ), (22)

where R and η(τ) are as in (21). Consider the following nonparametric F-statistic:

F̂(τ ) =
[
Rθ̂(τ )−η(τ)

]′ [
RQ̂−1

n �̂nQ̂−1
n R′

]−1 [
Rθ̂(τ )−η(τ)

]
and

F̃(τ ) =
[
Rθ̃

(1)
(τ )−η(τ)

]′ [
[0,R]Q̃−1

n �̃nQ̃−1
n [0,R]′

]−1 [
Rθ̃

(1)
(τ )−η(τ)

]
,

with 0 being q×p matrix of zeros.
For the asymptotic analysis of the F-statistics, we require an additional technical

condition. In particular, to establish the consistency of �̂n and �̃n, Assumption A4
will be utilized.

A4 (a) E‖x0‖4 < ∞;
(b) either (i) supk≥1 Eu4

k < ∞ or

(ii) Yk := σ 2
k [α′xk−1]2

[
u2

k −1
]

is uniformly integrable for all α ∈ R
p.

Remark 7. (a) The additional moment condition A4(a) on the regressors is
required for the estimation �1 and �2, and can be relaxed to E‖x1‖2 < ∞ when the
regression error is homoscedastic. In the latter case, we can employ the alternative
variance estimator

1

n

n∑
k=1

ê2
k

n∑
k=1

xk−1x′
k−1

instead of �̂n for the studentization of LLev estimators.
(b) Condition A4(b) entails additional restrictions on the regression error uk. In

particular, uk is required to have a fourth moment uniformly or Yk being uniformly
integrable. Note that a sufficient condition for the latter is supk E(|Yk|1+ε) < ∞,
for some ε > 0. Suppose for example that supk E(|uk|2(1+ε)|Fk−1) ≤ C < ∞ a.s.,
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where C is a constant. Then supk E[σ 2
k ‖xk−1‖2]1+ε < ∞ is sufficient for uniform

integrability.14

Theorem 4 gives the limit properties of the LLev-based tests.

Theorem 4. Suppose that, in addition to the conditions of Theorem 2,
∫

x2K2 <

∞, and A4 holds.
(i) Under H0 : θi(τ ) = η(τ), for each fixed τ ∈ (0,1), we have

t̂i(τ ) →d N(0,1).

(ii) If, in addition, RQ−1�Q−1R′ is of full rank, then under H0 : Rθ(τ ) = η(τ), we
have

F̂(τ ) →d χ2
q .

The asymptotic distributions of LLin-based nonparametric tests are shown in
Theorem 5.

Theorem 5. Suppose that, in addition to the conditions of Theorem 3,
∫

x4K2 <

∞, and A4 holds.
(i) Under H0 : θi(τ ) = η(τ), for each fixed τ ∈ (0,1), we have

t̃i(τ ) →d N(0,1), (23)

and under H0 : θ
(1)
i (τ ) = η(τ),

t̃(1)
i (τ ) →d N(0,1). (24)

(ii) If in addition RQ−1�Q−1R′ is of full rank, then under H0 : Rθ(1)(τ ) = η(τ),

we have

F̃(τ ) →d χ2
q . (25)

Remark 8. The asymptotic power rates of the test statistics under consideration
are determined by the convergence rates of the LLev and LLin estimators involved.
In particular, it can be easily checked that t̂i(τ ), t̃i(τ ) attain

√
n/cn-divergence

under H1, whilst t̃(1)
i (τ ) a

√
n/c3

n-divergence. Therefore, tests for the parameter
derivatives are less powerful. These results are standard in the nonparametric
literature (see, e.g., Li and Racine, 2006).

Remark 9. Note that t̃(1)
i (τ ) and F̃(τ ) can be used for testing parameter

constancy with respect to time. In particular, the former statistic can be utilized
for testing time variability in a single parameter (i.e., H0 : θ

(1)
i (τ ) = 0, for each

14Note that there exists some constant C1 > 0 such that

E(|Yk|1+ε) ≤ C1E
[
[σ 2

k

(
α′xk−1

)2]1+ε[E(|uk|2(1+ε)|Fk−1)+1]
]

.
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τ ∈ (0,1)) while the latter can be employed for testing time variability in multiple
parameters (e.g., θ(1)(τ ) = 0, for each τ ∈ (0,1)).

5. EXTENSIONS TO STRUCTURAL REGRESSION

The basic limit theory provided in Section 3 is general enough for the asymptotic
analysis of TVP estimators and related test statistics for structural regressions of
the form

yk = θ(k/n)′xk + ek, (26)

where θ(.), xk and ek are as in (14). The actual difference between (14) and (26)
is that in the former regressors are predetermined whereas in the latter they are
contemporaneously generated with the regression error. We consider the limit
properties of an IV-LLev type of estimator when a p -dimensional vector of
instruments zk is available. The underlying assumptions about the instruments are
that they are uncorrelated with ek, correlated with xk, and strictly stationary and
ergodic. These are shown in detail below.

A5 zk is a p-dimensional Fk−1-measurable vector, where Fk is defined as in A1.
A6 (zk,xk,σk) is (strictly) stationary, ergodic so that E(‖x1‖‖z1‖) < ∞,

E
{‖z1‖2 +σ 2

1

(
1+‖z1‖2

)}
< ∞

and E
(
z1x′

1

)
is of full rank.

The LLev-IV estimator under consideration is defined as

θ̂ IV(τ ):=argmin
a∈Rp

Gn(a)′Gn(a), Gn(a) :=
n∑

k=1

(
yk −a′xk

)
zkK [cn (k/n− τ)] .

Theorem 6. Suppose that:

(a) {yk}k∈N is generated by (26).
(b) A1–A2 and A5–A6 hold.
(c) θ(.) is Hölder continuous on [0,1] of order γ ∈ (0,1].
(d) K satisfies A3 and

∫
xγ K < ∞.

(e) cn/n+n/c1+2γ
n → 0.

Then, for each fixed τ ∈ (0,1),√
n

cn

(
θ̂ IV(τ )− θ(τ )

)
→d N

(
0,Q−1

3 �3Q′−1
3

)
, (27)

where Q3 = E
(
z1x′

1

) ∫
K and �3 = E

(
σ 2

1 z1z′
1

)∫
K2.

Remark 10. Giraitis et al. (2021) assume that the regressors are generated by a
secondary regression model of the form

xk = �knzk +υk,
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where zk is a set of observable instruments, �kn a TVP matrix, and υk an error term
endogenous in the primary regression. Under our assumptions, an obvious set of
instruments is regressors lagged by one period, that is, zk = xk−1. Note in this case
zk is predetermined with respect to the regression error ek therefore satisfying the
orthogonality requirement. Further, time dependence in xk is a necessary condition
for the relevance requirement, that is, invertibility of E

(
z1x′

1

)
.

Consider the following nonparametric test statistics based on θ̂ IV(τ )

t̂IV,i(τ ) = θ̂IV,i(τ )−η(τ)√[
Q̂−1

zx,n�̂zz,nQ̂−1
xz,n

]
ii

and

F̂IV(τ ) =
[
Rθ̂ IV(τ )−η(τ)

]′ [
RQ̂−1

zx,n�̂zz,nQ̂−1
xz,nR′

]−1 [
Rθ̂ IV(τ )−η(τ)

]
,

where{
Q̂zx,n,�̂zz,n

}
:=

{
n∑

k=1

zkx′
kKkn,

n∑
k=1

ê2
kzkz′

kK2
kn

}
, and {Qzx,�zz} := {

Ez1x′
1, Ez1z′

1

}
.

Further, consider the following counterpart of A4 for the structural case.

A4* (a) E‖z1‖4 < ∞;
(b) either (i) supk≥1 Eu4

k < ∞ or
(ii) Yk := σ 2

k [α′zk]2
[
u2

k −1
]

is uniformly integrable for all α ∈ R
p.

The limit distributions of these statistics are summarized in the following result.

Theorem 7. Suppose that, in addition to the conditions of Theorem 6,∫
x2K2 < ∞, and A4* hold.
(i) Under H0 : θi(τ ) = η(τ), for each fixed τ ∈ (0,1), we have

t̂IV,i(τ ) →d N(0,1).

(ii) If, in addition, RQ−1
zx �zzQ−1

xz R′ is of full rank, then under H0 : Rθ(τ ) = η(τ),
we have

F̂IV(τ ) →d χ2
q .

6. APPLICATION TO THE PREDICTABILITY OF STOCK RETURNS

We utilize the proposed methods for an empirical investigation of the return–risk
relationship. There is an extensive literature in this area (see, e.g., Christensen and
Nielsen, 2006; Ang and Bekaert, 2007; Bollerslev et al., 2009; Bollerslev et al.,
2013; Bandi et al., 2019; Andersen and Varneskov, 2021). Many research papers
study predictive regressions of the form

rk = μ+βxk−1 + ek, (28)
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Table 1. Memory estimates (bandwidth n0.65).

Monthly Quarterly Annual

LW ELW LW ELW LW ELW

Returns 0.07 0.069 0.14 0.15 −0.12 −0.08

SVAR 0.53 0.53 0.46 0.47 0.33 0.35

Inflation 0.46 0.47 0.48 0.48 0.19 0.22

where rk are stock returns relating to some stock index, xk some predictor capturing
risk (e.g., realized variance, risk neutral return variation), and et a martingale
difference regression error, and consider tests for the so-called predictability
hypothesis. That is, H0 : β = 0. In most datasets utilized in empirical work, there
is strong evidence that various risk variables exhibit stationary long memory (see,
e.g., Bollerslev et al., 2013, p. 411). In a few cases (e.g., Welch and Goyal, 2008;
Andersen and Varneskov, 2021), memory estimates for volatility variables are
slightly above the stationarity threshold (see, e.g., Table 1). Further, inflation
as another commonly used predictor appears to exhibit either stationary long
memory or memory in the vicinity of d = 0.5 (see, e.g., Hassler and Wolters,
1995; Baillie, Chung, and Tieslau, 1996; Andersen et al., 2001; Hassler and Pohle,
2019). For example, inflation memory estimates for the Welch–Goyal dataset
range from d = 0.19 to d = 0.48 depending on the sampling frequency (see
Table 1). The predictability hypothesis is typically tested with the aid of some
t-statistic based on parametric or semi-parametric estimators (e.g., Christensen
and Nielsen, 2006) of the regression parameters that are largely assumed to be
time invariant. In a recent paper, Demetrescu et al. (2022) develop inferential
methods for the predictability hypothesis that allow for a TVP slope coefficient,
but not for a TVP intercept. The method can be applied to predictive regressions
with either stationary or nonstationary predictors as long as IVX instruments are
employed.

The proposed methods allow for testing the predictability hypothesis in situ-
ations where memory parameter is |d| < 1/2 and all regression parameters are
TVP.15 In particular, we consider the following specification:

rk = μ(k/n)+β(k/n)xk−1 + ek. (29)

The tests under consideration can be either one-sided (t-tests) or two-sided. The
implementation of the test procedures is straight forward. Statistics are based
on studentized estimators and critical values are available from statistical tables.
Further, the LLin estimator provides an easy method for testing for time invariance
in the regression parameters, for example, the intercept.

15As remarked before (e.g., Remark 5), we expect that Theorems 4 and 5 also hold for fractional d = 1/2 and MI
processes.
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The empirical study utilizes the Welch–Goyal 2018 dataset. The returns variable
(rk) is constructed by taking log differences of the SP500 index. The realized
variance (SVAR) variable is the sum of squared daily returns on the SP500. We
consider three different sampling frequencies of the aforementioned variables, that
is, monthly, quarterly, and annual. To get some idea about the persistent properties
of the data, we report memory estimates based on the local Whittle (LW; e.g.,
Robinson, 1995) and the exact local Whittle (ELW; cf. Shimotsu and Phillips,
2005) estimators. It can be seen from Table 1 that SP500 returns closely resemble
an I(0) process in all frequencies, while the predictive variable is persistent,
exhibiting long memory. Note that for monthly data memory estimates are slightly
above the nonstationarity threshold (i.e., d = 1/2), nevertheless the simulations
show that for these values tests exhibit reasonably good size even in situations of
very strong endogeneity.

As mentioned above, the independent variable has different memory char-
acteristics than those of the predictor. This is a well-known stylistic fact in
the stock return predictability literature, that is, short-run returns exhibit very
little persistence relative to various financial and macroeconomic predictors. This
persistence mismatch casts some doubt on the plausibility of the commonly used
linear specifications, for example, (28). Some authors suggest that nonlinearities in
variables can provide a rebalancing mechanism. Certain nonlinear transformations
(e.g., reduced growth, bounded) result in a reduction in the persistence of the
underlying process. This approach has been discussed in Marmer (2008), Kasparis
(2011), Kasparis, Andreou, and Phillips (2015), and Phillips (2015) in the context
of nonstationary predictive regressions. Other types of nonlinearities may facilitate
a similar rebalancing effect. In particular, certain TVP specifications that induce
episodic predictability events may result in a reduction in the persistence of the
systematic part of the model, that is, β(k/n)xk−1. For instance, a time-varying slope
parameter that is nonzero for short time intervals is likely to result in a reduction in
the signal of the process. Another approach to addressing misbalancing issues is to
consider predictability over longer horizons. Long-term returns are an accumula-
tion of short-run terms and are therefore bound to exhibit higher persistence. In this
work, we focus on one period ahead returns leaving an investigation of long-term
predictability for future work.

Bandwidth choice is very important for both estimation and testing. As men-
tioned before, in general, there is a trade-off between size and power when it
comes to bandwidth choice. Under-smoothing (i.e., larger values for cn = h−1

n )
leads to smaller asymptotic bias and therefore to better size performance at the
expense of slower divergent rates of test statistics under the alternative hypothesis.
Nevertheless, the aforementioned trade-off is more subtle for nonparametric
methods than for semi-parametric methods (e.g., IVX). In the current framework,
there can be situations where under-smoothing may result in both better power and
size. For instance, if the TVP varies wildly (e.g., when there are abrupt episodic
predictability events) then over-smoothing may underestimate the variation in
a TVP, and this may lead to power loss. This effect is illustrated in Figure 1
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Figure 1. LLin TVP estimates (averaged over replication paths) (fractional regressor d = 0.45,
n = 1,000, GARCH(1,1) regression errors).

that shows LLin estimates of regression parameters and their derivatives for
various bandwidth choices (i.e., cn = nq,q = {0.2,0.3,0.35}), and {μ(τ),β(τ)} =
{sin(2πτ), cos(2πτ)}. Note that this choice of TVPs entails periodic functions of
period one over their domain (i.e., (0,1)). It can be readily seen from Figure 1
that when over-smoothing is employed (e.g., q = 0.2), sudden changes in the
TVPs are smoothed out, that is, the magnitude of slope parameters is under-
stated. Additional simulations results that highlight the superior performance of
tests when under-smoothing is employed appear in the Supplementary Material
(Hu et al., 2024).

We next provide estimates for μ(τ) and β(τ), τ ∈ (0,1) based on the LLev
and the LLin estimators (see Figure 2). For the former, we choose bandwidth
cn = nq, with q = 0.4 and for the latter q = 0.35, which is slightly slower. These
choices are close to the maximal under-smoothing allowed, given the theoretical
constraints,16 and provide good performance both in terms of size and power
according to the simulation study, as mentioned in the previous paragraph. It can
be seen from Figure 2 that there is some time variation in both parameters for
all sampling frequencies. First, the intercept parameter appears to be eventually
increasing. Its maximal value for monthly returns is about 1% and for quarterly
around 2%. The maximal value of the intercept for annual returns is higher, as
expected due to compounding (5% for LLev and 15% for LLin). The slope param-
eter for monthly returns appears to be overall negative; while for medium- and

16That is, condition (e) in Theorems 2 and 3.
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Figure 2. Local level/linear TVP estimates.

long-run returns (i.e., quarterly and annual), it oscillates around zero with some
positive episodic events.

For a more rigorous investigation of episodic effects, we utilize the LLev and
LLin tests for the hypothesis H0 : β(τ) = 0. Rolling t-statistics are reported in
Figure 3. We emphasize that these tests are pointwise for each τ ∈ (0,1). For
monthly returns, both test statistics indicate significant predictability for τ > 0.7.
In particular, for certain sub periods, there is very strong evidence for negative
predictability. In some cases, the null hypothesis is rejected at 1% significance level
even for two-sided tests. For quarterly and annual returns, there is some evidence of
positive episodic predictability but is not as strong as those for monthly returns. In
particular, for quarterly returns, both tests reject the null at 5% significance (one-
sided tests) when τ is between 0.6 and 0.8 (approximately). For annual returns,
the null is rejected at 5% significance (one-sided tests) only by the LLin test for
τ < 0.15 and τ > 0.9. It should be noted, however, that the tests for quarterly and
annual data are not that powerful due to sample size restrictions. Recall that the
sample size for monthly data is n = 1,606 while for quarterly and annual is n = 535
and n = 133, respectively.
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Figure 3. Local level/linear t-statistics for H0 : β(τ) = 0.

Figure 4. Local linear t-statistics for H0 : ∂μ(τ)/∂τ = 0.
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Finally, we utilize the LLin t-test for the hypothesis H0 : ∂μ(τ)/∂τ = 0, that
is, no time variation in the intercept of (13). As explained in Section 2, neglecting
time variation in the parameter of interest (i.e., β here) results in poor power. On the
other hand, neglecting time variation in a “nuisance parameter,” for example, the
intercept or the slope parameter of some other covariate is likely to result in inferior
size control due to incorrect centering. Therefore, in practical work, it is useful to
know if there is time variation in the intercept. Figure 4 reports values for rolling
t-statistics for the latter hypothesis. The tests show evidence for some episodic
variation in the intercept for monthly and annual returns (significant at 5% level
for one-sided tests). Our findings on the time variation of the regression intercept
are likely to be conservative. As mentioned before, derivative estimators yield less
powerful tests than those based on slope parameters due to slower convergence
rates. In particular, the LLin derivative test attains

√
n/c3

n-divergence while its
slope parameter counterpart attains

√
n/cn-divergence.

SUPPLEMENTARY MATERIAL

Hu, Z., Kasparis, I., and Wang, Q. (2024): Supplement to “Time-Varying Parame-
ter Regressions with Stationary Persistent Data,” Econometric Theory Supplemen-
tary Material. To view, please visit https://doi.org/10.1017/S0266466624000082.
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