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Abstract. In his Inventiones papers in 1995 and 1998, Borcherds constructed holomorphic
automorphic forms Cð f Þ with product expansions on bounded domains D associated to
rational quadratic spaces V of signature ðn; 2Þ, starting from vector valued modular forms f

of weight 1� n=2 for SL2ðZÞ which are allowed to have poles at the cusp and whose nonpo-
sitive Fourier coefficients are integers cmð�mÞ, m5 0. In this paper, we use the Siegel–Weil for-
mula to give an explicit formula for the integral kðCð f ÞÞ of � log jjCð f Þjj2 over X ¼ GnD,

where jj jj2 is the Petersson norm. This integral is given by a sum for m > 0 of quantities
cmð�mÞkmðmÞ, where kmðmÞ is the limit as ImðtÞ ! 1 of the mth Fourier coefficient of the
second term in the Laurent expansion at s ¼ n=2 of a certain Eisenstein series Eðt; sÞ of weight

ðn=2Þ þ 1 attached to V. The possible role played by the quantity kðCð f ÞÞ in the Arakelov
theory of the divisors ZmðmÞ on X is explained in the last section.

Mathematics Subject Classifications (2000). 11F30, 14G40, 11G18.
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0. Introduction

Let V be a nondegenerate inner product space over Q of signature ðn; 2Þ, with n5 1,

and let D be the space of oriented negative 2-planes in VðRÞ. In [2], Borcherds con-

structed certain meromorphic modular forms Cð f Þ on D with respect to arithmetic

subgroups GM of G ¼ OðV Þ by regularizing the theta integral of vector valued elliptic

modular forms f of weight 1� ðn=2Þ for SL2ðZÞ with poles at the cusp, cf. also [1, 7,

8, 21]. The Borcherds forms Cð f Þ can be viewed as meromorphic sections of powers

of a certain line bundle L on X ¼ GMnD. Taking the standard Petersson metric jj jj

on L, it is of interest in Arakelov geometry to compute the integral:

kðCð f ÞÞ :¼ �volðX Þ�1

Z
GMnD

log jjCðz; f Þjj2 dmðzÞ; ð0:1Þ

where dmðzÞ is a GðRÞ-invariant volume form on D. The integral (0.1) is always con-

vergent provided V is not an isotropic space of dimension 3 or a split space of dimen-

sion 4. These two exceptional cases will be excluded from now on, cf. Proposition

1.4, Remark 1.5, and Remark 2.4.
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In this paper, we give an explicit formula for kðCð f ÞÞ. To describe it, suppose that

M is a lattice in V such that the quadratic form QðxÞ ¼ 1
2ðx; xÞ is Z-valued and let

M] 
 M be the dual lattice. Recall that the modular form f used in Borcherds’

construction is valued in the space C½M]=M�, for a suitable choice of M, and has

a Fourier expansion of the form

fðtÞ ¼
X

m2M]=M

X
m2Q

cmðmÞ q
m jm; ð0:2Þ

where t 2 H, qm ¼ eðmtÞ, and where cmðmÞ is zero unless m 2 QðmÞ þZ. Moreover, if

m4 0, then cmðmÞ 2 Z and only a finite number of such negative Fourier coefficients

are nonzero.

Let

GM ¼ fg 2 SOðV ÞðQÞ j gM ¼ M and g acts trivially in M]=Mg; ð0:3Þ

and let X ¼ GMnD, so that X is a quasi-projective variety. For each m > 0 and

m 2 M]=M, there is a divisor Zðm; mÞ on X, associated to the set of vectors

x 2 mþM with QðxÞ ¼ m. These divisors are called rational quadratic divisors or

Heegner divisors in [2]. They include the Heegner points, for n ¼ 1, the Hirzeb-

ruch–Zagier curves on Hilbert modular surfaces, for n ¼ 2, and the Humbert surfa-

ces on Siegel threefolds, for n ¼ 3. They are also special cases of the cycles considered

in [26, 29, 30], etc. A key fact, due to Borcherds [2], is that the divisor of the form

Cð f Þ2, which has weight c0ð0Þ, is an explicit linear combination of these cycles:

divðCð f Þ2Þ ¼
X
m

X
m>0

cmð�mÞZðm; mÞ: ð0:4Þ

First consider the generating function for the degrees of the cycles Zðm; mÞ. Let O
be the first Chern form of the metrized line bundle L_ on X, dual to L, and let

degðZðm; mÞÞ ¼
Z

Zðm;mÞ
On�1

ð0:5Þ

be the volume of the cycle Zðm; mÞ with respect to O. Similarly, let

volðX Þ ¼

Z
X

On: ð0:6Þ

Note that ð�1ÞnvolðX Þ > 0, cf. (4.49).

For simplicity here in the introduction, we assume that n5 3.

Using the Siegel–Weil formula [56] and results of [29–31], one can show the

following:

THEOREM I. For each m 2 M]=M, there is an Eisenstein series Eðt; s;m; n
2þ 1Þ, for

t 2 H and s 2 C, of weight ðn=2Þ þ 1 such that
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E t; s0;m;
n

2
þ 1

� �
¼ dm;0 þ volðX Þ�1

X
m>0

degðZðm; mÞÞ qm; ð0:7Þ

where s0 ¼ n=2.

A similar result for the generating function for the volumes of certain real totally

geodesic cycles was proved by Oda, [43, 44]. Analogous results for generating func-

tions for cycles of higher codimension were proved for more general arithmetic quo-

tients in [32]. For anisotropic V ’s of signature ðn; 2Þ, such cycles are discussed in [28],

Section 3, and in [26].

Our main result is that the integral kðCð f ÞÞ can be expressed using the second term

in the Laurent expansion at s0 ¼ n=2 of these Eisenstein series.

MAIN THEOREM. For each m 2 M]=M, the Fourier coefficients in the expansion

E t; s; m;
n

2
þ 1

� �
¼
X

m

Amðs;m; vÞ qm

have Laurent expansion at s ¼ s0 ¼ n=2

Amðs;m; vÞ ¼ amðmÞ þ bmðm; vÞðs� s0Þ þOððs� s0Þ
2
Þ:

Let

kmðmÞ ¼

lim
v!1

bmðm; vÞ; if m > 0,

1
2 ðlogð2pÞ � gÞ; if m ¼ 0,

0; if m < 0.

8><>:
Then, for f with Fourier expansion ð0:2Þ,

kðCð f ÞÞ ¼
X
m

X
m5 0

cmð�mÞ kmðmÞ:

In addition, we derive the useful relation

�volðX Þ c0ð0Þ ¼
X
m

X
m>0

cmð�mÞ degðZðm; mÞÞ: ð0:8Þ

The quantities kmðmÞ can be calculated quite readily in any particular case; this will

be done in a sequel [36].

Remark 0:1: In fact, an analogous identity is valid in the case n ¼ 0 where V is the

two-dimensional quadratic space associated to an imaginary quadratic field k, V ¼ k

with quadratic form given by a negative multiple of the norm form, and X has

dimension 0. In this case, the Eisenstein series are the incoherent Eisenstein series of

weight 1 considered in [34], the cycles Zðm; mÞ are empty, and both sides of (0.7)

vanish identically. Since this case has a rather different flavor, we will exclude it from

the present paper and plan to discuss it elsewhere.
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As an illustration, consider the case where M ¼ Z5 with quadratic form of signa-

ture (3,2) defined by QðxÞ ¼ 1
2

t
xQx where

Q ¼

1
1

2
1

1

0BBBB@
1CCCCA:

In this example, which is worked out in detail in Section 5, jM]=Mj ¼ 2 and, labeling

the cosets by m ¼ 0, 1, we have

E t;
3

2
;m

� �
¼ dm;0 þ zð�3Þ�1

X
m>0

4m�m modð4Þ

Hð2; 4mÞqm;

where Hð2;NÞ is the Nth coefficient in Cohen’s Eisenstein series of weight 5
2, [11],

H2ðtÞ ¼ zð�3Þ þ
X
N>0

N�0;1 modð4Þ

Hð2;NÞqN:

In this case, as explained in [52] and [19], GMnD ’ Sp4ðZÞnH2 is the Siegel threefold

of level 1, volðX Þ ¼ zð�1Þzð�3Þ, and Zðm; mÞ, for 4m � m mod ð4Þ, is the Humbert

surface G4m, in the notation of [52]. Thus, the result on degrees implies that

degðHNÞ ¼ �
1
12 Hð2;NÞ;

a relation due to van der Geer, [52]. Also, we find that, for m > 0 with 4m ¼ n2d

for a fundamental discriminant d, and with 4m � m mod ð4Þ,

kmðmÞ ¼ zð�3Þ�1 Hð2; 4mÞ�

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
�

1

2
logðdÞ �

L0ð�1; wdÞ

Lð�1; wdÞ
�

1

2
logð4pÞ �

1

2
gþ

�
þ
X
pjn

log jnjp �
b0pðn;�1Þ

bpðn;�1Þ

� ��
:

If 4m 6� m modð4Þ, then kmðmÞ ¼ 0. Here Lðs; wdÞ is the L-series for the quadratic

character wd and the other quantities are explained in Section 5. It is shown by

Gritesenko and Nikulin [19] that the Siegel cusp D5 of weight 5 and quadratic char-

acter arises as a Borcherds form Cðf5Þ ¼ 2�6 D5ðzÞ, for a suitable meromorphic form

f5 of weight �1
2 with expansion

f5ðtÞ ¼ 10þ 108 qþ 808 q2 þ � � �
� �

j0 þ
�

q�
1
4 � 64 q

3
4 � 513 q

7
4 þ � � �

�
j1:

Thus, by the Main Theorem,
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� volðX Þ�1

Z
X

logðjD5ðzÞj
2 detðyÞ5Þ � O3

¼ 10 �
4

3
� 2

z0ð�3Þ

zð�3Þ
þ
z0ð�1Þ

zð�1Þ
þ

3

2
logð2Þ þ logðpÞ

� �
� 7 logð2Þ:

The key idea in the proof of the Main Theorem is the following. Recall that, in

Borcherds construction, it is essentially the quantity log jjCð f Þjj2, rather than the

meromorphic form Cð f Þ itself, which arises as a regularized theta integral. There-

fore, after some justification, we can compute the integral of this quantity by first

integrating the theta kernel over X and then taking the regularized integral against

f. This procedure is valid provided that the integral of the theta kernel is termwise

absolutely convergent, and it is for this reason that the exceptional cases must be

excluded. The Siegel–Weil formula then identifies the integral of the theta kernel

as a special value of an Eisenstein series of weight ðn=2Þ � 1 at the point s0 ¼ n=2.

The regularized integral of this series against f can then be evaluated by using a

Maass operator, which shifts the weight to ðn=2Þ þ 1, and a Stokes theorem argu-

ment from Section 9 of [2].

In fact, the method used here should also be applicable to the calculation of the inte-

grals of the functions arising via Borcherds construction for more general signatures

ð p; qÞ, and it would be interesting to investigate such cases. Note, in particular, that

the remarkable product formulas for the Cð f Þ’s in the case of signature ðn; 2Þ play no

role.

Possible applications of the formula for kðCð f ÞÞ to arithmetic geometry are discus-

sed in Section 6. The main point is that there should be a close connection between

the second term in the Laurent expansion of the Fourier coefficients of the Eisenstein

series Eðt; s; mÞ at s0 ¼ n=2, and the heights of the divisors Zðm; mÞ on X, after exten-

sion to a suitable integral model. Such a connection is also suggested by the results of

joint work [35] with Michael Rapoport and Tonghai Yang in which we compute the

heights of Heegner type divisors on the arithmetic surfaces X defined by Shimura

curves, the case n ¼ 1 with V anisotropic. In fact, for suitably defined classes

ẐZðm; vÞ 2 dCHCH1ðXÞ, the arithmetic Chow group of X, and for a normalized version

Eðt; s;jÞ of the Eisenstein series Eðt; s;jÞ of weight 3
2, we show that

E0ðt; 1
2;jÞ ¼

P
mh ẐZðm; vÞ; ôo i qm;

where t ¼ uþ iv, ôo 2 dCHCH1ðXÞ is an extension of the metrized line bundle L_, dual to

L to X, and h ; i is the Gillet–Soulé height pairing. Thus, the second term in the

Eisenstein series gives a generating functions for the ‘arithmetic volumes’, at least

in this example.

Here is a summary of the contents of the present paper. In Section 1, we review the

construction of the Borcherds forms Cð f Þ. An adelic formulation of this construc-

tion is given, which allows us to work more easily for general lattices and to make

use of the adelic formulation of the Siegel–Weil formula and representation theory.
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Some explanation is given about how to pass back and forth between the adelic

and classical version. In Section 2, we derive the formula for kðCð f ÞÞ, assuming certain

facts about Eisenstein series, the Siegel–Weil formula, and about convergence. In

Section 3, we consider convergence questions and, in particular, justify the inter-

change of the integration of the theta kernel with the Borcherds regularized integral.

In Section 4, we first review the case of the Siegel–Weil formula which we need,

including a refinement, already described by Weil, which is crucial in relating the

integral over the orthogonal group occurring in this formula with the geometric inte-

gral we actually encounter. We then describe a general matching principle and apply

it, together with the theory of [29–31], to prove that the degree generating function is

given by the value of our Eisenstein series of weight ðn=2Þ þ 1. The main point here is

that this matching principle implies the coincidence of theta integrals for different

quadratic spaces. For example, it shows that the degrees of the cycles Zðm; mÞ occur-

ring for spaces of signature ðn; 2Þ always coincide with certain weighted representa-

tion numbers for spaces of signature ðnþ 2; 0Þ. This principle should have many

other interesting applications. In Section 5, we discuss the example of signature

ð3; 2Þ described above. In Section 6, we give some speculations about the applications

of the formulas for kðCð f ÞÞ’s in arithmetic geometry.

1. Borcherds Forms

In this section we give an adelic formulation of a result of Borcherds on the construc-

tion of meromorphic modular forms. This formulation is convenient from the point

of view of Hecke operators and Shimura varieties. Moreover, it is essential if we

want to make use of the adelic version of the Siegel–Weil formula.

Let V be a vector space over Q with a nondegenerate quadratic form of signature

ðn; 2Þ, and let H ¼ GSpinðV Þ. We write ðx; yÞ ¼ Qðxþ yÞ �QðxÞ �QðyÞ for the

associated bilinear form. Let D be the space of oriented negative 2-planes in VðRÞ.

Recall that D is isomorphic to the open subset Q� of the quadric Q � PðVðCÞÞ

defined by

Q� ¼ fw 2 VðCÞ j ðw;wÞ ¼ 0; ðw; �wwÞ < 0g=C
�:

The isomorphism is given by z 7! v1 � iv2 ¼ w, where v1, v2 is a properly oriented

basis for z 2 D with ðv1; v1Þ ¼ ðv2; v2Þ ¼ �1 and ðv1; v2Þ ¼ 0. For a compact open sub-

group K � HðAfÞ, the space

XK ¼ HðQÞnðD�HðAfÞ=K Þ ð1:1Þ

is the set of complex points of a quasi-projective variety rational over Q (via cano-

nical models). This variety is projective if and only if V is anisotropic over Q. It is

smooth if the image of K in SOðV ÞðAfÞ is neat. Fix a connected component Dþ of

D, and write

HðAÞ ¼
a

j

HðQÞHðRÞþhjK; ð1:2Þ

where HðRÞþ is the identity component of HðRÞ ’ GSpinðn; 2Þ and hj 2 HðAfÞ. Then
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XK ¼
a

j

Xj; Xj ’ GjnD
þ; ð1:3Þ

where Gj ¼ HðQÞ \ ð HðRÞþhjKh�1
j Þ.

Let LD be the restriction to D ’ Q� of the tautological bundle on PðVðCÞÞ. The

action of OðV ÞðRÞ on VðCÞ induces an action of HðRÞþ on LD, and hence there is

a holomorphic line bundle

L ¼ HðQÞnðLD �HðAfÞ=K Þ �!XK: ð1:4Þ

This line bundle is also algebraic and has a canonical model over Q, [20]. On the

component GjnD
þ, L has the form GjnLD. Define a Hermitian metric hL on LD by

taking

hLðw1;w2Þ ¼ �
1
2ðw1; �ww2Þ: ð1:5Þ

This metric is clearly invariant under the natural action of OðV ÞðRÞ and hence

descends to L.

For a Witt decomposition

VðRÞ ¼ V0 þReþRf; ð1:6Þ

where e and f, with ðe; f Þ ¼ 1 and ðe; eÞ ¼ ð f; f Þ ¼ 0, span a hyperbolic plane with

orthogonal complement V0, note that sigðV0Þ ¼ ðn� 1; 1Þ and let

C ¼ fy 2 V0 j ð y; yÞ < 0g ð1:7Þ

be the negative cone. Then D ’ Q� is isomorphic to the tube domain

D ¼ fz 2 V0ðCÞ j y ¼ ImðzÞ 2 Cg; ð1:8Þ

via the map

D�!VðCÞ; z 7!wðzÞ :¼ zþ e�QðzÞf: ð1:9Þ

composed with the projection to Q�. The map z 7!wðzÞ can be viewed as a nowhere

vanishing holomorphic section of LD. Note that this section has norm

jjwðzÞjj2 ¼ �1
2ðwðzÞ; �wwðzÞÞ ¼ �ð y; yÞ ¼: jyj

2: ð1:10Þ

For h 2 OðVðRÞÞ or HðRÞ, we have

h � wðzÞ ¼ wðhzÞ jðh; zÞ ð1:11Þ

for a holomorphic automorphy factor

j:HðRÞ �D�!C
�: ð1:12Þ

For k 2 Z, holomorphic sections of L�k can be identified with holomorphic

functions

C:D�HðAfÞ �!C ð1:13Þ

such that Cðz; hkÞ ¼ Cðz; hÞ for all k 2 K and
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Cðgz; ghÞ ¼ jðg; zÞk Cðz; hÞ ð1:14Þ

for all g 2 HðQÞ. The norm of the section ðz; hÞ ! Cðz; hÞ � wðzÞ�k associated to C is

then

jjCðz; hÞjj2 ¼ jCðz; hÞj2 jyj2k: ð1:15Þ

We will refer to this as the Petersson norm of C. Note that, under the isomorphism

(1.3), C corresponds to the collection ðCð�; hjÞÞfjg of holomorphic functions on Dþ

automorphic of weight k with respect to the Gj’s.

Remark. In the case n ¼ 1, so that D ¼ Hþ [H�, the automorphy factor is

jðg; zÞ ¼ detðgÞ�1
ðczþ d Þ2;

so that the ‘classical weight’ of a section of L�k is 2k. &

We now give a version of Borcherds’ construction [2] of meromorphic sections of

(a certain twist of) L�k. These are obtained by a regularized theta lift for the dual

pair ðSL2;OðV ÞÞ.

The basic theta kernel is constructed as follows. Let SðVðAÞÞ, SðVðAfÞÞ, and

SðVðRÞÞ be the Schwartz spaces of VðAÞ, VðAfÞ, and VðRÞ respectively. For z 2 D,

let prz:VðRÞ ! z be the projection with kernel z?, and, for x 2 VðRÞ, let

Rðx; zÞ ¼ �ðprzðxÞ; przðxÞÞ ¼ jðx;wðzÞÞj
2jyj�2: ð1:16Þ

Then the majorant associated to z is

ðx; xÞz ¼ ðx; xÞ þ 2Rðx; zÞ; ð1:17Þ

and the Gaussian is the function

j1 2 SðVðRÞÞ � A0ðDÞ; j1ðx; zÞ ¼ e�pðx;xÞz : ð1:18Þ

Here A0ðDÞ is the space of smooth functions on D. Note that, for h 2 OðVðRÞÞ,

j1ðhx; hzÞ ¼ j1ðx; zÞ: ð1:19Þ

Let G ¼ SL2 and let G0
A

be the 2-fold metaplectic cover of GðAÞ. Let G0Q � G0
A

be

the image of GðQÞ under the canonical splitting homomorphism. The group G0
A

acts

in SðVðAÞÞ via the Weil representation o (determined by the standard additive char-

acter c of A=Q such that c1ðxÞ ¼ eðxÞ ¼ e2pix) and this action commutes with the

linear action of OðV ÞðAÞ. It will sometimes be convenient to write this linear action

as oðhÞjðxÞ ¼ jðh�1xÞ. For z 2 D, h 2 OðV ÞðAfÞ and g0 2 G0
A

, we let yðg0; z; hÞ be the

linear functional on SðVðAfÞÞ defined by

j 7! yðg0; z; h;jÞ ¼
X

x2VðQÞ

oðg0Þ j1ð�; zÞ � oðhÞj
� �

ðxÞ: ð1:20Þ

Then, for g 2 OðV ÞðQÞ, we have

yðg0; gz; gh;jÞ ¼ yðg0; z; h;jÞ: ð1:21Þ
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Also, by Poisson summation, [55], for g 2 G0Q,

yðgg0; z; h;jÞ ¼ yðg0; z; h;jÞ: ð1:22Þ

Finally, for g01 2 G0
Af

and h1 2 OðV ÞðAfÞ, we have

yðg0g01; z; hh1;jÞ ¼ yðg0; z; h;oðg01; h1ÞjÞ: ð1:23Þ

In particular, if K � HðAfÞ is as above, and if j 2 SðVðAfÞÞ
K, then the function

ðz; hÞ 7!yðg0; z; h;jÞ ð1:24Þ

on D�HðAfÞ descends to a function on XK. We may view it as a linear functional on

the space SðVðAfÞÞ
K and, hence, we obtain

y: G0QnG
0
A � XK�! SðVðAfÞÞ

K
� �_

:

ðg0; z; hÞ 7! yðg0; z; h; �Þ:
ð1:25Þ

.Note that this function is not holomorphic in z.

Let K 0
1 be the full inverse image of SOð2Þ � SL2ðRÞ ¼ GðRÞ in G0R. For each

r 2 1
2 Z, let wr be the character of K01 such that

wrðk
0Þ

2
¼ e2iry; if k0 7! ky ¼

cosðyÞ sinðyÞ
� sinðyÞ cosðyÞ

� �
2 SOð2Þ ð1:26Þ

under the covering projection. Let K0 � G0
A

be the full inverse image of

SL2ðẐZÞ � GðAfÞ, and note that

G0A ¼ G0QG0RK 0: ð1:27Þ

The Gaussian (1.18) is an eigenfunction of K01 with

oðk01Þj1ðx; zÞ ¼ w‘ðk
0
1Þj1ðx; zÞ; ð1:28Þ

for ‘ ¼ ðn=2Þ � 1. It then follows from (1.23) that

yðg0k01k0; z; hÞ ¼ w‘ðk
0
1Þ ðoðk

0Þ
_
Þ
�1yðg0; z; hÞ ð1:29Þ

for all k01 2 K01 and k0 2 K0. In particular, the theta function has weight

‘ ¼ ðn=2Þ � 1. Here oðk0Þ_ denotes the action of K0 on the space SðVðAfÞÞ
_ dual to

its action on SðVðAfÞÞ.

Now suppose that F:G0QnG
0
A
! SðVðAfÞÞ

K is a function such that

Fðg0k01k0Þ ¼ w�‘ðk
0
1Þoðk

0Þ
�1Fðg0Þ ð1:30Þ

for all k01 2 K01 and k0 2 K0. Then, as a function of g0, the C-bilinear pairing

ððFðg0Þ; yðg0; z; hÞÞÞ ¼ yðg0; z; h;Fðg0ÞÞ ð1:31Þ

is left G0Q-invariant and right K01K0-invariant. Its integral over G0QnG
0
A

, defined in

general by a suitable regularization, is a function
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Fðz; h;F Þ ¼

Z �

G0
Q
nG0

A

ðð Fðg0Þ; yðg0; z; hÞ ÞÞ dg0 ð1:32Þ

on XK.

The Borcherds forms [2] arise when F comes from a certain type of vector valued

automorphic form with possible poles at the cusps. To describe these, it is convenient

to pass to a point of view intermediate between that just explained and the classical

formulation.

Observe that G0Q \ ðG
0
RK0Þ ’ SL2ðZÞ. Let G0 be the full inverse image of

SL2ðZÞ � SL2ðRÞ ¼ GðRÞ in the metaplectic cover G0R. Thus G0 is an extension of

SL2ðZÞ by f 1g. For each g0 2 G0, with image g in SL2ðZÞ, there is a unique element

g00 2 K0 such that g0g00 ¼ g 2 G0Q \ ðG
0
RK0Þ. For t ¼ uþ iv 2 H, the upper halfplane, let

gt ¼

�
1 u

1

�
v

1
2

v�
1
2

� �
; ð1:33Þ

and let g0t ¼ ½gt; 1� 2 G0R. We then have

g0g0t ¼ g0gðtÞk
0
1ðg

0; tÞ ð1:34Þ

for a unique k01ðg
0; tÞ 2 K01. For r 2 1

2 Z, define an automorphy factor by

jr:G0 �H! C
�; jrðg0; tÞ ¼ w�rðk

0
1ðg

0; tÞÞ jctþ djr; ð1:35Þ

if g ¼ a b
c d

� �
. For example, if r 2 Z, jrðg0; tÞ ¼ ðctþ dÞr.

LEMMA 1.1. Suppose that ðr;VÞ is a representation of K 0 and that f:G0QnG
0
A
�!V

is a function such that fðg0k01k0Þ ¼ wrðk
0
1Þ rðk

0Þ
�1 fðg0Þ: Let fðtÞ ¼ v�r=2 fðg0tÞ: Then,

for all g ¼ g0g00 2 SL2ðZÞ, fðgðtÞÞ ¼ jrðg0; tÞ rðg00ÞfðtÞ:
Proof. We have

fðgðtÞÞ ¼ vðgðtÞÞ�r=2 fðg0gðtÞÞ

¼ jctþ djr v�r=2 fðgg0tk
0
1ðg

0; tÞ�1
ðg00Þ�1

Þ

¼ jctþ djr w�rðk
0
1ðg

0; tÞÞ v�r=2 rðg00Þfðg0tÞ

¼ jrðg0; tÞ rðg00Þ fðtÞ; ð1:36Þ

as claimed. &

Note that we can view V as a representation of G0 by setting rðg0Þ ¼ rðg00Þ.
Applying Lemma 1.1, via (1.29) and (1.30), we obtain automorphic forms

Wðt; z; hÞ ¼ v�‘=2yðg0t; z; hÞ; ð1:37Þ

of weight ‘, and

fðtÞ ¼ v‘=2Fðg0tÞ; ð1:38Þ

of weight �‘, valued in SðVðAfÞÞ
_ and SðVðAfÞÞ

K, respectively. Note that W is not

holomorphic in t. Then the quantity in (1.32) is given by
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Fðz; h;F Þ ¼

Z �

SL2ðZÞnH
ðð fðtÞ; Wðt; z; hÞÞÞ v�2 du dv ð1:39Þ

for a suitable choice of measure on G0QnG
0
A.

Let M be a Z-lattice in V, on which the quadratic form QðxÞ ¼ 1
2 ðx; xÞ takes inte-

gral values, and let M] be the dual lattice. Let SM � SðVðAfÞÞ be the space of func-

tions with support in M̂M] :¼ M] �Z ẐZ and which are constant on cosets of M̂M :¼

M�Z ẐZ. We will use the characteristic functions of cosets as a basis for this finite

dimensional space. The space SM is stable under the action of K0. The restriction

to SM of the theta function Wðt; z; hÞ, viewed as a linear functional, defines a (non-

holomorphic) modular form of weight ‘ ¼ ðn=2Þ � 1 valued in ðo_;S_MÞ, the dual

of the representation ðo;SMÞ of K0. Note that

SðVðAfÞÞ ¼ lim
!
M

SM:

Suppose that F (and hence f ) takes values in SM and is meromorphic at the cusp in

the following sense. Write

fðtÞ ¼
X
j

fjðtÞ � j; ð1:40Þ

where j runs over the coset basis for SM, and let

fjðtÞ ¼
X
m2Q

cjðmÞ q
m ð1:41Þ

be the Fourier expansion of fj, where qm ¼ eðmtÞ. We will sometimes write c0ðmÞ for

the Fourier coefficients of fj0
where j0 is the characteristic function of M̂M; the con-

stant term c0ð0Þ will play a crucial role. The Fourier coefficients cjðmÞ are nonzero

only for m 2 ð1=NÞZ, for some integer N, and we require that only a finite number

of cjðmÞ’s with m < 0 are nonzero. Then the pairing

ðð fðtÞ; Wðt; z; hÞÞÞ¼
X
j

fjðtÞ Wðt; z; h;jÞ ð1:42Þ

defines an SL2ðZÞ invariant function on H. It can be very rapidly increasing on the

standard fundamental domain for G ¼ SL2ðZÞ. The regularization used to define the

integral (1.39) will be reviewed in detail below. Note that the pairing (1.42) does not

depend on the choice of the lattice M.

A basic result of Borcherds, [2], expressed in our present notation, is the following:

THEOREM 1.2 (Theorem 13.3 of [2]). Suppose that F ðand hence f Þ takes values in

SK
M and that the Fourier coefficients cjðmÞ for m4 0 are integers. Then, for z 2 D and

h 2 HðAfÞ, the regularized integral

Fðz; h;F Þ ¼

Z �

GnH
ðð fðtÞ;Wðt; z; hÞÞÞ v�2 du dv

can be written in the form
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Fðz; h;F Þ ¼ �2 log jCðz; h;F Þj2 � c0ð0Þ 2 log jyj þ logð2pÞ þ G0ð1Þð Þ

for a meromorphic modular form Cð f Þ on D�HðAfÞ of weight k ¼ 1
2 c0ð0Þ.

More precisely, suppose that c0ð0Þ is even, so that k ¼ 1
2 c0ð0Þ 2 Z. Then, there is a

unitary character x of HðQÞ such that, for all g 2 HðQÞ,

Cðgz; gh;F Þ ¼ xðgÞ jðg; zÞk Cðz; h;F Þ: ð1:43Þ

Moreover, as a function of h 2 HðAfÞ, Cð f Þ is right K-invariant for any compact

open subgroup K � HðAfÞ for which the values of F lie in SM � SðVðAfÞÞ
K and,

hence, Cð f Þ defines a meromorphic section of the bundle L�k
� Vx, where Vx is

the flat bundle defined by x. Since our calculations only involve log jjCð f Þjj2, the

character x, which, in fact, has finite order [4], will play no role in the present paper.

If the coefficient c0ð0Þ is odd, Cð f Þ2 ¼ Cð2F Þ is an automorphic form of weight 2k.

Note that, in any case, it is the quantity 2 log jCðz; h;F Þj2 which occurs in Fðz; h;F Þ,

so that the parity of c0ð0Þ will not matter.

Borcherds also determines the divisor of Cð f Þ. To describe this in our setup, we

first recall the definition of the special cycles in XK, from [26]. For x 2 VðQÞ with

QðxÞ > 0, let Vx ¼ x?, and

Dx ¼ f z 2 D j x ? z g: ð1:44Þ

Let Hx be the stabilizer of x in H, and note that Hx ’ GSpinðVxÞ. For h 2 HðAfÞ,

there is a natural map

HxðQÞnDx �HxðAfÞ=ðHðAfÞ \ hKh�1Þ �!HðQÞnD�HðAfÞ=K

ðz; h1Þ 7!ðz; h1hÞ ð1:45Þ

which defines a divisor Zðx; h;K Þ on XK. This divisor is rational over Q. For a

Schwartz function j 2 SðVðAfÞÞ
K, and a positive rational number m 2 Q>0, we

define a weighted linear combination Zðm;j;K Þ of these divisors as follows. Let

Om ¼ fx 2 V j QðxÞ ¼ mg ð1:46Þ

be the quadric determined by m, and fix x0 2 OmðQÞ, assuming that OmðQÞ 6¼ f.

Then OmðAfÞ is a closed subset of VðAfÞ, and we can write

suppðjÞ \ OmðAfÞ ¼
a

r

K � x�1
r x0 ð1:47Þ

for some finite set of xr’s in HðAfÞ. Define

Zðm;j;K Þ :¼
X

r

jðx�1
r x0ÞZðx0; xr;K Þ: ð1:48Þ

If OmðQÞ is empty, then Zðm;j;K Þ ¼ 0. These cycles, which are defined for arbitrary

codimension in [26], include the Heegner points, Hirzebruch–Zagier curves, and Hum-

bert surfaces as particular cases. Various nice properties of the weighted cycles are descri-

bed in [26]. For example, if K0 � K and if pr:XK0 ! XK is the associated covering, then
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pr!Zðm;j;K Þ ¼ Zðm;j;K 0Þ; ð1:49Þ

so that the special cycles are defined on the full Shimura variety associated to ðH;DÞ,

[41]. Because of this relation, we will frequently omit K and write simply Zðm;jÞ in

place of Zðm;j;K Þ. Also, if h 2 HðAfÞ, then right multiplication by h�1 defines a

natural morphism, rational over Q,

rðhÞ: XK �! XhKh�1 ; ð1:50Þ

and

rðhÞ!Zðm;j;K Þ ¼ Zðm;oðhÞj; hKh�1Þ; ð1:51Þ

where oðhÞjðxÞ ¼ jðh�1xÞ. This relation describes the compatibility of the special

cycles with the Hecke operators. Finally, by Proposition 5.4 of [26], we can give

an explicit description of these cycles with respect to the decomposition (1.3) of

the space XK as a disjoint union of arithmetic quotients of Dþ:

Zðm;j;K Þ ¼
X

j

Zjðm;j;K Þ; ð1:52Þ

Zjðm;j;K Þ ¼
X

x2OmðQÞ

mod Gj

jðh�1
j xÞ prjðDxÞ;

where prj:D
þ ! GjnD

þ ’ Xj is the natural projection. Note that it follows from

this formula that,

Zðm;j;K Þ ¼ Zðm;j_;K Þ ð1:53Þ

where j_ðxÞ ¼ jð�xÞ.

THEOREM 1.3 (Theorem 13.3 of [2]). For f with Fourier expansion given by ð1:40Þ

and ð1:41Þ,

divðCð f Þ2Þ ¼
X
j

X
m>0

cjð�mÞZðm;j;K Þ:

Here j runs over the coset basis for SM.

Finally, the following convergence result for the integral (1.0) will be proved in

Section 3.

PROPOSITION 1.4. Suppose that V is not an isotropic space of dimension 3 or a split

space of dimension 4. Then, for every Borcherds form Cð f Þ,

log jjCð f Þjj 2 L1ðX; dmðzÞÞ:

Remark 1:5: For elliptic modular forms C, i.e., for the first case excluded in

Proposition 1.4, the integral (0.1) will only converge whenC is nonzero at all cusps. In this

case, the integralskðCÞwere evaluated by Rohrlich, [50], via the Kronecker limit formula.
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2. Computation of a Regularized Integral

Setting k ¼ 1
2 c0ð0Þ, recall that the Petersson norm of the section defined by Cð f Þ is

jjCðz; h;F Þjj2 ¼ jCðz; h;F Þj2jyj2k: ð2:1Þ

We view the function jjCðz; hj;F Þjj2 as a function on the component Xj ¼ GjnD
þ of

XK and will write jjCðz;F Þjj2 for the resulting function on either Xj or the (possibly

disconnected) complex manifold XK. In what follows, we will write X for either XK or

for one of the Xj’s.

The basic problem is to compute the following integral:

kXðCð f ÞÞ

:¼ �
1

volðX Þ

Z
X

log jjCðz;F Þjj2 dmðzÞ

¼ �
1

volðX Þ

Z
X

log Cðz;F Þ
�� ��2 jyj2k
� �

dmðzÞ

¼
1

2

1

volðX Þ

Z
X

Fðz;F Þ dmðzÞ þ k logð2pÞ þ G0ð1Þð Þ

¼
1

2

1

volðX Þ

Z
X

Z �

GnH
ðð fðtÞ; Wðt; zÞ ÞÞ v�2 du dv

� �
dmðzÞ þ k C0

¼
1

2

Z �

GnH

X
j

fjðtÞ IXðt;jÞ v�2 du dvþ k C0; ð2:2Þ

where C0 ¼ logð2pÞ þ G0ð1Þ, volðX Þ ¼ volðX; dmðzÞÞ and

IXðt;jÞ ¼
1

volðX Þ

Z
X

Wðt; z;jÞ dmðzÞ: ð2:3Þ

In fact, the last interchange of order of integration (where one of the integrals reg-

ularized!) will be justified in the next section, provided the theta integral (2.3) conver-

ges. We will discuss this point in a moment. Here dmðzÞ is a HðRÞ-invariant top

degree form on D; the quantity kXðCð f ÞÞ is independent of the normalization of this

form.

We want to relate the integral IXðt;jÞ, over the complex manifold X ¼ XK or Xj,

to a usual theta integral over an adelic coset space appearing in the Siegel–Weil

formula. This is done in detail in section 4, below, cf. Theorem 4.1. Note that there

is an exact sequence

1�!Z�!H�! SOðV Þ �! 1

where H ¼ GSpinðV Þ, as before. Let H1 ¼ SpinðV Þ be the kernel of the spinor norm

n:H ! Gm. Note that, for the decomposition (1.2), we have

HðQÞHðRÞþhjK ¼ fh 2 HðAÞ j nðhÞ 2 Q
�

R�
þnðhjÞnðK Þg;

so that the number of components of XK is the index jbZZ� : nðK Þj. For simplicity, we

assume that the compact open subgroup K � HðAfÞ satisfies the condition:
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ZK :¼ ZðAfÞ \ K ’ ẐZ�
ð2:4Þ

under the natural identification ZðAfÞ ’ A
�
f . A slight variant of the proof of Propo-

sition 4.17 yields:

LEMMA 2.1. Let j1 be the Gaussian, as in ð1:18Þ above. Then, for j 2 SðVðAfÞÞ
K,

ðiÞ

Iðg0;j1�jÞ :¼
Z

OðV ÞðQÞnOðV ÞðAÞ

yðg0; h;j1�jÞ dh

¼
1

volðXK Þ

Z
XK

yðg0; z;jÞ dmðzÞ:

ðiiÞ If n > 2; and X ¼ Xj; then

I1ðg
0;j1 � jÞ :¼

Z
H1ðQÞnH1ðAÞ

yðg0; h1;j1 � jÞ dh1

¼
1

volðX Þ

Z
X

yðg0; z; hj;jÞ dmðzÞ:

Note that both sides are independent of the choice of dmðzÞ.

COROLLARY 2.2. IXðt;jÞ ¼ v�‘=2 Iðg0t;j1 � jÞ:

COROLLARY 2.3. Assume that F is valued in SðVðAfÞÞ
K. Then

kXðCð f ÞÞ ¼
1

2

Z �

GnH

X
j

fjðtÞ IXðt;jÞ v�2 du dvþ k C0

¼
1

2

Z �

GnH

X
j

fjðtÞ v�‘=2 Iðg0t;j1 � jÞ v�2 du dvþ k C0;

with C0 ¼ logð2pÞ þ G0ð1Þ. Here, if n4 2, then X ¼ XK.

Remark 2:4: By Weil’s criterion, [56], p.75, Proposition 8, the theta integral

Iðg0t;j1 � jÞ is absolutely convergent whenever n� r > 0, where r ¼ 0, 1, or 2 is the

Witt index of VðQÞ, i.e., the dimension of a maximal isotropic subspace of VðQÞ.

Note that r ¼ 0 is only possible when n4 2. The only exceptional cases will thus be

n ¼ 1 with V isotropic (r ¼ 1) and n ¼ 2 with V split (r ¼ 2). We will exclude these

cases – although they can be handled by the regularization process used in [33].

We consider the regularized integral in the expression for kXðCð f ÞÞ in Corollary

2.3. Note that kXðCð f ÞÞ is independent of the choice of the lattice M and of K.

Recall that, for a G ¼ SL2ðZÞ invariant function f on H, the regularized integralZ �

GnH
fðtÞ dmðtÞ; ð2:5Þ

used by Borcherds, is defined by taking the constant term in the Laurent expansion

at s ¼ 0 of the function defined, for ReðsÞ sufficiently large, by
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lim
T!1

Z
FT

fðtÞ v�s�2 du dv: ð2:6Þ

Here F is the standard fundamental domain for the action of G on H, and FT is the

intersection of this with the region ImðtÞ4T. This procedure can be applied provi-

ded that (i) the limit as T goes to infinity exists in a halfplane ReðsÞ > s0, and (ii) the

resulting holomorphic function of s has a meromorphic analytic continuation to a

neighborhood of the point s ¼ 0. In short,Z �

GnH
fðtÞ dmðtÞ :¼ CT

s¼0
lim

T!1

Z
FT

fðtÞ v�s dmðtÞ
� �

; ð2:7Þ

where CTs¼0 denotes the constant term of the Laurent expansion at the point s ¼ 0.

The following result will be proved in the next section.

PROPOSITION 2.5.

CT
s¼0

lim
T!1

Z
FT

X
j

fjðtÞ IXðt;jÞ v�s�2 du dv

( )

¼ lim
T!1

Z
FT

X
j

fjðtÞ IXðt;jÞ v�2 du dv� c0ð0Þ logðT Þ

" #
:

Thus we need to evaluate the basic integralZ
FT

X
j

fjðtÞ IXðt;jÞ v�2 du dv ð2:8Þ

where fjðtÞ is holomorphic on F and where s has been set equal to zero.

Following the suggestion of Section 9 of [2], we would like to define an auto-

morphic function Jðt;jÞ on H for which

@

@ �tt
Jðt;jÞ
 !

¼ IXðt;jÞ v�2: ð2:9Þ

Then, by a simple Stokes’ Theorem argument, we would haveZ
FT

X
j

fjðtÞ IXðt;jÞ v�2 du ^ dv

¼
1

2i

Z
FT

d
X
j

fjðtÞ Jðt;jÞ dt

 !

¼
1

2i

Z
@FT

X
j

fjðtÞ Jðt;jÞ dt

¼
1

2i

Z �1=2þiT

1=2þiT

X
j

fjðtÞ Jðt;jÞ du

¼ �
1

2i
constant term of

X
j

fjðtÞ Jðt;jÞ

 !�����
v¼T

ð2:10Þ:
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In the next to last step, we have used the invariance of
P

j fjðtÞ Jðt;jÞ dt under

t 7! tþ 1 and under t 7! � 1=t.
To obtain a relation like (2.9), we apply the Maass operators and the Siegel–Weil

formula. Let

X ¼
1

2

1  i
 i �1

� �
2 sl2ðCÞ: ð2:11Þ

Recall that, if f:G0R ! C is a smooth function with fðg0k0Þ ¼ w‘ðk
0Þfðg0Þ, i.e., of

weight ‘, and if fðtÞ ¼ v�
‘
2 fðg0tÞ is the corresponding function on H, then X f has

weight ‘ 2, and the corresponding function on H is

v�
1
2ð‘ 2ÞX fðg0tÞ ¼

2i @f
@tþ

‘
v
f

� �
ðtÞ for þ,

�2iv2 @f
@ �tt ðtÞ for �.

(
ð2:12Þ

We now take advantage of the Siegel–Weil formula; the facts we need are reviewed

in the first part of section 4. For j 2 SðVðAfÞÞ, let Eðg0; s;Fr
1 � lðjÞÞ be the Eisen-

stein series of weight r on G0
A

associated to j. If j1 2 SðVðRÞÞ is the Gaussian, then

lðj1Þ ¼ F‘
1ðs0Þ; ð2:13Þ

where ‘ ¼ n
2� 1, as above. By the Siegel–Weil formula, Theorem 4.1, we have the

following.

PROPOSITION 2.6. Exclude the exceptional cases of Remark 2:4 above, so that the

theta integral is absolutely convergent. Then

IXðt;jÞ ¼ v�‘=2 Iðg0t;j1 � jÞ ¼ v�‘=2 Eðg0t; s0;F‘
1 � lðjÞÞ;

where s0 ¼ n=2 ¼ ‘þ 1. Here, if n4 2, X ¼ XK.

On the other hand, an easy computation in the induced representation IRðs; wÞ of

G0R shows:

PROPOSITION 2.7. Let Fr
1ðsÞ 2 IRðs; wÞ be the normalized eigenvector of weight r

for the action of K0R. Then X Fr
1ðsÞ ¼

1
2 ðsþ 1 rÞFr 2

1 ðsÞ:

Therefore, we have the basic relation

X�Eðg0; s;F‘þ2
1 � lðjÞÞ ¼

1

2
ðs� ‘� 1ÞEðg0; s;F‘

1 � lðjÞÞ: ð2:14Þ

Pushing this down to H, we obtain

� 2iv2 @

@ �tt

 
v�

1
2ð‘þ2Þ Eðg0t; s;F

‘þ2
1 � lðjÞÞ

!
¼ 1

2 ðs� s0Þ v
�1

2‘Eðg0t; s;F
‘
1 � lðjÞÞ: ð2:15Þ

For convenience, we now write

Eðt; s;j; ‘Þ ¼ v�‘=2 Eðg0t; s0;F‘
1 � lðjÞÞ; ð2:16Þ

so that (2.15) becomes
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�2iv2 @

@ �tt

 
Eðt; s;j; ‘þ 2Þ

!
¼ 1

2 ðs� s0ÞEðt; s;j; ‘Þ: ð2:17Þ

Of course, the vanishing of the right hand side of (2.17) at s ¼ s0 ¼ n=2 just shows

the holomorphy of the special value

Eðt; s0;j; ‘þ 2Þ ¼ jð0Þ þ volðX Þ�1
X
m>0

degðZXðm;jÞÞ � qm; ð2:18Þ

cf. Theorem 4.23. Here we have written degðZXðm;jÞÞ in place of

degL_ðZXðm;j;K ÞÞ and volðX Þ in place of volðX;On
Þ to lighten the notation.

Remark 2:8: The vanishing of the right side of (2.17) depends on the fact that

Eðt; s;j; ‘Þ has no pole at s ¼ s0 ¼ n=2. In the exceptional cases, n ¼ 1, r ¼ 1 and

n ¼ 2, r ¼ 2 a pole can occur, and its residue accounts for a nonholomorphic

component occurring in (2.14), cf. [16].

We write:

Eðt; s;j; ‘Þ v�2 ¼
�4i

s� s0

@

@ �tt

 
Eðt; s;j; ‘þ 2Þ

!
: ð2:19Þ

Now, to evaluate (2.8), we use the Siegel–Weil formula (Proposition 2.6) and writeZ
FT

X
j

fjðtÞ IXðt;jÞ v�2 du dv ¼

Z
FT

X
j

fjðtÞEðt; s;j; ‘Þ v�2 du ^ dv

����
s¼s0

:

Then, for general s, we can use the relation (2.19) and the Stoke’s Theorem argument

(2.10) to obtain the following basic identity.

Iðs;T Þ :¼

Z
FT

X
j

fjðtÞEðt; s;j; ‘Þ v�2 du ^ dv

¼
1

2i

Z
FT

d
X
j

fjðtÞ
�4i

s� s0
Eðt; s;j; ‘þ 2Þ dt

 !
¼

�2

s� s0

Z
@FT

X
j

fjðtÞEðt; s;j; ‘þ 2Þ dt

¼
�2

s� s0

Z �1=2þiT

1=2þiT

X
j

fjðtÞEðt; s;j; ‘þ 2Þ du

¼
2

s� s0
� const: term of

X
j

fjðtÞEðt; s;j; ‘þ 2Þ

 !�����
v¼T

: ð2:20Þ

By Corollary 2.3, and Proposition 2.5,

kXðCð f ÞÞ

¼
1

2
lim

T!1

" Z
FT

X
j

fjðtÞ Iðt;jÞ v�2 du dv� c0ð0Þ logðT Þ

#
þ k C0

¼
1

2
lim

T!1
½ Iðs0;T Þ � c0ð0Þ logðT Þ � þ k C0; ð2:21Þ
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It will be convenient to introduce the following additional notation. Write

Eðt; s;j; ‘þ 2Þ ¼
X

m

Ajðs;m; vÞ qm; ð2:22Þ

where the Fourier coefficients have Laurent expansions

Ajðs;m; vÞ ¼ ajðmÞ þ bjðm; vÞðs� s0Þ þOððs� s0Þ
2
Þ; ð2:23Þ

where the ajðmÞ’s are given by (2.16). With this notation,

Iðs;T Þ ¼
2

s� s0
constant term of

X
j

fjðtÞEðt; s;j; ‘þ 2Þ

 !�����
v¼T

¼
2

s� s0

X
j

X
m

cjð�mÞAjðs;m;T Þ: ð2:24Þ

We consider the individual terms. For m ¼ 0, we have

2

s� s0

X
j

cjð0Þ jð0Þ þ bjð0;T Þðs� s0Þ
� �

þOðs� s0Þ: ð2:25Þ

so that the contribution of such terms to the constant coefficient in the Laurent

expansion at s ¼ s0 is

2
X
j

cjð0Þ bjð0;T Þ: ð2:26Þ

We will return to the polar part occurring in (2.25) in a moment. Similarly, from the

m < 0 terms, we have the contribution

2
X
j

X
m<0

cjð�mÞ bjðm;T Þ: ð2:27Þ

Finally, for the finite sum of terms with m > 0, we have, initially:

1

ðs� s0Þ

2

volðX Þ

X
j

X
m>0

cjð�mÞ degðZðm;jÞÞþ

þ 2
X
j

X
m>0

cjð�mÞ bjðm;T Þ þOðs� s0Þ: ð2:28Þ

Since our whole integral Iðs;T Þ does not have a pole at s ¼ s0, the polar part here

must cancel the one which occurred earlier, i.e., we must have

2
X
j

cjð0Þjð0Þ þ
2

volðX Þ

X
j

X
m>0

cjð�mÞ degðZXðm;jÞÞ ¼ 0: ð2:29Þ

Since

divXðCð f Þ
2
Þ ¼

X
m>0

cjð�mÞZXðm;jÞ; ð2:30Þ

this amounts to
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degðdivXðCð f Þ
2
Þ ¼

X
m>0

cjð�mÞ degðZXðm;jÞÞ ¼ �volðX Þ c0ð0Þ: ð2:31Þ

Recall that we are using the coset basis for SM, so that j0ð0Þ ¼ 1 and jð0Þ ¼ 0 for

j 6¼ j0. Also note that, since O is the negative of a Kähler form, volðX Þ and

degðZXðm;jÞÞ will have opposite signs (for a coset function j), cf. (4.49).

EXAMPLE 2.9. Suppose that n ¼ 1 and r ¼ 0, i.e., V is anisotropic over Q of

dimension 3 and XK is a disjoint union of projective curves. Suppose that the image

of K in SOðV ÞðAfÞ is neat, so that all of the Gj’s act without fixed points on Dþ ’ H.

Then, since O ¼ �ð1=2pÞ y�2 dx ^ dy; volðXK Þ ¼ 2� 2g, where g is the genus of XK,

and hence we have

degðdivðCð f Þ2Þ ¼ 2ðg� 1Þ c0ð0Þ; ð2:32Þ

as expected. Here one must keep in mind the fact that Cð f Þ2 has ‘classical weight’

2 c0ð0Þ.

Collecting the contributions of (2.26), (2.27), and (2.28), we obtain

PROPOSITION 2.10.

Iðs0;T Þ ¼

Z
FT

X
j

fjðtÞ IXðt;jÞ v�2 du dv ¼ 2
X
j

X
m

cjð�mÞ bjðm;T Þ:

The following result will be proved in the next section.

PROPOSITION 2.11.

ðiÞ For m < 0, bjðm;T Þ decays exponentially as T !1.

ðiiÞ lim
T!1

�
2
P

j

P
m<0 cjð�mÞ bjðm;T Þ

�
¼ 0:

ðiiiÞ For m ¼ 0,

lim
T!1

b0ð0;T Þ �
1

2
logðT Þ

� �
¼ 0;

and, for j 6¼ j0, lim
T!1

bjð0;T Þ ¼ 0:

Thus, we obtain an explicit expression for the quantity kðCð f ÞÞ. The following

result summarizes the relations between the geometry of the Borcherds form Cð f Þ
and the family of Eisenstein series Eðt; s; ;j; ‘þ 2Þ. Recall that we have excluded

the cases where dimV ¼ 3, of Witt index 1 or dimV ¼ 4, of Witt index 2.

THEOREM 2.12. For j 2 SðVðAfÞÞ, let

Eðt; s;j; ‘þ 2Þ ¼
X

m

Ajðs;m; vÞ qm;
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with

Ajðs;m; vÞ ¼ ajðmÞ þ bjðm; vÞ ðs� s0Þ þOððs� s0Þ
2
Þ

be the Laurent expansion at the point s0 ¼ n=2 ¼ ‘þ 1 of the associated Eisenstein

series of weight n=2þ 1 ¼ ‘þ 2. Let K be a compact open subgroup K � HðAfÞ satis-

fying the condition ð2:4Þ, and let XK ¼
‘

j Xj, as in ð1:3Þ.

If n4 2, take X ¼ XK. If n > 2, then take X ¼ XK or Xj.

ðiÞ Suppose that j 2 SðVðAfÞÞ
K. Then,

Eðt; s0;j; ‘þ 2Þ

¼ jð0Þ þ volðX Þ�1
X
m>0

degL_ðZXðm;j;K ÞÞ qm:

ðiiÞ For any j 2 SðVðAfÞÞ, let

kjðmÞ :¼
lim

T!1
bjðm;T Þ; if m > 0; and

1
2 C0 jð0Þ; if m ¼ 0;

(
where C0 ¼ logð2pÞ þ G0ð1Þ. Suppose that f :H! SðVðAfÞÞ

K is a modular form of

weight 1� ðn=2Þ ¼ �‘ for SL2ðZÞ, with Fourier expansion fðtÞ ¼
P

j

P
m cjðmÞ q

m j
where j runs over the coset basis with respect to some lattice M and where

cjðmÞ 2 Z for m4 0. Let Cð f Þ be the associated Borcherds form of weight c0ð0Þ=2.

Then

divðCð f Þ2Þ ¼
X
j

X
m>0

cjð�mÞZðm;j;K Þ;

and

�volðX Þ c0ð0Þ ¼
X
j

X
m>0

cjð�mÞ degL_ðZXðm;j;K ÞÞ:

Moreover

kXðCð f ÞÞ :¼ �
1

volðX Þ

Z
X

log jjCðz; fÞjj2 dmðzÞ ¼
X
j

X
m5 0

cjð�mÞ kjðmÞ:

Here

volðX Þ ¼ volðX;On
Þ and degL_ðZXðm;j;K ÞÞ ¼

Z
ZXðm;j;K Þ

On�1

are computed with respect to the invariant ð1; 1Þ-form O ¼ ddc logðrÞ, where r ¼
rðzÞ ¼ � 1

2 ðwðzÞ;wð �zzÞÞ, cf. Proposition 4:10.

Remark 2:13: The quantity kXðCð f ÞÞ is completely determined by the collection

of integers fcjð�mÞg for m5 0. The universal quantities kjðmÞ are independent of

Cð f Þ. They can be computed explicitly, cf. Section 5 for an example and [36] for a

more systematic discussion.
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3. Convergence Estimates

In this section we prove the crucial fact that the integration over X can be interchan-

ged with the Borcherds’ regularization. In the process, we will prove Proposition 1.4

as well.

THEOREM 3.1. Suppose that the integral of the theta function converges, i.e., sup-

pose that V is not a ternary isotropic space of signature ð1; 2Þ or a quaternary space of

signature ð2; 2Þ and Q-rank 2, the exceptional cases of Remark 2:4 above. ThenZ
X

Z �

GnH
ððFðtÞ;Wðt; zÞÞÞ dmðtÞ dmðzÞ

¼

Z �

GnH
ððFðtÞ;

Z
X

Wðt; zÞ dmðzÞÞÞ dmðtÞ;

where
R �

denotes the regularized integral, and both ‘double integrals’ are finite.

Writing FT ¼ F 1 [ BT, where BT ¼ FT � F 1, we consider the first expression:Z
X

Z �

GnH
ððFðtÞ; Wðt; zÞÞÞ dmðtÞ dmðzÞ

¼

Z
X

CT
s¼0

lim
T!1

Z
FT

ððFðtÞ; Wðt; zÞÞÞ v�s dmðtÞ
� �

dmðzÞ

¼

Z
X

CT
s¼0

lim
T!1

Z
BT

ððFðtÞ; Wðt; zÞÞÞ v�s dmðtÞ
� �

dmðzÞþ

þ

Z
X

Z
F 1

ððFðtÞ; Wðt; zÞÞÞ dmðtÞ dmðzÞ

¼

Z
X

CT
s¼0

lim
T!1

Z T

1

Cðv; zÞ v�s�1 dv

� �
dmðzÞþ

þ

Z
F 1

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ dmðtÞ; ð3:1Þ

where

Cðv; zÞ ¼ Cðv; z; hÞ

:¼ v�1

Z 1
2

�1
2

ððFðtÞ; Wðt; z; hÞÞÞ du

¼
X
j

X
m2Q

cjð�mÞ
X

x
QðxÞ¼m

jðh�1xÞ e�2pvRðx;zÞ ð3:2Þ

is the constant term of v�1ðð FðtÞ; Wðt; zÞ ÞÞ. Here, in the term arising from integration

over F 1, we have used the integrability of Wðt; zÞ over X. It now suffices to show that

the term

A :¼

Z
X

CT
s¼0

lim
T!1

Z T

1

Cðv; zÞ v�s�1 dv

� �
dmðzÞ ð3:3Þ
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in the last expression can be rewritten as

B :¼ CT
s¼0

lim
T!1

Z
X

Z T

1

Cðv; zÞ v�s�1 dv dmðzÞ
� �

: ð3:4Þ

To see this, observe that the integral in B is then equal toZ
X

Z T

1

Cðv; zÞ v�s�1 dv dmðzÞ

¼

Z
X

Z
BT

ððFðtÞ; Wðt; zÞÞÞ v�s dmðtÞ dmðzÞ

¼

Z
BT

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ v�s dmðtÞ; ð3:5Þ

again using the integrability of Wðt; zÞ. Substituting the resulting expression for

B in place of A in the last expression of (3.1), we obtain

CT
s¼0

�
lim

T!1

Z
BT

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ v�s dmðtÞ
�
þ

þ

Z
F 1

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ dmðtÞ

¼ CT
s¼0

�
lim

T!1

Z
FT

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ v�s dmðtÞ
�

¼

Z �

GnH

Z
X

ððFðtÞ; Wðt; zÞÞÞ dmðzÞ ð3:6Þ

as required.

To show the equality of A and B, we break the function Cðv; zÞ into pieces.

Cþðv; zÞ :¼
X
j

X
m>0

cjð�mÞ
X

x
QðxÞ¼m

jðxÞ e�2pvRðx;zÞ;

C0ðv; zÞ :¼
X
j

cjð0Þ
X

x
QðxÞ¼0;x 6¼0

jðxÞ e�2pvRðx;zÞ; ð3:7Þ

C00ðv; zÞ :¼
X
j

cjð0Þjð0Þ ¼ c0ð0Þ ðfor the coset basisÞ;

C�ðv; zÞ :¼
X
j

X
m<0

cjð�mÞ
X

x
QðxÞ¼m

jðxÞ e�2pvRðx;zÞ:

We will write Aþ, A0, A00, and A� (resp. Bþ, etc.) for the corresponding contri-

butions to A (resp. B).

For the C00 term, we haveZ T

1

v�s�1 dv ¼
1

s
ð1� T�sÞ; ð3:8Þ

so that
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CT
s¼0

�
lim

T!1

Z T

1

C00ðv; zÞ dv

�
¼ 0: ð3:9Þ

This gives A00 ¼ B00 ¼ 0.

Next consider the quatities Aþ and Bþ arising from Cþðv; zÞ. Note that the sum

on m > 0 in Cþðv; zÞ is finite, since there are only finitely many nonvanishing nega-

tive Fourier coefficients cjð�mÞ. For a given coset representative h ¼ hj, we write

G ¼ Gj ¼ HðQÞ \ hKh�1, so that GnDþ is the associated component of XK. For a

fixed m > 0 and j and on the chosen component of XK, the sum in Cþðv; zÞ

involves

fx 2 VðQÞ j QðxÞ ¼ m; jðh�1xÞ 6¼ 0 g: ð3:10Þ

This set consists of a finite number of G orbits. The contribution to A of a single such

orbit is cjð�mÞjðh�1xÞ times the quantityZ
GnDþ

CT
s¼0

�
lim

T!1

Z T

1

X
g2GxnG

e�2pvRðx;gzÞ v�s�1 dv

�
dmðzÞ: ð3:11Þ

To prove the finiteness of this expression, it will suffice to prove the finiteness ofZ
GnDþ

lim
T!1

Z T

1

X
g2GxnG

e�2pvRðx;gzÞ v�s�1 dv dmðzÞ; ð3:12Þ

for s ¼ s0 for some real s0 < 0. Indeed, such finiteness implies that (3.12) defines a

holomorphic function of s in the half plane ReðsÞ > s0. If z lies in the set

D�
[

g2GxnG

g�1Dx; ð3:13Þ

then none of the Rðx; gzÞ’s vanish and the limit on T inside the integral is finite. Note

that the excluded set of z’s has measure zero. The following result will be proved

at the end of this section.

PROPOSITION 3.2. Let bsþ1ðtÞ ¼
R1

1 e�tv v�s�1 dv: Then, if QðxÞ > 0, the integralZ
GnDþ

lim
T!1

Z T

1

X
g2GxnG

e�2pvRðx;gzÞ v�s�1 dv dmðzÞ

¼

Z
GnDþ

X
g2GxnG

bsþ1ð2pRðx; gzÞÞ dmðzÞ

¼

Z
GxnDþ

bsþ1ð2pRðx; zÞÞ dmðzÞ

is holomorphic in the halfplane ReðsÞ > �1.
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Recall that b1ðtÞ ¼ Oð� logðtÞÞ as t ! 0 and b1ðtÞ ¼ Oðe�tÞ as t !1. Thus, when

s ¼ 0, the integrand b1ð2pRðx; zÞÞ has a logarithmic singularity on the ‘waist’ GxnD
þ
x

of the tube GxnD
þ. Also note that this ‘waist’ can be noncompact.

COROLLARY 3.3. Aþ ¼ Bþ.

Next we consider the terms A0 and B0 associated to the nonzero null vectors.

Again, for a given h and j, the associated terms in C0ðv; zÞ will be

cjð0Þ
X
x 6¼0

QðxÞ¼0

jðh�1xÞ e�2pvRðx;zÞ: ð3:14Þ

There are a finite number of G orbits in the space of null lines in VðQÞ. For a given

null line ‘ � V, we have the contribution to A0:

cjð0Þ

Z
GnDþ

CT
s¼0

�
lim

T!1

Z T

1

X
g2G‘nG

X
x2‘ðQÞ; x 6¼0

jðh�1xÞ�

� e�2pvRðx;gzÞ v�s�1 dv

�
dmðzÞ: ð3:15Þ

Again, the following result, to be proved below, will suffice.

PROPOSITION 3.4. Suppose that n > 1. Then the integralZ
G‘nDþ

X
x2‘ðQÞ; x 6¼0

jðh�1xÞbsþ1ð2pvRðx; zÞÞ dmðzÞ

is holomorphic in the halfplane ReðsÞ > �ðn=2Þ.

COROLLARY 3.5. A0 ¼ B0.

Finally, we turn to the terms where m < 0. Note that the sum on m in C�ðv; zÞ is

now infinite so that we will need information about the growth of the Fourier coef-

ficients cjð�mÞ. In fact, these can grow very fast!

As before, we fix j and h, and, taking the limit with respect to T, we considerZ
GnDþ

X
m<0

cjð�mÞ
X

x
QðxÞ¼m

Z 1

1

jðh�1xÞ e�2pvRðx;zÞ v�s�1 dv dmðzÞ: ð3:16Þ

Here we can push the integral over GnDþ inside the sum on m, and again use the fact

that, for each m, there are only a finite number of G orbits in the set

fx 2 VðQÞ j QðxÞ ¼ m; jðh�1xÞ 6¼ 0g: ð3:17Þ

Thus, it will suffice to show:

PROPOSITION 3.6. The sum
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X
m<0

cjð�mÞ
X

x
QðxÞ¼m
modG

jðh�1xÞ

Z
GxnDþ

Z 1

1

e�2pvRðx;zÞ v�s�1 dv dmðzÞ

defines an entire function of s.

COROLLARY 3.7. A� ¼ B�.

Proof of Proposition 3:2: To show the finiteness of the integralZ
GxnDþ

bsþ1ð2pRðx; zÞÞdmðzÞ ð3:18Þ

in the case QðxÞ > 0, we introduce coordinates. We choose a basis for VðRÞ so that

the inner product has matrix In;2 and so that x ¼ 2av1 is a nonzero multiple of the

first basis vector. Then SOðV ÞðRÞþ ’ SOþ
ðn; 2Þ ¼ G and the subgroup stabilizing

x is isomorphic to SOþ
ðn� 1; 2Þ ¼ Gx. Let z0 2 Dþ be the oriented negative 2-plane

spanned by vnþ1 and vnþ2 and let K ¼ SOðnÞ � SOð2Þ be its stabilizer in SOþ
ðn; 2Þ.

The plane spanned by v1 and vnþ1, the first negative basis vector, has signature

(1, 1). The identity component of the special orthogonal group of this plane is a

1-parameter subgroup

A ¼ fat j t 2 Rg; ð3:19Þ

where atv1 ¼ coshðtÞv1 þ sinhðtÞvnþ1. Let Aþ be the subset of at’s with t5 0. Then,

from the general theory of semisimple symmetric spaces – a convenient reference

is [13] – one has a double coset decomposition

G ¼ GxAþK ð3:20Þ

and the integral formulaZ
G

fðgÞ dg ¼

Z
Gx

Z
Aþ

Z
K

fðgxatkÞ j sinhðtÞj coshðtÞn�1 dgx dt dk: ð3:21Þ

For z ¼ gxat � z0 2 Dþ, we have

Rðx; zÞ ¼ 2m sinh2
ðtÞ; ð3:22Þ

since QðxÞ ¼ 2a2 ¼ m. Then, our integral becomes (up to a positive constant depend-

ing on normalization of invariant measures)Z
GxnDþ

bsþ1ð2pRðx; zÞÞ dmðzÞ ð3:23Þ

¼ C volðGxnGxÞ volðK Þ

Z 1

0

bsþ1ð4pm sinh2
ðtÞÞ sinhðtÞ coshðtÞn�1 dt:

LEMMA 3.8.

ðiÞ The function bsþ1ðtÞ ¼
R1

1 e�tu u�s�1 du is Oðe�tÞ as t !1.

ðiiÞ If s < 0, then bsþ1ðtÞ ¼ OðtsÞ as t ! 0.

ðiiiÞ If s ¼ 0, then
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b1ðtÞ ¼ �Eið�tÞ ¼ � logðtÞ þ gþ
Z t

0

eu � 1

u
du

is the exponential integral and this function has a logarithmic singularity,

� logðtÞ, as t ! 0.

ðivÞ If s > 0, then bsþ1ðtÞ ¼ Oð1Þ as t ! 0.

The integral (3.23) is finite for s > �1, since, near the lower endpoint it looks likeZ
0

sinhðtÞ2s sinhðtÞ coshðtÞn�1 dt ¼

Z
0

u2sþ1 ðu2 þ 1Þ
1
2ðn�2Þdu: ð3:24Þ

Note that the signature of x? is ðn� 1; 2Þ, so that the volume volðGxnGxÞ is also

always finite. This proves Proposition 3.2. &

Proof of Proposition 3:4: Finally, we consider the integralZ
G‘nDþ

X
x2‘ðQÞ; x 6¼0

jðh�1xÞbsþ1ð2pvRðx; zÞÞ dmðzÞ: ð3:25Þ

In this case, we choose a basis for V such that the matrix for the inner product is

1
In�1;1

1

0@ 1A ð3:26Þ

and such that ‘ is spanned by the first basis vector. Moreover, we assume that

fx 2 ‘ðQÞ j jðh�1xÞ 6¼ 0g � 2Zv1: ð3:27Þ

The parabolic subgroup P‘ stabilizing the line ‘ then has Levi decomposition

P1 ¼ U1MA with A ’ GLð‘Þ, M ’ SOþ
ðn� 1; 1Þ, and unipotent radical U1. We take

z0 to be the oriented negative 2-plane spanned by 1
2 ðv1 � vnþ2Þ and vnþ1 and let K be

its stabilizer. Then

G ¼ SOþ
ðV ÞðRÞ ¼ UMAK ð3:28Þ

and we have the integral formulaZ
G

fðgÞ dg ¼

Z
U

Z
M

Z
A

Z
K

fðumarkÞ r
�n�1 du dm dr dk; ð3:29Þ

where arv1 ¼ rv1. For z ¼ umar � z0, and x ¼ 2av1,

Rðx; zÞ ¼ Rða�1
r x; z0Þ ¼ 2a2r�2; ð3:30Þ

since

a�1
r x ¼ 2ar�1v1 ¼ 2ar�1

�
1
2ðv1 þ vnþ2Þ þ

1
2ðv1 � vnþ2Þ

�
ð3:31Þ
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has a r�1 ðv1 � vnþ2Þ as its z0 component. The integral (3.25) is then majorized by a

constant timesZ 1

0

X
a2Z; a 6¼0

bsþ1ð4pa
2 r�2Þ r�n�1 dr

¼ 2ð4pÞ�n zðnÞ
Z 1

0

bsþ1ðr
2Þ rn�1 dr: ð3:32Þ

The integral here is finite provided 2sþ n5 0, so we obtain the required conver-

gence provided n5 2 and ReðsÞ > �ðn=2Þ, i.e., in all isotropic cases except n ¼ 1

(which was an exceptional case). &

Proof of Proposition 3:6: For x with QðxÞ ¼ m < 0, we write x ¼ przðxÞ þ x0 so

that

Rðx; zÞ ¼ ðx0; x0Þ � 2m5 2jmj: ð3:33Þ

We let R0ðx; zÞ ¼ ðx0; x0Þ, and note that R0ðx; zÞ ¼ 0 if and only if x 2 z. Then we have

the easy estimate:Z 1

1

e�2pvRðx;zÞ v�s�1 dv4 e�2pR0ðx;zÞ

Z 1

1

e�4pjmjv v�s�1 dv

4 e�2pR0ðx;zÞ

Z 1

1

e�Ev eðE�4pjmjÞv v�s�1 dv

4 e�2pR0ðx;zÞ eE�4pjmj
Z 1

1

e�Ev v�s�1 dv

4CðE; sÞ e�2pR0ðx;zÞ e�4pjmj; ð3:34Þ

for any E with 0 < E < 4pjmj, where the constant CðE; sÞ is uniform in any s-halfplane

and independent of m. Note that there is a positive lower bound for the quantity jmj

where m < 0 has cjð�mÞ 6¼ 0. This leads to the expression

X
m<0

jcjð�mÞj e�4pjmj
X

x
QðxÞ¼m
modG

jðh�1xÞ

Z
GxnDþ

e�2pR0ðx;zÞ dmðzÞ: ð3:35Þ

Recall that the modular form fj with Fourier coefficients cjð�mÞ has weight

1� ðn=2Þ, with some real multiplier for a congruence subgroup of SL2ðZÞ, and is

holomorphic in the upper halfplane with possible poles at the cusps. Then it is

known that

cjð�mÞ ¼ O
�
jmj�

nþ1
4 eC

ffiffiffiffiffi
jmj

p �
; ð3:36Þ

i.e., these coefficients grow at most subexponentially. The (explicit) constant C

depends only on the order of the pole of fj and on the multiplier. If n > 2,

so that fj has negative weight, this fact follows from the classical work of
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Rademacher [46], Rademacher and Zuckermann [47], Zuckermann [58], and

Petersson [45], cf. also Hejhal [22]. The cases n ¼ 1 and 2 are covered by Hejhal

[22] and Niebur [42].

Finally, it remains to estimate the quantityX
x

QðxÞ¼m
modG

jðh�1xÞ

Z
GxnDþ

e�2pR0ðx;zÞ dmðzÞ: ð3:37Þ

To estimate the integral here, we choose basis for V so that the inner product has

matrix �I2;n and such that x ¼ 2av1. Let z0 be the span of v1 and v2, and let

A ¼ fatg be the 1–parameter subgroup which is the identity component of the special

orthogonal group of the plane spanned by v1 and v3. In this case atv1 ¼

coshðtÞv1 þ sinhðtÞv3. Again we have the decomposition (3.28) and an integral for-

mula analogous to (3.29), but with the cosh and sinh switched in the modulus

factor. For z ¼ gxat � z0, we also have

Rðx; zÞ ¼ 2jmj cosh2
ðtÞ: ð3:38Þ

and

R0ðx; zÞ ¼ 2jmj cosh2
ðtÞ � 2jmj ¼ 2jmj sinh2

ðtÞ: ð3:39Þ

Then we haveZ
GxnDþ

e�2pR0ðx;zÞ dmðzÞ

¼ C0 volðGxnGxÞ volðK Þ

Z 1

0

e�4pjmj sinh2
ðtÞ sinhðtÞn�1 coshðtÞ dt

¼ C0 volðGxnGxÞ volðK Þ 1
2 ð4pjmjÞ

�n
2 G

n

2

� �
: ð3:40Þ

Using this in (3.37) and using (3.36) an upper bound for (3.35) isX
m<0

jmj�
3nþ1

4 eC
ffiffiffiffiffi
jmj

p
�4pjmj

X
x

QðxÞ¼m
modG

jðh�1xÞ volðGxnGxÞ: ð3:41Þ

Here m runs over the negative elements of N�1Z for a suitable N depending on j and

h. The resulting expression is finite since, [51],X
x

QðxÞ¼m
modG

jðh�1xÞ volðGxnGxÞ ¼ Oðjmj
n
2þEÞ: ð3:42Þ

This completes the proof of Theorem 3.1. &

There are several more things which need to be proved.

Proof of Proposition 2:5: By (2.3), the left-hand side of the identity
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CT
s¼0

�
lim

T!1

Z
FT

X
j

fjðtÞ IXðt;jevÞ v�s�2 du dv

�
¼ lim

T!1

� Z
FT

X
j

fjðtÞ IXðt;jevÞ v�2 du dv� c0ð0Þ logðT Þ

�
to be proved can be written as

volðX Þ�1 CT
s¼0

�
lim

T!1

Z
X

Z
FT

ðð fðtÞ; Wðt; zÞÞÞ v�s�2 du dv dmðzÞ
�

¼ volðX Þ�1

Z
X

Z
F 1

ðð fðtÞ; Wðt; zÞÞÞ v�2 du dv dmðzÞþ

þ volðX Þ�1 CT
s¼0

�
lim

T!1

Z
X

Z T

1

Cðv; zÞ v�s�1 dv dmðzÞ
�
:

The analysis made in the proof of Theorem 3.1 above shows that the integralZ
X

Z 1

1

(
Cðv; zÞ � C00ðv; zÞ

)
v�s�2 dv dmðzÞ

defines a holomorphic function of s in the half plane ReðsÞ > �1. Note that in the

case n ¼ 1 there are no C0 terms, since V is then assumed to be anisotropic. The

remaining term is

volðX Þ�1

Z
X

Z T

1

C00ðv; zÞ v
�s�1 dv dmðzÞ ¼ c0ð0Þ

1

s

�
1� T�s�

¼ c0ð0Þ logðT Þ þOðsÞ:

This term makes no contribution when we take the limit as T goes to infinity

followed by the constant term at s ¼ 0. Thus, once the term c0ð0Þ logðT Þ has

been removed, we can pass to the limit on T with s ¼ 0, and this proves

Proposition 2.5. &

Proof of Proposition 2:11: In the Fourier expansion (2.21) for Eðt; s;j; ‘þ 2Þ for

a factorizable function j ¼
N

p jp 2 SðVðAfÞÞ, the mth coefficient, for m 6¼ 0, has a

product formula

Emðt; s;j; ‘þ 2Þ ¼ Ajðs;m; vÞ qm ¼ Wm;1ðt; s; ‘þ 2Þ �
Y

p

Wm;pðs;jpÞ:

The following facts are well known, cf. [36] for more details.

For s ¼ s0 ¼ ‘þ 1 ¼ ðn=2Þ,

Wm;1

�
t;

n

2
;
n

2
þ 1

�
¼
ð�2iÞ

n
2þ1

Gðn2þ 1Þ
m

n
2 qm if m > 0;

Wm;1

�
t;

n

2
;
n

2
þ 1

�
¼ 0; if m < 0; and

W 0
m;1

�
t;

n

2
;
n

2
þ 1

�
¼ pð�iÞ�

n
2�1 2�

n
2 qm v�

n
2

Z 1

1

e�4pjmjvr r�
n
2�1 dr:
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On the other hand, for any m 6¼ 0, the product over the finite primes is

CðmÞ :¼

�Y
p

Wm;pðs;jpÞ

�
s¼s0

¼ Oð1Þ:

Therefore, for m < 0, we have

bjðm; vÞ ¼ pð�iÞ�
n
2�1 2�

n
2 CðmÞ v�

n
2

Z 1

1

e�4pjmjvr r�
n
2�1 dr;

where CðmÞ ¼ Oð1Þ. Thus

jbjðm; vÞj ¼ O
�
v�

n
2�1 jmj�1 e�4pjmjv �:

Using (3.36), this proves part (i) and (ii) of Proposition 2.11.

Finally, the constant term has the form

E0ðt; s;j; ‘þ 2Þ ¼ v
1
2ðsþ1�‘Þ jð0Þ þW0;1ðt; s; ‘þ 2Þ

Y
p

W0;pðs;jpÞ;

where

W0;1ðt; s; ‘þ 2Þ ¼ 2p v�
1
2ðsþ

n
2Þ

2�sð�iÞ
n
2þ1 GðsÞ 1

2 ðs�
n
2Þ

Gð12 ðsþ
n
2þ 2ÞÞGð12 ðs�

n
2þ 2ÞÞ

:

Then, the derivative at s ¼ s0 ¼ ðn=2Þ is

E 0
0

 
t;

n

2
;j;

n

2
þ 1

!
¼

1

2
logðvÞjð0Þ � ip ð2ivÞ�

n
2

Gðn2Þ
Gðn2þ 1Þ

Cð0Þ:

This yields (iii) of Proposition 2.11. &

Proof of Proposition 1:4: It suffices to show that

Fðz;F Þ ¼

Z �

GnH
ðð FðtÞ; Wðt; zÞ ÞÞ dmðtÞ

¼ CT
s¼0

�
lim

T!1

Z T

1

Cðv; zÞ v�s�1 dv

�
þ

Z
F 1

ðð FðtÞ; Wðt; zÞ ÞÞ dmðtÞ;

is integrable over X, where Cðv; zÞ is given by (3.2). The second term here is clearly

integrable, since Wðt; zÞ is. We break up the first term into pieces Fþ, F0, F00 and

F� corresponding to the decomposition of Cðv; zÞ in (3.7). By (3.9), F00 ¼ 0, while

the integrability of Fþ (resp. F0) (resp. F�) is give by Proposition 3.2 (resp.

Proposition 3.4) (resp. Proposition 3.6). &

4. Formulas for Degrees

In this section, we explain how the Siegel–Weil formula can be applied to yield

formulas for the degrees of certain divisors on the quasiprojective varieties attached
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to orthogonal groups of signature ðn; 2Þ over Q. More precisely, these degrees occur

as the Fourier coefficients of certain (special values of ) Eisenstein series. This is

analogous to a result of Oda, [44]. We would like to show that such identities

between degrees and ‘class numbers’ arise in a very conceptual way. The basic idea

is be to apply the Siegel–Weil formula for two different quadratic spaces to describe a

special value of the same Eisenstein series! Comparison of the Fourier coefficients of

the two theta integrals and the Eisenstein series yields nontrivial identities, several of

which occur in the classical literature, [11, 44, 52, 57].

4.1. THE SIEGEL–WEIL FORMULA

For convenience of the reader, we briefly review the Siegel–Weil formula for the dual

pair ðSL2;OðV ÞÞ needed in this section and in section 2.

Let V be a nondegenerate quadratic space over Q, and let G ¼ SL2. As before, let

G0A be the metaplectic cover of GðAÞ ¼ SL2ðAÞ. We identify G0A ¼ SL2ðAÞ � f 1g,

where multiplication on the right is given by ½g1; E1�½g2; E2� ¼ ½g1g2; E1E2cðg1; g2Þ�,

for the cocycle as in [54], [17]. In particular, we have subgroups

NA ¼ fn ¼ ½nðbÞ; 1� j b 2 Ag; nðbÞ ¼
1 b

1

� �
; ð4:1Þ

and

MA ¼ fmðaÞ ¼ ½mðaÞ; E� j a 2 A
�; E ¼  1g; mðaÞ ¼

a
a�1

� �
: ð4:2Þ

An idele character w of Q
�
nA

� determines a character wc of MA by

wcð½mðaÞ; E�Þ ¼ E wðaÞ gða;cÞ�1
ð4:3Þ

where gð�;cÞ is the global Weil index.

The group G0A acts on the Schwartz space SðVðAÞÞ via the Weil representation

o ¼ oc determined by our fixed additive character c of A=Q, and this action com-

mutes with the linear action of OðV ÞðAÞ. For g0 2 G0A, h 2 OðV ÞðAÞ, and

j 2 SðVðAÞÞ, the theta series

yðg0; h;jÞ ¼
X

x2VðQÞ

oðg0Þjðh�1xÞ; ð4:4Þ

defines a smooth function on G0
A
�OðV ÞðAÞ, left invariant under G0Q �OðV ÞðQÞ,

and slowly increasing on the quotient
�
G0Q �OðV ÞðQÞ

�
n
�
G0

A
�OðV ÞðAÞ

�
.

By Weil’s criterion [27] in the present case, the theta integral

Iðg0;jÞ ¼
Z

OðV ÞðQÞnOðV ÞðAÞ

yðg0; h;jÞ dh; ð4:5Þ

where volðOðV ÞðQÞnOðV ÞðAÞ; dhÞ ¼ 1, is absolutely convergent whenever either V

is anisotropic or dimðV Þ � r > 2, where r is the Witt index of V. The resulting
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automorphic form IðjÞ on G0QnG
0
A

is identified, by the Siegel–Weil formula, with a

special value of an Eisenstein series, defined as follows.

Let w ¼ wV be the quadratic character of A
�=Q

� defined by

wðxÞ ¼ ðx; ð�1Þmðm�1Þ=2 detðV ÞÞ; ð4:6Þ

where m ¼ dimðV Þ and detðV Þ 2 Q
�=Q

�;2 is the determinant of the matrix for the

quadratic form Q on V. For s 2 C, let Iðs; wÞ be the principal series representation

of G0
A

consisting of smooth functions FðsÞ on G0
A

such that

Fðn mðaÞg0; sÞ ¼
wcðmðaÞÞ jajsþ1 Fðg0; sÞ; if n is odd;

wðmðaÞÞ jajsþ1 Fðg0; sÞ; if n is even:

�
ð4:7Þ

There is then a G0A intertwining map

l ¼ lV:SðVðAÞÞ �! Iðs0; wVÞ; lðjÞðg0Þ ¼ oðg0Þjð0Þ; ð4:8Þ

where s0 ¼ ðm=2Þ � 1. As in Section 1, let K01K0 be the full inverse image of

SOð2Þ � SL2ðẐZÞ in G0
A

. A section FðsÞ 2 Iðs; wÞ will be called standard if its restriction

to K01K0 is independent of s. By the Iwasawa decomposition G0A ¼ N0
AM 0

AK 0
1K 0, the

function lðjÞ 2 Iðs0; wÞ has a unique extension to a standard section FðsÞ 2 Iðs; wÞ,
where Fðs0Þ ¼ lðjÞ. The Eisenstein series, defined by

Eðg0; s;FÞ ¼ Eðg0; s;jÞ ¼
X

g2P0
Q
nG0

Q

Fðgg0; sÞ ð4:9Þ

for ReðsÞ > 1, has a meromorphic analytic continuation to the whole s-plane.

THEOREM 4.1 ðSiegel�Weil formulaÞ: ðiÞ Assume that V is anisotropic or that

dimðV Þ � r > 2, where r is the Witt index of V, so that the theta integral ð4:5Þ is

absolutely convergent. Then Eðg0; s;jÞ is holomorphic at the point s ¼ s0 ¼ ðm=2Þ � 1,

where m ¼ dimðV Þ, and

Eðg0; s0;jÞ ¼ k � Iðg0; jÞ;

where k ¼ 2 when m4 2 and k ¼ 1 otherwise.

ðiiÞ Suppose, in addition, that m > 1. Then

Eðg0; s0;jÞ ¼ k � Iðg0;jÞ ¼
k
2

Z
SOðV ÞðQÞnSOðV ÞðAÞ

yðg0; h;jÞ dh;

where dh is Tamagawa measure on SOðV ÞðAÞ.

ðiiiÞ Suppose that dimðV Þ ¼ m > 4 and let H1 ¼ SpinðV Þ. Then, for any h 2 HðAÞ,

Eðg0; s0;jÞ ¼
1

4

Z
H1ðQÞnH1ðAÞ

yðg0; h1h;jÞ dh1;

where volðH1ðQÞnH1ðAÞ;dh1Þ ¼ 1. In particular, this integral is independent of

h 2 HðAÞ.
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When m > 4, this is the classic result of Siegel and Weil, in Weil’s formulation. The

variants for m4 4 are also mostly classical, e.g., due to Hecke, Siegel, etc., We do

not attempt to give systematic references. Of course, the analogous result holds

for any number field F.

The point of (ii) (resp. (iii)) is that we can almost always replace the integral over

OðV ÞðQÞnOðV ÞðAÞ with the integral over SOðV ÞðQÞnSOðV ÞðAÞ (resp. H1ðQÞnH1ðAÞ).

The later is much more convenient, since SOðV Þ is connected. In the range m > 4,

this fact is again a very special case of the results of Weil, [56], pp.76–77, Théorèm 5.

We explain briefly why the improvements of parts (ii) and (iii) hold. Let

I0 : SðVðAÞÞ ! C be the linear functional given by

I 0ðjÞ ¼
Z

SOðV ÞðQÞnSOðV ÞðAÞ

yðh;jÞ dh; ð4:10Þ

where yðh;jÞ ¼ yðe; h;jÞ, so that I 0 defines an element of

HomSOðV Þ Að Þ SðV Að ÞÞ;Cð Þ; ð4:11Þ

where SOðV Þ Að Þ acts trivially on C. The group

CðAfÞ ¼ OðV Þ Að Þ=SOðV Þ Að Þ ’ m2 Að Þ ð4:12Þ

acts on the space of such functionals. In fact one has

PROPOSITION 4.2. If dimðV Þ > 1, then the action of CðAfÞ on the space of

SOðV Þ Að Þ-invariant linear functionals on SðV Að ÞÞ, ð4:11Þ, is trivial.

Proof. For any prime p41, consider the analogous local space

HomSOðVpÞðSðVpÞ;CÞ; ð4:13Þ

with its action of Cp. If the sign character Ep of Cp ¼ OðVpÞ=SOðVpÞ occurs, then the

sign representation sgnp of OðVpÞ occurs in the local theta correspondence for the

dual pair ðfSLSL2ðQpÞ;OðVpÞÞ. But it is known, [48], that the sign representation does

not occur for such a dual pair if dimðV Þ ¼ m > 1. Thus Cp acts trivially on (4.13),

and a standard argument then shows that C Að Þ acts trivially on (4.11), as

claimed. &

On the other hand, it is clear that

Iðg 0;jÞ ¼
Z

C Qð ÞnC Að Þ

I 0 oðg 0ÞoðhÞjð Þ dc

¼
1

2

Z
C Að Þ

I 0 oðg 0ÞoðhÞjð Þ dc

¼
1

2
I 0 oðg 0Þjð Þ; ð4:14Þ

where h 2 OðV Þ Að Þ projects to c 2 C Að Þ and where volðC Að Þ; dcÞ ¼ 1. The factor 1=2

occurs as the volume of C Qð ÞnC Að Þ. This explains (ii). The statement of (iii) is
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obtained in the same way by considering the first occurrence of other nontrivial

characters of OðV Þ in the local theta correspondence.

4.2. A MATCHING PRINCIPLE

For a nondegenerate quadratic space V over Q of dimension m, let

PðV Þ ¼ imageðlVÞ � Iðs0; wÞ ð4:15Þ

be the resulting G0
A

-submodule of the principal series, where w ¼ wV and s0 ¼

ðm=2Þ � 1. There are analogous local maps

lp : SðVpÞ �! Ipðs0; wpÞ; ð4:16Þ

with images

PpðVpÞ ¼ imageðlpÞ � Ipðs0; wpÞ; ð4:17Þ

the local components of PðV Þ for the corresponding local induced representations.

Note that PðV Þ and the PpðVpÞ’s are not always irreducible. The key idea is that the

Eisenstein series (4.9) associated to j ¼ �pjp 2 SðV Að ÞÞ depends only on the the

collection flpðjpÞg of local components.

DEFINITION 4.3. Let Vp and V 0
p be quadratic spaces over Qp of dimension m and

fixed character wVp
¼ wV 0

p
¼ wp. Functions jp 2 SðVpÞ and j0p 2 SðV 0

pÞ are said to

match if lpðjpÞ ¼ l0pðj
0
pÞ:

Remark 4:4: This matching is analogous to that which occurs in the trace formula

and relative trace formula, and our identity of theta integrals can be viewed as an

analogue of a comparison of trace formulas.

Remark 4:5: If m > 4, or if m ¼ 4 and wp 6¼ 1, then the nonarchimedean local

principal series Ipðs0; wpÞ are irreducible and hence, for any pair Vp and V 0
p, every

jp 2 SðVpÞ has a matching j0p 2 SðV 0
pÞ.

If m ¼ 4, and wp ¼ 1, then s0 ¼ 1 and Ipðs0; wpÞ has the special representation as

irreducible submodule and the trivial representation as quotient. The split four

dimensional quadratic space Vp has PpðVpÞ ¼ Ipðs0; wpÞ, while the anisotropic space

V 0
p given by the reduced norm on the division quaternion algebra over Qp has PpðV

0
pÞ

the irreducible special. Therefore the space of jp’s in SðVpÞ which have matching j0p’s

has codimension 1.

If m ¼ 3, then s0 ¼
1
2 and Ipðs0; wpÞ always has length 2 with a special repre-

sentation of G0p as the irreducible subrepresentation and an irreducible Weil repre-

sentation – playing the role of the trivial representation for the metaplectic group

G0p – as irreducible quotient, [49]. The ternary quadratic space Vp of trace 0 elements

in M2ðQpÞ with a scalar multiple (determined by wp) of the determinant form has
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PpðVpÞ ¼ Ipðs0; wpÞ, and the analogous space V 0
p of trace 0 elements in the division

quaternion algebra over Qp has PpðV
0
pÞ � Ipðs0; wpÞ the unique irreducible subrepre-

sentation. Now the subspace of jp’s in SðVpÞ which have matching j0p’s in SðV 0
pÞ has

infinite codimension.

Remark 4:6: If m ¼ 2 and wp 6¼ 1, then the spaces PpðVpÞ and PpðV
0
pÞ are irre-

ducible and distinct, while, if m ¼ 1, there is a unique space with a given wp, so the

matching phenomenon of interest here will not occur globally.

Note that the cases m ¼ 3 and 4 are precisely those for which s0 is in or at the edge

of the critical strip jReðsÞj4 1.

Over R, the situation is the following. For r 2 1
2 Z, satisfing a suitable parity con-

dition, let FrðsÞ be the (unique) function in I1ðs; w1Þ such that

Frðk0; sÞ ¼ wrðk
0Þ; ð4:18Þ

for the character wr of K 0
1. The space of K 0

1-finite vectors in I1ðs; w1Þ is then span-

ned by the FrðsÞ’s for r 2 r0 þ 2Z.

LEMMA 4.7. Suppose that V1 and V 0
1 are quadratic spaces over R of dimension m

and with the same quadratic character, i.e., with signatures ð p; qÞ and ð p0; q0Þ with

q � q 0modð2Þ. Suppose that j1 2 SðV1Þ and j01 2 SðV 0
1Þ are eigenfunctions for K 0

1

with eigencharacter wr and with j1ð0Þ ¼ j01ð0Þ. Then j1 and j01 match and

l1ðj1Þ ¼ l01ðj
0
1Þ ¼ Frðs0Þ.

PROPOSITION 4.8 (Matching Principle). Suppose that V and V 0 are quadratic

spaces over Q of the same dimension and with the same quadratic character

wV ¼ wV 0 ¼ w. Suppose that j 2 SðV Að ÞÞ and j0 2 SðV 0 Að ÞÞ match, i.e., lðjÞ ¼
l0ðj0Þ ¼ Fðs0Þ. Assume that the convergence condition of the Siegel–Weil formula is

fulfilled by the spaces V and V 0. Then Iðg0;jÞ ¼ Eðg0; s0;FÞ ¼ Iðg0;j0Þ:

Remark 4:9: The definition of matching and the resulting equality of theta inte-

grals can be extended to dual pairs ðSpðrÞ;OðV ÞÞ, ðSpðrÞ;OðV 0ÞÞ for any r5 1 over a

number field, dual pairs for unitary groups, etc.

Of course, the matching principle is a trivial observation, but, while the Eisenstein

series is built from purely local data, the theta integrals involved depend on global

arithmetic. In particular, their equality can yield some highly nontrivial identities.

We now describe one of these.

4.3. A GEOMETRIC EXAMPLE

Let V be a quadratic space over Q of signature ðn; 2Þ, and let V 0 be a quadratic space

over Q with wV 0 ¼ wV ¼ w but with signature ðnþ 2; 0Þ. Suppose that j 2 SðVðAfÞÞ
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and j0 2 SðV 0ðAfÞÞ are matching functions. By the discussion above, when n > 2,

any j has such a matching j0. We next construct matching functions over R.

As explained in Section 1 above, the Gaussian for V Rð Þ is the function

j1 2 SðV Rð ÞÞ � Að0;0ÞðDÞ given by

j1ðx; zÞ ¼ e�pðx;xÞz ¼ e�2pRðx;zÞ e�2pQðxÞ: ð4:19Þ

It has weight ‘ ¼ ðn=2Þ � 1 and j1ð0; zÞ ¼ 1, so that

l1ðj1Þ ¼ F‘ðs0Þ: ð4:20Þ

Let V 0 Rð Þ be a quadratic space of signature ðnþ 2; 0Þ. The Gaussian j01 2
SðV 0 Rð ÞÞ is given by

j01ðxÞ ¼ e�2pQ0ðxÞ: ð4:21Þ

It has weight ðnþ 2Þ=2 ¼ ‘þ 2 and j01ð0Þ ¼ 1, so that

l01ðj
0
1Þ ¼ F‘þ2ðs0Þ: ð4:22Þ

In particular, the Gaussians of V Rð Þ and V 0 Rð Þ do not match, and we will need to

find another function for V Rð Þ.

One of the main results of [29] was the construction of a Schwartz form for V,

jKM 2 SðV Rð ÞÞ � Að1;1ÞðDÞ; ð4:23Þ

where Að1;1ÞðDÞ is the space of smooth ð1; 1Þ-forms on D, with the following

properties:

(i) For all h 2 OðV Rð ÞÞ,

h!jKMðh
�1xÞ ¼ jKMðxÞ; ð4:24Þ

where h! indicated the action of h on the space Að1;1ÞðDÞ by pullback.

(ii) jKM has weight ‘þ 2 for K 0
1, i.e.,

oðk0ÞjKM ¼ w‘þ2ðk
0ÞjKM; ð4:25Þ

for the Weil representation action of K 0 on SðV Rð ÞÞ.

(iii) jKM is closed:

djKM ¼ 0 ð4:26Þ

for exterior differentiation d on D.

Note that it follows from properties (i) and (iii) above that jKMðxÞ 2 Að1;1ÞðDÞ is a

closed OðV Rð ÞÞx invariant form. For example,

O :¼ jKMð0Þ ð4:27Þ

is an OðV Rð ÞÞ invariant ð1; 1Þ-form on D, which we will identify in a moment.
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In the present situation, jKM is obtained as follows. Recall from Lemma 3.8 that

for t 2 R>0, the exponential integral b1ðtÞ has a logarithmic singularity, � logðtÞ, as

t ! 0 and decays like e�t as t !1. For x 2 V Rð Þ, x 6¼ 0, and z 2 D, let

xðx; zÞ ¼ b1ð2pRðx; zÞÞ e�2pQðxÞ: ð4:28Þ

This function is smooth away from the incidence locus

f½x; z� 2 V Rð Þ �D j przðxÞ ¼ 0g: ð4:29Þ

For example, if x 2 V Rð Þ is fixed, then xðxÞ is a smooth function on D�Dx, where

Dx ¼ fz 2 D j z ? xg; ð4:30Þ

as in (1.44). Moreover, xðx; zÞ decays exponentially as z goes to infinity away from

Dx. Note that Dx is nonempty if and only if QðxÞ > 0. The crucial fact then is that,

for x 6¼ 0,

jKMðxÞ ¼ ddcxðxÞ; ð4:31Þ

where, dc
¼ ð1=4pi Þð@ � �@@Þ. In fact, as in [27], we have the stronger assertion, whose

proof we omit:

PROPOSITION 4.10. As currents on D,

ddcxðxÞ þ e�2pQðxÞ dDx
¼ ½jKMðxÞ�:

We can recover the explicit formula for O from this result.

PROPOSITION 4.11. On the tube domain D, let r ¼ rðzÞ ¼ � 1
2ðwðzÞ;wð �zzÞÞ; be the

norm of the section z 7!wðzÞ of LD, as in ð1:10Þ. Then

O ¼ ddc logðrÞ

¼ �
1

2pi
�ð y; yÞ�2

ð y; dzÞ ^ ð y; d �zzÞ þ ð y; yÞ�11
2ðdz; d �zzÞ

( )
:

Proof. We compute

ddcxðxÞ ¼ �
1

2pi
@ �@@ b1ð2pRÞ
 !

e�2pQðxÞ

¼
1

2pi
@ e�2pR �@@ logðRÞ
 !

e�2pQðxÞ

¼
1

2pi
�2p@R ^ �@@ logðRÞ þ @ �@@ logðRÞ
( )

e�2pR�2pQðxÞ

¼ jKMðxÞ: ð4:32Þ

For a moment, we write a ¼ ðx;wðzÞÞ and r ¼ jyj2 ¼ �ð y; yÞ, as in (1.10), so that, by

(1.16), R ¼ r�1jaj2. Then

@ �@@ logðRÞ ¼ �@ �@@ logðrÞ; ð4:33Þ

and
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@R ^ �@@ logðRÞ

¼ r�1da ^ d�aa� r�2 �aa da ^ �@@r� r�2 a @r ^ d�aaþ r�3jaj2@r ^ �@@r: ð4:34Þ

Notice that this last expression defines a smooth form on D.

Setting x ¼ 0, we obtain:

O ¼ jKMð0Þ ¼ ddc logðrÞ: ð4:35Þ

But now, writing

r ¼ �ð y; yÞ ¼ 1
4ðz� �zz; z� �zzÞ; ð4:36Þ

we have

O ¼ �
1

2pi
@ �@@ logðrÞ

¼ �
1

2pi
�r�2 @r ^ �@@rþ r�1@ �@@r
( )

¼ �
1

2pi
�ð y; yÞ�2

ð y;dzÞ ^ ð y; d �zzÞ þ ð y; yÞ�11
2ðdz; d �zzÞ

( )
ð4:37Þ

as claimed.

COROLLARY 4.12. The form

O ¼ jKMð0Þ ¼ ddc log jjsjj2

on XK is the first Chern form for the holomorphic line bundle L_ dual to L. In parti-

cular, �O is an invariant Kähler form on D and hence determines a Kähler form on XK.

EXAMPLE 4.13. In the case n ¼ 1 we have D ’ CnR ¼ Hþ [H� and

O ¼ �ð1=2pÞ y�2 dx ^ dy. In the case n ¼ 2, we have D ’ H�H and

O ¼ �
1

4p
y�2

1 dx1 ^ dy1 þ y�2
2 dx2 ^ dy2

� �
; ð4:38Þ

(compare [25], p. 104, [53], p. 102.)

We now return to the theta integral and its geometric meaning. Write

jKMðxÞ ^ On�1
¼ ~jjKMðxÞO

n; ð4:39Þ

for a function ~jjKM 2 SðV Rð ÞÞ � Að0;0ÞðDÞ. Note that, since O is OðV Rð ÞÞ-invariant,

~jjKMðhx; hzÞ ¼ ~jjKMðx; zÞ ð4:40Þ

for all h 2 OðV Rð ÞÞ. Moreover, ~jjKM also has weight ‘þ 2 for the Weil representation

action of K 0
1.

LEMMA 4.14. For all z 2 D,

lðjKMð�; zÞÞ ¼ F‘þ2ðs0ÞO and lð ~jjKMð�; zÞÞ ¼ F‘þ2ðs0Þ:
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COROLLARY 4.15. For all z 2 D, the functions ~jjKMð�; zÞ 2 SðV Rð ÞÞ and

j00 2 SðV 0 Rð ÞÞ match.

We now return to the global situation, so that, for the matching functions

j 2 SðVðAfÞÞ and j0 2 SðV 0ðAfÞÞ above,

lð ~jjKM � jÞ ¼ l0ðj00 � jÞ ¼ Fðs0Þ; ð4:41Þ

for a standard section FðsÞ 2 Iðs; wÞ. Hence, we have an equality of Eisenstein series:

Eðg0; s; lð ~jjKM � jÞÞ ¼ Eðg0; s; l0ðj00 � j0ÞÞ ¼ Eðg0; s;FÞ: ð4:42Þ

Applying the Siegel–Weil formula, we have

COROLLARY 4.16.

Iðg0; ~jjKM � j;VÞ ¼ Iðg0;j00 � j0;V 0Þ ¼ Eðg0; s0;FÞ:

Here, in forming the theta integral of V, we use the theta function

yðg0; h; ~jjKM � jÞ ¼
X

x2V Qð Þ

oðg0Þ ~jjKMðh
�1
1 x; z0Þjðh�1xÞ; ð4:43Þ

on G0A �OðV Að ÞÞ, where z0 2 D is a fixed point. In particular, as a function on

OðV Að ÞÞ this function is right invariant under the stabilizer of z0 in OðV Rð ÞÞ.

Next we would like to explain the geometric content of the first of these expres-

sions. The key point is to determine the relation between the integral of the theta

function (4.5) over OðV Þ Qð ÞnOðV Þ Að Þ and the integral of the differential form

yðg0;jKM � jÞ ^ On�1 over XK.

PROPOSITION 4.17. Assume that the compact open subgroup K � HðAfÞ satisfies:

ZK :¼ K \ Z Að Þ ’ ẐZ�

under the isomorphism Z Að Þ ’ A
�. Then

Iðg0; ~jjKM � j;VÞ ¼ ð�1Þn 1
4 volðK Þ

Z
XK

yðg0;jKM � jÞ ^ On�1:

Moreover, if m ¼ nþ 2 > 4, then, for cK ¼ jbZZ� : nðK Þj,

I1ðg
0; ~jjKM � j;VÞ ¼ ð�1Þn 1

4 volðK Þ cK

Z
Xj

yðg0; hj;jKM � jÞ ^ On�1:

where, for any h2HðAfÞ,

I1ðg
0; ~jjKM � j;VÞ ¼

Z
H1 Qð ÞnH1 Að Þ

yðg0; h1h; ~jjKM � jÞ dh1;

where volðH1 Qð ÞnH1 Að Þ; dh1Þ ¼ 1. In particular, the integral over Xj is independent

of j.
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Proof. By (ii) of Theorem 4.1,

Iðg0; ~jjKM � j;VÞ ¼
1

2

Z
SOðV Þ Qð ÞnSOðV Þ Að Þ

yðg0; h; ~jjKM � jÞ dh ð4:44Þ

where dh is Tamagawa measure on SOðV Þ Að Þ. A factorization dh ¼ dh1 � dhf will

be determined by the choice of dh01 made below.

We fix the measure dz on ZK with total mass 1, and we obtain a measure dk on K

by requiring that dk=dz be the measure on the compact open subgroup

K=ZK � SOðV ÞðAfÞ induced by dhf. This provides a normalization of the Haar mea-

sure on HðAfÞ and hence a measure dh0 on Z Rð ÞnH Að Þ. Continuing the calculation

above, and noting that Z Að Þ ¼ Z Qð ÞZ Rð ÞZK, we have

Iðg0; ~jjKM � j;VÞ

¼ 1
2

Z
H Qð ÞZ Að ÞnH Að Þ

yðg0; h0; ~jjKM � jÞ dh

¼ 1
2

Z
H Qð ÞZ Rð ÞnH Að Þ

yðg0; h0; ~jjKM � jÞ dh0

¼ 1
2

X
j

Z
H Qð ÞZ Rð ÞnH Qð ÞH Rð Þ

þhjKh�1
j

yðg0; hhj; ~jjKM � jÞ dh0

¼ 1
4 volðK Þ

X
j

Z
GjZðRÞnH Rð Þ

þ

yðg0; h1hj; ~jjKM � jÞ dh1: ð4:45Þ

Here we have used the fact that j is K-invariant. The extra factor of 1
2 in the last step

arises from the fact that ZðQÞ \ K ’ f 1g. Finally, we normalize the measure dh1
on ZðRÞnHðRÞ ¼ SOðV ÞðRÞ by requiring that for f2CcðDÞ,Z

ZðRÞnHðRÞ

fðh1z0Þ dh1 ¼ ð�1Þn
Z

D

f � On; ð4:46Þ

where z0 2 D is the base point used in (4.43). Then, using (4.39), we have

Iðg0; ~jjKM � j;VÞ

¼ ð�1Þn 1
4 volðK Þ

X
j

Z
GjnDþ

yðg0; hj; ~jjKM � jÞOn

¼ ð�1Þn 1
4 volðK Þ

X
j

Z
GjnDþ

yðg0; hj;jKM � jÞ ^ On�1

¼ ð�1Þn 1
4 volðK Þ

Z
XK

yðg0;jKM � jÞ ^ On�1: ð4:47Þ

Let S ¼ Q
�

R
�
þnA

�. Then, for a compactly supported function f on

HðQÞZðRÞnHðAÞ,Z
HðQÞZðRÞnHðAÞ

fðhÞ dh0 ¼

Z
S

Z
H1ðQÞZ1ðRÞnH1ðAÞ

fðh1haÞ dh1 da;

where nðhaÞ ¼ a and da is the invariant measure on S for which volðS; daÞ ¼ 1.

Applying this to the jth summand in the third expression in (4.45), we have
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Z
HðQÞZðRÞnHðQÞHðRÞþhjK

yðg0; h0hj; ~jjKM � jÞ dh0

¼

Z
nðK Þ

Z
H1ðQÞZ1ðRÞnH1ðAÞ

yðg0; h1hahj; ~jjKM � jÞ dh1 da

¼ jẐZ
� : nðK Þj�1

Z
H1ðQÞZ1ðRÞnH1ðAÞ

yðg0; h1h; ~jjKM � jÞ dh1

since the inner integral in the second line is independent of hahj. Here h2HðAÞ is

arbitrary. The claimed identity is obtained by identifying this with the j th term in

the middle expression in (4.47).

Remark 4:18: The same unfolding argument yields

1 ¼

Z
OðV ÞðQÞnOðV ÞðAÞ

dh

¼ ð�1Þn 1
4 volðK Þ

P
j

R
GjnDþ On

¼ ð�1Þn 1
4 volðK Þ volðXK;O

n
Þ; ð4:48Þ

and thus the useful formula

volðK Þ ¼ ð�1Þn
4

volðXK;O
n
Þ
: ð4:49Þ

The sign in (4.44) has been introduced to make volðK Þ positive.

Viewed as a differential form on D�HðAfÞ=K, the theta form is given by

yðg0; h;jKM � jÞ ¼
X
m2Q

X
x2VðQÞ
QðxÞ¼m

oðg0ÞjKMðxÞjðh
�1xÞ; ð4:50Þ

on the set D� hK. Here note that oðg0ÞjKMðxÞ is a ð1; 1Þ-form on D and that (4.50)

is, in fact, the Fourier expansion of the theta form as a function on G0A. Let

ymðg
0;jKM � jÞ be the mth Fourier coefficient, i.e., the partial sum over x 2 VðQÞ

with QðxÞ ¼ m, and note that, since this form is itself HðQÞ-invariant, it defines a

ð1; 1Þ-form on XK.

We consider cycles both in XK and in its individual components Xj, (1.3). We

write X for either XK or one of the Xj’s. Similarly, for m > 0 and for

j 2 SðVðAfÞÞ
K, write

ZXðm;j;K Þ ¼
Zðm;j;K Þ; if X ¼ XK,
Zjðm;j;K Þ; if X ¼ Xj,

�
for the divisor in XK or the part of it in Xj, cf. (1.52). Also recall that the line bundle

L_D on D descends to a line bundle L_ on X.

DEFINITION 4.19. The L_-degree of a cycle Z of codimension r in X is
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degL_ðZÞ :¼

Z
Z

On�r;

where O is the first Chern form of L_, as in Proposition 4.11 and Corollary 4.12.

Note that if X were compact and smooth, this would be simply c1ðL_Þn�r
½Z�, for

the first Chern class c1ðL_Þ.
Also observe that, for Z an irreducible subvariety,

ð�1Þn�r degL_ðZÞ > 0 ð4:51Þ

since �O is a Kähler form on X.

The following result is a consequence of the Thom form property of jKM

(Theorem 4.1 of [30], and Theorem 2.1 of [31]). As before, take t ¼ uþ iv 2 H, and

write qm ¼ eðmtÞ.

THEOREM 4.20. For m > 0, and for g0t 2 G0R,Z
X

ymðg
0
t;jKM � jÞ ^ On�1

¼ vð‘þ2Þ=2 degL_ðZXðm;j;K ÞÞ � qm;

where ‘ ¼ ðn=2Þ � 1.

Remark 4:21: A key point here is that the cycle ZXðm;j;K Þ always has finite

volume and the invariant form On�1 is, in particular, bounded. Thus, Theorem 2.1 of

[31] can be applied, even when X is noncompact. Alternatively, it is easy to obtain

Theorem 4.20 by a direct calculation, using the integral formulas for the affine

symmetric spaces, as used in the estimates in Section 3 above.

We now turn to the theta integral for the space V 0.

We fix a compact open subgroup K 0 � OðV 0ÞðAfÞ such that j0 2 SðV 0ðAfÞÞ
K 0

, and

write

OðV 0ÞðAÞ ¼
a

j

OðV 0ÞðQÞ OðV 0ÞðRÞ hjK
0: ð4:52Þ

Note that, since V 0 is positive definite, the group

Gj ¼ OðV 0ÞðQÞ \
�
OðV 0ÞðRÞ hjK

0h�1
j

�
ð4:53Þ

is finite; we set ej ¼ jGjj. Again, we have a standard calculation, where we note that

the Gaussian j00 is invariant under OðV 0ÞðRÞ:

Iðg0;j00 � j0;V 0Þ ¼

Z
OðV 0ÞðQÞnOðV 0ÞðAÞ

yðg0; h;j00 � j0Þ dh

¼
X

j

Z
GjnOðV 0ÞðRÞhjK 0

yðg0; h;j00 � j0Þ dh

¼ volðOðV 0ÞðRÞK 0Þ
X

j

e�1
j yðg0; hj;j00 � j0Þ ð4:54Þ
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If we take g0 ¼ g0t, then

oðg0tÞj
0
0ðxÞ ¼ vð‘þ2Þ=2eðQ0ðxÞtÞ: ð4:55Þ

Note that, since

1 ¼ volðOðV 0ÞðQÞnOðV 0ÞðAÞ; dhÞ

¼ volðOðV 0ÞðRÞK 0Þ
X

j

e�1
j ; ð4:56Þ

we have

volðOðV 0ÞðRÞK 0Þ ¼
X

j

e�1
j

 !�1

:¼ mðK 0Þ; ð4:57Þ

the mass of the K 0-genus. Thus we obtain the classical expression

Iðg0t;j
0
0 � j0;V 0Þ ¼ vð‘þ2Þ=2mðK 0Þ

X
j

e�1
j yðg0; hj;j00 � j0Þ: ð4:58Þ

PROPOSITION 4.22. For m 2 Q, let qm ¼ eðmtÞ, and recall that ‘ ¼ ðn=2Þ � 1. Then

the Fourier expansion of Iðg0t;j
0
0 � j0;V 0Þ is given by

Iðg0t;j
0
0 � j0;V 0Þ ¼ vð‘þ2Þ=2

X
m5 0

rj0 ðmÞ qm;

where

rj0 ðmÞ ¼ mðK 0Þ
X

j

e�1
j

X
x2V 0ðQÞ

Q0ðxÞ¼m

j0ðh�1
j xÞ

0@ 1A:
In particular, the constant term is vð‘þ2Þ=2 j0ð0Þ ¼ vð‘þ2Þ=2 jð0Þ; via matching.

The matching identity now amounts to:

THEOREM 4.23. For j 2 SðVðAfÞÞ and j0 2 SðV0ðAfÞÞ matching, and for the cor-

responding standard section FðsÞ, with Fðs0Þ ¼ F‘þ2
1 ðs0Þ � lðjÞ,

v�
‘þ2

2 Eðg0t; s0;FÞ ¼ jð0Þ þ
1

volðX;On
Þ

X
m>0

degL_ðZXðm;j;K ÞÞ � qm

¼ j0ð0Þ þ
X
m>0

rj0 ðmÞ q
m;

where X ¼ XK. Moreover, if n > 2, then the same identity holds for each X ¼ Xj, and,

in addition,

volðXj;O
n
Þ ¼ jẐZ� : nðK Þj�1 volðXK;O

n
Þ

is independent of j.
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Comparing coefficients, we have

COROLLARY 4.24. Suppose that X ¼ XK.

ðiÞ For m > 0, degL_ðZXðm;j;K ÞÞ ¼ volðX;On
Þ rj0 ðmÞ:

ðiiÞ If m ¼ 0,
R

X y0ðg
0
t;jKM � jÞ ^ On�1

¼ vð‘þ2Þ=2 jð0Þ volðX;On
Þ:

ðiiiÞ If m < 0,
R

X ymðg
0
t;jKM � jÞ ¼ 0:

Moreover, if n > 2, then these identities hold for each X ¼ Xj as well.

Several special cases of these identities occur in the literature, cf. for example,

[23, 24, 53]. Note that, whereas the Fourier coefficients of the theta integral for V

involve degrees degL_ðZðm;jÞÞ, the Fourier coefficients of the theta integral for

the positive definite space V0 are weighted representation numbers and the Fourier

coefficients of the special value of the Eisenstein series, at least for factorizable data,

have a product formula, i.e., are ‘multiplicative functions’ in classical terminology.

5. Examples

In this section, we illustrate our results about integrals of Borcherds forms and

about generating functions for degrees with an explicit example. The basic idea is

the following. On the one hand, by using Hasse–Minkowski, one can construct

even integral quadratic lattices M of signature ðn; 2Þ with prescribed

local behavior. Associated to such a lattice are global geometric objects, the

quasi-projective variety XM ¼ GMnD
þ, the divisors Zðm;jÞ, j 2 M]=M, etc. On

the other hand, associated to cosets j 2 M]=M are the Eisenstein series Eðt; s;jÞ
of weight ðn=2Þ þ 1. These series and their Fourier expansions depend directly on

the local data defining M. The local and global objects are then related by the

degree identity of Theorem 4.23,

volðXMÞ � E t;
n

2
;j

� �
¼ volðXMÞ � jð0Þ þ

X
m>0

degL_ðZðm;jÞÞ � qm;

giving the first term of the Laurent expansion at s ¼ n=2, and by Theorem 2.12,

expressing the (log-norm) integrals of all Borcherds forms Cð f Þ2 for C½M]=M�-valued

F ’s of weight 1� ðn=2Þ, in terms of the kjðmÞ’s arising from the second term of

Eðt; s;jÞ’s at s ¼ n=2.

A more systematic discussion of examples will be given in a sequel with Tonghai

Yang, [36].

We recall an example due to Gritsenko and Nikulin [19]. Let

Q ¼

1
1

2
1

1

0BBB@
1CCCA; ð5:1Þ
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and let M ¼ Z5 with quadratic form, of signature ð3;2Þ, defined by

QðxÞ ¼ 1
2

t
xQx: ð5:2Þ

The dual lattice of M is M] ¼ Q�1M and jM]=Mj ¼ 2. Note that, if x 2 M] with

QðxÞ ¼ m, then m 2 1
4 Z and 4m � 0; 1 mod (4), depending on the M coset xþM.

As explained in [19], pp. 186–188, and [52], there are compatible isomorphisms

GSpinðMRÞ ’ Sp4ðRÞ; Dþ ’ H2; ð5:3Þ

such that

G ¼ SOþ
ðMÞ ’ Sp4ðZÞ=f 14g: ð5:4Þ

Let

X ¼ GnDþ ’ Sp4ðZÞnH2: ð5:5Þ

Recall that, in the tube domain model, our invariant form O ¼ jKMð0Þ is given by

O ¼ �
1

4pi

(
� 2ð y; yÞ�2

ð y; dzÞ ^ ð y; d �zzÞ þ ð y; yÞ�1
ðdz; d �zzÞ

)
: ð5:6Þ

In the case n ¼ 3, we write

z ¼
z1 z2

z2 z3

� �
2H2 ð5:7Þ

and take the inner product of a pair of 2� 2 symmetric matrices to be

ða; bÞ ¼ �trðabiÞ, for i the main involution on M2ðQÞ. By an easy computation, not-

ing that ð y; yÞ ¼ �2 detðyÞ, we find:

O3
¼ �

3

16p3
detð yÞ�3

� i

2

�3

dz1 ^ d �zz1 ^ dz2 ^ d �zz2 ^ dz3 ^ d �zz3 ð5:8Þ

and so, [52], p. 331,

volðX;O3
Þ ¼ zð�1Þ zð�3Þ ¼ �

1

12
zð�3Þ ¼ �

1

1440
: ð5:9Þ

Let V ¼ M�Z Q be the associated rational quadratic space, and let

j0; j1 2 SðVðAfÞÞ be the characteristic functions of the sets M̂M ¼ M�
ẐZ

and

y1 þ M̂M respectively, where y1 is an element in M]nM. As explained in [19] and

[52], the divisors Zðm;jmÞ, for m ¼ 0, 1, are then given by

Zðm;jmÞ ¼
G4m; if 4m � m mod ð4Þ;
;; otherwise;

�
ð5:10Þ

where

GD ¼
X
n5 1
n2jD

nD=n2 HD=n2 ; ð5:11Þ

for HD the Humbert surface of discriminant D and with

338 STEPHEN S. KUDLA

https://doi.org/10.1023/A:1024127100993 Published online by Cambridge University Press

https://doi.org/10.1023/A:1024127100993


nD ¼
1
2 ; if D ¼ 1 or 4;
1; otherwise:

�
ð5:12Þ

We can define a vector valued Eisenstein series

Eðt; s;MÞ ¼
Eðt; s;j0Þ

Eðt; s;j1Þ

� �
ð5:13Þ

of weight 5=2. The Fourier expansion of this series can be computed, [36], and from

this it is easy to derive the following information. Write

Eðt; s;jmÞ ¼
X

m

Amðs;m; vÞ qm ð5:14Þ

as in (2.21), where the Fourier coefficients have Laurent expansions

Amðs;m; vÞ ¼ amðmÞ þ bmðm; vÞðs� s0Þ þOððs� s0Þ
2
Þ; ð5:15Þ

as in (2.22).

PROPOSITION 5.1. The value of Eðt; 3
2 ;M0Þ at the point s0 ¼

3
2 is given by the

following expression.

Eðt; 3
2 ;j0Þ ¼ 1þ zð�3Þ�1

X1
m¼1

Hð2; 4mÞ qm

and

Eðt; 3
2 ;j1Þ ¼ zð�3Þ�1

X1
m�1

4¼0

Hð2; 4mÞ qm

where Hð2;NÞ are as in Cohen ½11�.

In particular, for the value, observe that

Eð4t; 3
2 ;j0Þ þ Eð4t; 3

2 ;j1Þ ¼ zð�3Þ�1H2ðtÞ; ð5:16Þ

is Cohen’s Eisenstein series of weight 5
2. Also, for convenient reference, we recall

some values from [11]:

N : 0 1 4 5 8 9 12 13 16 17 . . .
�120 Hð2;NÞ : �1 10 70 48 120 250 240 240 550 480 . . .

ð5:17Þ

Recall that the positive coefficients in Cohen’s Eisenstein series HrðtÞ of weight

rþ 1
2 are given by

Hðr; 4mÞ ¼ Lð1� r; wdÞ
X
cjn

mðcÞ wdðcÞ c
r�1s2r�1ðn=cÞ; ð5:18Þ

where 4m ¼ ð�1Þrn2d for a field discriminant d � 0; 1 mod ð4Þ. The sum on c is a

multiplicative function and it is easy to check that, in fact,
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Hðr; 4mÞ ¼ Lð1� r; wdÞ
Y

p

bpðn; 1� rÞ; ð5:19Þ

where bpðn; sÞ is given by

bpðn; sÞ ¼
1� wdðpÞXþ wdð pÞ p

kX 2kþ1 � pkþ1X 2kþ2

1� pX 2
; ð5:20Þ

with X ¼ p�s and k ¼ ordpðnÞ.

By Theorem 4.23, we have

Eðt; 3
2;jmÞ ¼ jmð0Þ þ volðX Þ�1

X
m>0

degðZðm;jmÞÞ q
m; ð5:21Þ

so we obtain, for 4m � m mod ð4Þ,

degðZðm;jmÞÞ ¼ degðG4mÞ ¼ �
1

12
Hð2; 4mÞ ð5:22Þ

Thus, we recover the relation (1) of van der Geer, [52], p. 346, as well as his Theorem

8.1 on the generating function for the volumes of the Humbert surfaces.

A nice example of a Borcherds form Cð f Þ is discussed in [19].

Let f12;1ðt;wÞ, t 2 H1, w 2 C be the holomorphic Jacobi form of weight 12 and

index 1 of Eichler and Zagier [12], pp. 38–39, so that

f12;1ðt;wÞ ¼
X
n;r

C12ð4n� r2Þ qn zr; ð5:23Þ

for q ¼ eðtÞ and z ¼ eðwÞ, where c12ðnÞ is given by the table on p. 141 of [12]:

n : 0 3 4 7 8 11 12 15 16 . . .
C12ðnÞ : 0 1 10 �88 �132 1275 736 �8040 �2880 . . .

ð5:24Þ

(We write C12ðnÞ in place of c12ðnÞ to avoid confusion with the coefficients cmðmÞ

which will occur in a moment.) Write

f12;1ðt;wÞ ¼
X
m¼0;1

hmðtÞy1;mðt;wÞ; ð5:25Þ

where

hmðtÞ ¼
X

m
m��mmodð4Þ

C12ðmÞ q
m
4 ð5:26Þ

has weight 23
2 for G0ð4Þ and y1;mðt;wÞ is the standard Jacobi theta series. Then, divi-

ding by D to shift the weight, we have

f12;1ðt;wÞ
DðtÞ

¼
X
m¼0;1

fmðtÞ y1;mðt;wÞ; ð5:27Þ

where

fmðtÞ ¼
X

m

cmðmÞ q
m; ð5:28Þ
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has weight � 1
2 and

f0ðtÞ ¼ 10þ 108 qþ 808 q2 þ � � � ;

f1ðtÞ ¼ q�
1
4 � 64 q

3
4 � 513 q

7
4 þ � � � :

ð5:29Þ

Associated to the vector valued form (see [2], Example 2.3, p. 500 and [12], Theorem

5.1, p. 59)

f5ðtÞ ¼ ðð f0ðtÞ; f1ðtÞÞ ¼ f0ðtÞj0 þ f1ðtÞj1; ð5:30Þ

valued in C½M]=M�, is a Borcherds form Cð f5Þ, identified explicitly by Gritsenko and

Nikulin:

Cðf5Þ ¼ 2�6D5ðzÞ; ð5:31Þ

where D5ðzÞ is the Siegel cusp form of weight 5 (and character) for Sp4ðZÞ. Then

Cðf5Þ
2 has weight 10 (and trivial character) and

divðCðf5Þ
2
Þ ¼ Zð 1

4;j1Þ: ð5:32Þ

Similarly, for any positive integer t, we can consider the form jðtÞt � fðtÞ. For

example, for t ¼ 1, we get

jðtÞf0ðtÞ ¼ 10 q�1 þ 7548þOðqÞ;

jðtÞf1ðtÞ ¼ q�
5
4 þ 680 q�

1
4 þOðq

1
4Þ;

ð5:33Þ

so that the associated Cðf3774Þ
2 has weight 7548 and divisor

10 Zð1;j0Þ þ Zð 5
4;j1Þ þ 680 Zð 1

4;j1Þ: ð5:34Þ

For t ¼ 2, we get

jðtÞ2 f0ðtÞ ¼ 10 q�2 þ 14988 q�1 þ 9634552þOðqÞ;

jðtÞ2f1ðtÞ ¼ q�
9
4 þ 1424 q�

5
4 þ 851559 q�

1
4 þOðq

1
4Þ;

ð5:35Þ

so that the associated Cðf4827376Þ
2 has weight 9634552 and divisor

10 Zð2;j0Þ þ 14988 Zð1;j0Þ þ Zð 9
4;j1Þ þ

þ 1424 Zð 5
4;j1Þ þ 851559 Zð 1

4;j1Þ:
ð5:36Þ

It is amusing to check the weight/degree relation, (2.30),X
m

X
m>0

cmð�mÞ 1
12 Hð2; 4mÞ ¼ �volðX Þ c0ð0Þ; ð5:37Þ

i.e.,

�
X
m

X
m>0

cmð�mÞ 120 Hð2; 4mÞ ¼ c0ð0Þ ð5:38Þ

in these cases.
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To compute the quantities kðCð f ÞÞ for these Borcherds forms, we need to deter-

mine the quantities kmðmÞ derived from the second term in the Laurent expansion

of Eðt; s;MÞ at the point s ¼ 3
2.

THEOREM 5.2. ðiÞ For m > 0, write 4m ¼ n2d for d the discriminant of the real

quadratic field Qð
ffiffiffiffi
m

p
Þ, and let wd be the associated quadratic character?. Then, for

4m � mmod ð4Þ,

bmðm; vÞ ¼ zð�3Þ�1 Hð2; 4mÞ

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
�

1

2
logðdÞ �

L0ð�1; wdÞ

Lð�1; wdÞ
�

� Cþ
X
pjn

�
logjnjp �

b0pðn;�1Þ

bpðn;�1Þ

�
þ

1

2
J

3

2
; 4pmv

� ��
:

where

2C ¼ logð4pÞ þ g;

J
3

2
; t

� �
¼

Z 1

0

e�tr ð1þ rÞ
3
2 � 1

r
dr;

and for k ¼ ordpðnÞ,

�
1

logðpÞ
�
b0pðn;�1Þ

bpðn;�1Þ

¼
2p3

1� p3
þ
�wdðpÞ pþ wdðpÞ ð2kþ 1Þ p3kþ1 � ð2kþ 2Þ p3kþ3

1� wdðpÞ pþ wdðpÞ p
3kþ1 � p3kþ3

:

ðiiÞ For m < 0,

bmðm; vÞ ¼ �
p2

3

Lð2; wmÞ

zð4Þ
ðpvÞ�

3
2

Z 1

1

e�4pjmjvr r�
3
2 dr:

ðiiiÞ For the constant term is given by

b0ð0; vÞ ¼
1

2
logðvÞ �

p
6

zð3Þ
zð4Þ

v�
3
2:

ðivÞ If 4m 6� m mod ð4Þ, then bmðm; vÞ ¼ 0.

For m < 0, the L–series Lðs; wmÞ is a modified Dirichlet series analogous to that

occurring in the definition of Hðr; 4mÞ. In any case, it is clear that,

limv!1 bmðm; vÞ ¼ 0 for m < 0. Similarly, for m > 0, limv!1 Jð 3
2 ; 4pmvÞ ¼ 0.

COROLLARY 5.3. For m > 0 with 4m ¼ n2d and with 4m � m mod ð4Þ,

?When 4m ¼ n2, we take Qð
ffiffiffiffi
m

p
Þ ¼ Q%Q; wd ¼ 1 and Lðs; w1Þ ¼ zðsÞ.
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kmðmÞ ¼ zð�3Þ�1 Hð2; 4mÞ

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
�

1

2
logðd Þ �

L0ð�1; wdÞ

Lð�1; wdÞ

� Cþ
X
pjn

�
log jnjp �

b0pðn;�1Þ

bpðn;�1Þ

��
:

If 4m 6� m mod ð4Þ, then kmðmÞ ¼ 0.

Now, in calculating kðCðf ÞÞ via Theorem 2.12, we can use the degree relation:

kðCðf ÞÞ ¼
X
m

X
m>0

cmð�mÞ kmðmÞ þ c0ð0Þ
1

2
C0

¼
X
m

X
m>0

cmð�mÞ 120 Hð2; 4mÞ�

�

�
�

1

2
logðdÞ �

L0ð�1; wdÞ

Lð�1; wdÞ
þ
X
pjn

�
log jnjp �

b0pðn;�1Þ

bpðn;�1Þ

��
�

� c0ð0Þ

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
� C�

1

2
C0

�
: ð5:39Þ

In the first example above, where m ¼ 1
4, d ¼ 1, wd ¼ 1 and Lðs; wdÞ ¼ zðsÞ, we

obtain

kðCðf5ÞÞ ¼ zð�3Þ�1 Hð2; 1Þ

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
�
z0ð�1Þ

zð�1Þ
� C

�
þ 10 � 1

2 C0:

¼ 10

�
�

4

3
� 2

z0ð�3Þ

zð�3Þ
þ
z0ð�1Þ

zð�1Þ
þ

3

2
logð2Þ þ logðpÞ

�
: ð5:40Þ

Noting that jyj2 ¼ 2 detðyÞ here, we have

jjCðf5ÞðzÞjj2 ¼ 2�12 jD5ðzÞj
2 25 detðyÞ5; ð5:41Þ

so that

�volðX Þ�1

Z
X

log
�
jD5ðzÞj

2 detðyÞ5Þ � O3

¼ 10

�
�

4

3
� 2

z0ð�3Þ

zð�3Þ
þ
z0ð�1Þ

zð�1Þ
þ

3

2
logð2Þ þ logðpÞ

�
� 7 logð2Þ: ð5:42Þ

In the second example, there are terms for m ¼ 5
4, 1 and 1

4, and we obtain

kðCðf3774ÞÞ ¼700

�
z0ð�1Þ

zð�1Þ
þ

b02ð2;�1Þ

b2ð2;�1Þ
þ logð2Þ

�
þ

þ 48

�
L0ð�1; w5Þ

Lð�1; w5Þ
þ

1

2
logð5Þ

�
þ

þ 6800
z0ð�1Þ

zð�1Þ
þ

þ 7548

�
�

4

3
� 2

z0ð�3Þ

zð�3Þ
þ

3

2
logð2Þ þ logðpÞ

�
; ð5:43Þ
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where

b02ð2;�1Þ

b2ð2;�1Þ
¼ �

9

11
logð2Þ: ð5:44Þ

and so on.

In the next section, we explain why the values kmðmÞ which occur here should be

connected with the ‘arithmetic volumes’ of (suitable integral extensions of) the cycles

Zðm;jmÞ.

6. Speculations

The integrals considered in this paper play a role in the arithmetic geometry of cycles

on the GSpinðn; 2Þ varieties discussed above. While these Shimura varieties have

canonical models over Q, for all n, we do not have a sufficient theory of the integral

models to give a precise discussion of the integral extensions of the Zðm;jÞ’s for gene-

ral n. In addition, even for the archimedean theory, due to the non-compactness of

XK, one will need a suitable theory of line bundles with singular metrics, Green’s cur-

rents with additional singularities, etc. Such problems are under consideration by

Burgos, Kramer and Kühn [10]. For the case of arithmetic surfaces, i.e., n ¼ 1, see

[5, 38]. Nonetheless, based on low dimensional calculations, it is possible to make

some rough speculations, which provide a setting for the results of this paper.

A metrized line bundle ôo on a projective arithmetic variety X over SpecðZÞ defines

a class ôo 2 cPicPicðXÞ ’ dCHCH1ðXÞ and classes ôor 2 dCHCHrðXÞ, the rth arithmetic Chow

group of X,with rational coefficients [18]. For a cycle Z on X of codimension r, there

is a height hôoðZÞ with respect to ôo, [6]. For example, for an integral horizontal Z of

codimension r, with normalization j: ~ZZ! Z � �XX, assumed to be itself regular over

SpecðZÞ,

hôoðZÞ ¼ddegdeg j!ðôonþ1�rÞ; ð6:1Þ

where ddegdeg: dCHCHnþ1�rðZÞ ! R is the arithmetic degree map. Also, if ðZ; gÞ 2 dCHCHrðXÞ is

a codimension r cycle with Green’s current g, then, for the height pairing h ; i

between dCHCHrðXÞ and dCHCHnþ1�rðXÞ,

hðZ; gÞ; ôonþ1�ri ¼ hôoðZÞ þ
1

2

Z
XðCÞ

g � c1ðôoÞ
nþ1�r; ð6:2Þ

where c1ðôoÞ is the first Chern form of ôo on XðCÞ.
For V of signature ðn; 2Þ, let X ¼ XK be the canonical model over Q of the arith-

metic quotient GKnD
þ. Here we are assuming that K is large enough so that X is geo-

metrically irreducible. Suppose that we have a regular model X of X over SpecðZÞ,

with a regular compactification �XX. Suppose that the metrized line bundle L_ dual

to L (cf. (1.4) and (1.5)) on X is the restriction of a line bundle ôo on �XX, where the

metric on ôo is allowed to have singularities along �XXðCÞnXðCÞ. Note that the first

Chern form of ôo is the form O considered above. Suppose that one has a sufficiently

extended theory of an arithmetic Chow ring (with rational coefficients) dCHCH�ð �XXÞ so
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that the height construction can be applied. Thus, in particular, ôo defines a class in
dCHCH1ð �XXÞ and powers ôor 2 dCHCHrð �XXÞ, etc.

Next, we consider a Borcherds form C ¼ Cð f Þ2 of weight c0ð0Þ. Then C is mero-

morphic function on XðCÞ ’ XðCÞ, whose divisor is rational over Q. We suppose

that, in fact, there is a (rational) section ~CC of ðo�1Þ
c0ð0Þ whose restriction to

XðCÞ ’ XðCÞ is C. It follows that cdivdivð ~CCÞ ¼ �c0ð0Þ ôo 2 dCHCH1ð �XXÞ. Then, we would

have

�c0ð0Þ hôo; ôo
n
i ¼ hcdivdivð ~CCÞ; ôon

i

¼ hôoðdivð ~CCÞÞ þ
1

2

Z
XðCÞ

logjjCjj�2 On

¼ hôoðdivð ~CCÞÞ þ
1

2
volðX Þ kðCÞ: ð6:3Þ

Recall that (Theorem 1.3), on XðCÞ,

divXðCÞ ¼ divXQ
ðCð f Þ2Þ ¼

X
j

X
m>0

cjð�mÞZðm;jÞ: ð6:4Þ

Then, on the integral model, we would have

divXð ~CCÞ ¼
X
j

X
m>0

cjð�mÞZðm;jÞ þ
�
vertical components

�
; ð6:5Þ

where the Zðm;jÞ’s have generic fibers Zðm;jÞQ ¼ Zðm;jÞ.
Using the expression in Theorem 2.12 for kðCÞ ¼ 2kðCð f ÞÞ, we obtain

�c0ð0Þ hôo; ôo
n
i ¼

X
j

X
m>0

cjð�mÞ hôoðZðm;jÞÞ þ volðX Þ kjðmÞ
( )

þ

þ volðX Þ c0ð0Þ k0ð0Þþ

þ contributions of vertical components: ð6:6Þ

This (hypothetical) relation is suggestive. For example, if c0ð0Þ ¼ 0 so thatcdivdivð ~CCÞ ¼ 0, we obtain

0 ¼
X
j

X
m>0

cjð�mÞ hôoðZðm;jÞÞ þ volðX Þ kjðmÞ
( )

þ

þ contributions of vertical components; ð6:7Þ

which suggests a close relation between kjðmÞ and the height hôoðZðm;jÞÞ.
In our example for n ¼ 5 from Section 5, we can write

kmðmÞ ¼volðX Þ�1 degðZðm;jÞÞ�

�

�
�

1

2
logðdÞ �

L0ð�1; wdÞ

Lð�1; wdÞ
þ
X
pjn

�
log jnjp �

b0pðn;�1Þ

bpðn;�1Þ

��
þ

þ volðX Þ�1 degðZðm;jÞÞ
�

4

3
þ 2

z0ð�3Þ

zð�3Þ
� C

�
; ð6:8Þ
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so that (6.6) can be written as

�c0ð0Þ hôo; ôo
3
i ¼

X
j

X
m>0

cjð�mÞ dðm;jmÞþ

þ volðX Þ c0ð0Þ

�
k0ð0Þ �

4

3
� 2

z0ð�3Þ

zð�3Þ
þ C

�
þ

þ contributions of vertical components: ð6:9Þ

where

dðm;jmÞ ¼hôoðZðm;jmÞÞþ

þ degðZðm;jÞÞ
�
�

1

2
logðdÞ �

L0ð�1;wdÞ

Lð�1;wdÞ
þ
X
pjn

�
logjnjp�

b0pðn;�1Þ

bpðn;�1Þ

��
:

ð6:10Þ

Again, this suggests that

hôoðZðm;jmÞÞ � � degðZðm;jÞÞ
�
�

1

2
logðdÞ �

L0ð�1; wdÞ

Lð�1; wdÞ
þ

þ
X
pjn

�
logjnjp �

b0pðn;�1Þ

bpðn;�1Þ

��
ð6:11Þ

and

hôo; ôo3
i � volðX Þ

�
4

3
þ 2

z0ð�3Þ

zð�3Þ
�

3

2
logð2Þ � logðpÞ

�
; ð6:12Þ

where, in both relations, we have still to account for a possible linear combination of

logðpÞ’s coming from vertical components. In addition, it is possible to shift a term of

the form

volðX Þ�1 degðZðm;jÞÞ � A; ð6:13Þ

where A is a constant independent of m and m, between the two terms in (6.8),

so there is some further ambiguity. It seems reasonable to expect that A is a multiple

of z0ð�1Þ=zð�1Þ. This would be consistent with recent results of Bruinier and

Kühn for certain Hilbert modular varieties, [9], Kühn’s thesis [37], and conjectures

of Maillot and Roessler, [40]. Recall that volðX Þ ¼ zð�1Þ zð�3Þ.

Of course, this discussion is too vague with respect to integral models, compacti-

fications, an extended theory of arithmetic Chow rings, and vertical contributions.

Nonetheless, it explains the motivation for considering the quantities kXðCð f ÞÞ
and kjðmÞ and their possible applications.
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9. Bruinier, J. H. and Kühn, U.: in preparation.

10. Burgos, J., Kramer, J. and Kühn, U.: in preparation.
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Sém. Bourbaki 876, Astérisque 276 (2002), 341–368.
29. Kudla, S. and Millson, J.: The theta correspondence and harmonic forms I, Math. Ann.

274 (1986), 353–378.

30. Kudla, S. and Millson, J.: The theta correspondence and harmonic forms II, Math. Ann.
277 (1987), 267–314.

31. Kudla, S. and Millson, J.: Tubes, cohomology with growth conditions and an application

to the theta correspondence, Canad. J. Math. 40 (1988), 1–37.
32. Kudla, S. and Millson, J.: Intersection numbers of cycles on locally symmetric spaces and

Fourier coefficients of holomorphic modular forms in several complex variables, Publ.
Math. IHES 71 (1990), 121–172.

33. Kudla, S. and Rallis, S.: A regularized Siegel–Weil formula: the first term identity, Ann.
of Math. 139 (1994), 1–80.

34. Kudla, S., Rapoport, M. and Yang, T.: On the derivative of an Eisenstein series of weight

1, Internat. Math. Res. Notices, 7 (1999), 347–385.
35. Kudla, S., Rapoport, M. and Yang, T.: Derivatives of Eisenstein series and Faltings

heights, Preprint (2001).

36. Kudla, S. and Yang, T.: in preparation.
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