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Abstract. In his Inventiones papers in 1995 and 1998, Borcherds constructed holomorphic
automorphic forms W(f) with product expansions on bounded domains D associated to
rational quadratic spaces V of signature (n, 2), starting from vector valued modular forms f
of weight 1 —n/2 for SL,(’7) which are allowed to have poles at the cusp and whose nonpo-
sitive Fourier coefficients are integers c,(—m), m > 0. In this paper, we use the Siegel-Weil for-
mula to give an explicit formula for the integral k(¥(f)) of —log||¥(f)||> over X = I'\D,
where || ||* is the Petersson norm. This integral is given by a sum for m > 0 of quantities
cu(=m)x,(m), where x,(m) is the limit as Im(r) — oo of the mth Fourier coefficient of the
second term in the Laurent expansion at s = n/2 of a certain Eisenstein series E(t, s) of weight
(n/2) + 1 attached to V. The possible role played by the quantity x(‘\W(f)) in the Arakelov
theory of the divisors Z,(m) on X is explained in the last section.

Mathematics Subject Classifications (2000). 11F30, 14G40, 11G18.
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0. Introduction

Let V' be a nondegenerate inner product space over Q of signature (n,2), with n > 1,
and let D be the space of oriented negative 2-planes in V(R). In [2], Borcherds con-
structed certain meromorphic modular forms W(f) on D with respect to arithmetic
subgroups I'y; of G = O(V') by regularizing the theta integral of vector valued elliptic
modular forms f of weight 1 — (n/2) for SL,(*2) with poles at the cusp, cf. also [1, 7,
8, 21]. The Borcherds forms W( /) can be viewed as meromorphic sections of powers
of a certain line bundle £ on X = I'j,\D. Taking the standard Petersson metric || ||
on L, it is of interest in Arakelov geometry to compute the integral:

k(P(f)) = —Vol()()_lfr \Dlogll‘P(z,f)llzdu(Z), (0.1)

where du(z) is a G(R)-invariant volume form on D. The integral (0.1) is always con-
vergent provided V is not an isotropic space of dimension 3 or a split space of dimen-
sion 4. These two exceptional cases will be excluded from now on, cf. Proposition
1.4, Remark 1.5, and Remark 2.4.

*Partially supported by NSF grant DMS-9970506 and by a Max-Planck Research Prize from the
Max-Planck Society and Alexander von Humboldt Stiftung.
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In this paper, we give an explicit formula for «(W(f)). To describe it, suppose that
M is a lattice in ¥ such that the quadratic form Q(x) = %(x, x) is Z~valued and let
M* > M be the dual lattice. Recall that the modular form f used in Borcherds’
construction is valued in the space C[M*/M], for a suitable choice of M, and has
a Fourier expansion of the form

= > > clmq” o, 0.2)

ueMt /M meQ

where 7 € 9, ¢"" = e(mt), and where ¢,(m) is zero unless m € Q(u) + Z. Moreover, if
m < 0, then c¢,(m) € Z and only a finite number of such negative Fourier coefficients
are nonzero.

Let

Iy ={yeSOV)Q)|yM =M and y acts trivially in Mﬁ/M}, (0.3)

and let X =T y\D, so that X is a quasi-projective variety. For each m > 0 and
pwe M /M, there is a divisor Z(m,u) on X, associated to the set of vectors
x € u+ M with Q(x) = m. These divisors are called rational quadratic divisors or
Heegner divisors in [2]. They include the Heegner points, for n = 1, the Hirzeb-
ruch—Zagier curves on Hilbert modular surfaces, for n = 2, and the Humbert surfa-
ces on Siegel threefolds, for n = 3. They are also special cases of the cycles considered
in [26, 29, 30], etc. A key fact, due to Borcherds [2], is that the divisor of the form
W( /)%, which has weight ¢((0), is an explicit linear combination of these cycles:

divCP()D) = Y D eul—m) Z(m, ). (0.4)

wom>0

First consider the generating function for the degrees of the cycles Z(m, ). Let Q
be the first Chern form of the metrized line bundle £¥ on X, dual to £, and let

deg(Zm, 1)) = / Q! (0.5)

Z(m,p)
be the volume of the cycle Z(m, ) with respect to Q. Similarly, let
vol(X) = / Q" (0.6)
X
Note that (—1)"vol(X) > 0, cf. (4.49).
For simplicity here in the introduction, we assume that n > 3.

Using the Siegel-Weil formula [56] and results of [29-31], one can show the
following:

THEOREM 1. For each u € M*/M, there is an Eisenstein series E(t, s; t, 5+1), for
1€ and s € C, of weight (n/2) + 1 such that
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n - m
E(.s0: 1,5+ 1) = 80 +vol(X) ™ Y dea(Z(m, w) " (0.7)

m>0

where s) = n/2.

A similar result for the generating function for the volumes of certain real totally
geodesic cycles was proved by Oda, [43, 44]. Analogous results for generating func-
tions for cycles of higher codimension were proved for more general arithmetic quo-
tients in [32]. For anisotropic V’s of signature (n, 2), such cycles are discussed in [28],
Section 3, and in [26].

Our main result is that the integral k(‘\P(f)) can be expressed using the second term
in the Laurent expansion at sy = n/2 of these Eisenstein series.

MAIN THEOREM. For each u € M*/M, the Fourier coefficients in the expansion
n m
E(v:,s; M’§+ 1) = ;Au(s,m,v)q

have Laurent expansion at s = sy = n/?2

Ay(s,m,v) = ay(m) + by(m, v)(s — 50) + O((s — 50)°)-

Let
lim b,(m, v), if m>0,
v—00
$um) = 1 4 (log@m) — ), if m =0,
0, if m<O0.

Then, for f with Fourier expansion (0.2),

KCPUN) =) Y cul—m)u(m).

n m=0

In addition, we derive the useful relation

—vol(X) co(0) = Y | > c(—m) deg(Z(m, ). (08)
w m>0
The quantities r,(m) can be calculated quite readily in any particular case; this will
be done in a sequel [36].

Remark 0.1. In fact, an analogous identity is valid in the case n = 0 where V is the
two-dimensional quadratic space associated to an imaginary quadratic field k, V' =k
with quadratic form given by a negative multiple of the norm form, and X has
dimension 0. In this case, the Eisenstein series are the incoherent Eisenstein series of
weight 1 considered in [34], the cycles Z(m, u) are empty, and both sides of (0.7)
vanish identically. Since this case has a rather different flavor, we will exclude it from
the present paper and plan to discuss it elsewhere.
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As an illustration, consider the case where M = 7> with quadratic form of signa-
ture (3,2) defined by O(x) = %thx where

In this example, which is worked out in detail in Section 5, |M*/M| = 2 and, labeling
the cosets by =0, 1, we have

3 - m
E(t@u) =30+ Y HQ,4m)q",
m>0
4m=u mod(4)

where H(2, N) is the Nth coefficient in Cohen’s Eisenstein series of weight %, [11],

M) =03+ Y. HQ2Nq".
NzO,le>rr(1)od(4)

In this case, as explained in [52] and [19], T3/ \D =~ Sp4(Z)\$, is the Siegel threefold
of level 1, vol(X') = {(—=1){(-3), and Z(m, u), for 4m = u mod (4), is the Humbert
surface Gy, in the notation of [52]. Thus, the result on degrees implies that

deg(Hy) = — 5 HQ2. N),

a relation due to van der Geer, [52]. Also, we find that, for m > 0 with 4m = n’d
for a fundamental discriminant d, and with 4m = y mod (4),

Ku(m) = {(=3)"" H(2, 4m)x

4 03 1 L(-ly) 1 L
b(n,—1)
* ;(log =5, —l)ﬂ'

If 4m # p mod(4), then «,(m) =0. Here L(s,y,) is the L-series for the quadratic
character y, and the other quantities are explained in Section 5. It is shown by
Gritesenko and Nikulin [19] that the Siegel cusp As of weight 5 and quadratic char-
acter arises as a Borcherds form W(f5) = 270 As(z), for a suitable meromorphic form
fs of weight —% with expansion

f5(t) = (10 + 108 ¢ + 808> +-- ) o + (¢t — 644 — 51345 +--- ) @y

Thus, by the Main Theorem,
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—vol(x)™! / log(1As(2)P det(r)’) - @
X

N B N ) I R VI B
= 10|: 3 2 =) + =) +2 log(2) —l—log(n)] 7 log(2).

The key idea in the proof of the Main Theorem is the following. Recall that, in
Borcherds construction, it is essentially the quantity log ||¥(f)||*, rather than the
meromorphic form W(f) itself, which arises as a regularized theta integral. There-
fore, after some justification, we can compute the integral of this quantity by first
integrating the theta kernel over X and then taking the regularized integral against
f. This procedure is valid provided that the integral of the theta kernel is termwise
absolutely convergent, and it is for this reason that the exceptional cases must be
excluded. The Siegel-Weil formula then identifies the integral of the theta kernel
as a special value of an Eisenstein series of weight (1n/2) — | at the point sy = n/2.
The regularized integral of this series against f can then be evaluated by using a
Maass operator, which shifts the weight to (n/2) 4+ 1, and a Stokes theorem argu-
ment from Section 9 of [2].

In fact, the method used here should also be applicable to the calculation of the inte-
grals of the functions arising via Borcherds construction for more general signatures
(p, q), and it would be interesting to investigate such cases. Note, in particular, that
the remarkable product formulas for the W(f)’s in the case of signature (n, 2) play no
role.

Possible applications of the formula for k(‘W(f)) to arithmetic geometry are discus-
sed in Section 6. The main point is that there should be a close connection between
the second term in the Laurent expansion of the Fourier coefficients of the Eisenstein
series E(t, s; u) at so = n/2, and the heights of the divisors Z(m, ) on X, after exten-
sion to a suitable integral model. Such a connection is also suggested by the results of
joint work [35] with Michael Rapoport and Tonghai Yang in which we compute the
heights of Heegner type divisors on the arithmetic surfaces X defined by Shimura
curves, the case n=1 with V' anisotropic. In fact, for suitably defined classes
3(m,v) € CH' (%), the arithmetic Chow group of X, and for a normalized version
&(1, s; @) of the Eisenstein series E(t, s; @) of weight %, we show that

£,k )= X, (30m,0),d) ",

where t = u + iv, ® € CH! (X) is an extension of the metrized line bundle £, dual to
L to X, and (, ) is the Gillet-Soulé height pairing. Thus, the second term in the
Eisenstein series gives a generating functions for the ‘arithmetic volumes’, at least
in this example.

Here is a summary of the contents of the present paper. In Section 1, we review the
construction of the Borcherds forms W(f). An adelic formulation of this construc-
tion is given, which allows us to work more easily for general lattices and to make
use of the adelic formulation of the Siegel-Weil formula and representation theory.
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Some explanation is given about how to pass back and forth between the adelic
and classical version. In Section 2, we derive the formula for k(W( f)), assuming certain
facts about Eisenstein series, the Siegel-Weil formula, and about convergence. In
Section 3, we consider convergence questions and, in particular, justify the inter-
change of the integration of the theta kernel with the Borcherds regularized integral.
In Section 4, we first review the case of the Siegel-Weil formula which we need,
including a refinement, already described by Weil, which is crucial in relating the
integral over the orthogonal group occurring in this formula with the geometric inte-
gral we actually encounter. We then describe a general matching principle and apply
it, together with the theory of [29-31], to prove that the degree generating function is
given by the value of our Eisenstein series of weight (r/2) 4+ 1. The main point here is
that this matching principle implies the coincidence of theta integrals for different
quadratic spaces. For example, it shows that the degrees of the cycles Z(m, u) occur-
ring for spaces of signature (n, 2) always coincide with certain weighted representa-
tion numbers for spaces of signature (n + 2,0). This principle should have many
other interesting applications. In Section 5, we discuss the example of signature
(3, 2) described above. In Section 6, we give some speculations about the applications
of the formulas for x(W(f))’s in arithmetic geometry.

1. Borcherds Forms

In this section we give an adelic formulation of a result of Borcherds on the construc-
tion of meromorphic modular forms. This formulation is convenient from the point
of view of Hecke operators and Shimura varieties. Moreover, it is essential if we
want to make use of the adelic version of the Siegel-Weil formula.

Let V' be a vector space over Q with a nondegenerate quadratic form of signature
(n,2), and let H = GSpin(}). We write (x,y) = Q(x+y) — O(x) — Q(y) for the
associated bilinear form. Let D be the space of oriented negative 2-planes in V(R).
Recall that D is isomorphic to the open subset Q_ of the quadric Q C P(V(C))
defined by

O-={weC)|(w,w) =0, (w,w) < 0}/C*.

The isomorphism is given by z+> v} — iv, = w, where vy, v, is a properly oriented

basis for z € D with (v}, v1) = (v3,v2) = —1 and (v, v;) = 0. For a compact open sub-
group K C H(A), the space
Xg = HQ\(D x H(Ap/K) (1.1)

is the set of complex points of a quasi-projective variety rational over Q (via cano-
nical models). This variety is projective if and only if V' is anisotropic over Q. It is
smooth if the image of K in SO(V')(Ay) is neat. Fix a connected component D* of
D, and write

H(A) = | [HOQH®R) 1K, (12)
J

where H(R)"™ isv the identity component of H(R) >~ GSpin(n, 2) and h; € H(A). Then
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Xe=[]x, X, ~T\DY, (1.3)
J

where I'; = H(Q) N ( H(R)*thh]T1 ).

Let £p be the restriction to D >~ Q_ of the tautological bundle on P(V(C)). The
action of O(V)(R) on V(C) induces an action of H(R)* on Lp, and hence there is
a holomorphic line bundle

£ = HQ\(Lp x HA)/K) — Xk. (1.4)

This line bundle is also algebraic and has a canonical model over Q, [20]. On the
component I';\D*, £ has the form I';\Lp. Define a Hermitian metric /i on Lp by
taking

he(wi, w) = —3(w1, W2). (1.5)

This metric is clearly invariant under the natural action of O(})(R) and hence
descends to L.
For a Witt decomposition

V(R) = Vo + Re + Rf, (1.6)

where ¢ and f, with (e,f) =1 and (e,e) = (f,f) = 0, span a hyperbolic plane with
orthogonal complement V), note that sig(Vy) = (n — 1, 1) and let

C={ell(yy <0} (1.7)
be the negative cone. Then D ~ Q_ is isomorphic to the tube domain

D ={ze Vy(C)|y=Im(z) € C}, (1.8)
via the map

D — V(C), z>w(z) =z + e — Q(2)f. (1.9)

composed with the projection to Q_. The map z+ w(z) can be viewed as a nowhere
vanishing holomorphic section of £Lp. Note that this section has norm

Iw()I> = =4v(2), #9(2) = —(3,3) = Iyl (1.10)
For h € O(V(R)) or H(R), we have

h-w(z) = w(hz) j(h, z) (1.11)
for a holomorphic automorphy factor

JH(R) x D — C*, (1.12)
For k € 7, holomorphic sections of £%* can be identified with holomorphic
functions

¥Y:D x HAy) —C (1.13)

such that W(z, hk) = W(z, h) for all k € K and
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Wz, 7h) = j(,2) W(z, h) (1.14)
for all y € H(Q). The norm of the section (z,h) — W¥(z, h) - w(z)®k associated to ¥ is
then

1¥(z, W)I* = ¥z, )P ™. (1.15)

We will refer to this as the Petersson norm of . Note that, under the isomorphism
(1.3), ¥ corresponds to the collection (‘¥(-, %;));; of holomorphic functions on Dt
automorphic of weight k with respect to the I';’s.

Remark. In the case n = 1, so that D = ' U 9™, the automorphy factor is

J(g,2) = det(g) ' (ez +dY’,

so that the ‘classical weight’ of a section of L2 is 2k. O

We now give a version of Borcherds’ construction [2] of meromorphic sections of
(a certain twist of) £®¥. These are obtained by a regularized theta lift for the dual
pair (SL,, O(V)).

The basic theta kernel is constructed as follows. Let S(V(A)), S(V(4), and
S(V(R)) be the Schwartz spaces of V(A), V(Ay), and V(R) respectively. For z € D,
let pr.: V(R) — z be the projection with kernel z*, and, for x € V(R), let

R(x,2) = =(pr.(x), pr.(x)) = |(x, w(2)) |y . (1.16)
Then the majorant associated to z is

(x,x). = (x,x) + 2R(x, 2), (1.17)
and the Gaussian is the function

Poo € SR ® AXD),  @o(x,2) = e ™, (1.18)
Here A°(D) is the space of smooth functions on D. Note that, for 1 € O(V(R)),

Poo(hx, hz) = @oo(x, 2). (1.19)

Let G = SL; and let G, be the 2-fold metaplectic cover of G(A). Let G, C G', be
the image of G(QQ) under the canonical splitting homomorphism. The group G', acts
in S(V(A)) via the Weil representation o (determined by the standard additive char-
acter y of A/Q such that i/ (x) = e(x) = ¢*™¥) and this action commutes with the
linear action of O(V)(A). It will sometimes be convenient to write this linear action
as o(h)p(x) = p(h~'x). Forz € D, h € O(V)(Ay) and g’ € G\, welet 0(¢, z, h) be the
linear functional on S(V(A,)) defined by

o> 0g,z,h; 0) = Z (@) (P (-, 2) ® (M) (). (1.20)
xen(Q)
Then, for y € O(V)(Q), we have
0g', vz, 7h; @) = 0, 2, s ). (1.21)
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Also, by Poisson summation, [55], for y € G,

0(ye',z,h; ) = 0(g, 2, 15 @). (1.22)
Finally, for g} € Gf\/ and hy € O(V')(4y), we have
0(g'g. z, hhis ) = 0(g', 2, h; (g, h1)g). (1.23)

In particular, if K C H(4A/) is as above, and if ¢ € S( V(Af))K, then the function
(z, ) —0(g', 2, h; ) (1.24)

on D x H(Ay) descends to a function on Xx. We may view it as a linear functional on
the space S(V(Af))K and, hence, we obtain

0: GL\G'\ x Xi —> (S(V(A)X)".
(g/a Z, h) = Q(g/7 Z, I; )

(1.25)

Note that this function is not holomorphic in z.
Let K% be the full inverse image of SO(2) C SL,(R) = G(R) in G%;. For each
r € 37, let y, be the character of K/ such that

P =0 i Kk = (_C‘;Sr(l((’z}) 22;%) € S0(2) (1.26)

under the covering projection. Let K C G, be the full inverse image of
SLy(Z) C G(Ay), and note that

G, = GLGRK'. (1.27)
The Gaussian (1.18) is an eigenfunction of K with

w(k;o)(Poo(xv Z) = X[(k/oo)(Poo(x7 Z)a (128)
for £ = (n/2) — 1. It then follows from (1.23) that

(g koK' 2, ) = 1K) (@(K)) ' 0(g 2, h) (1.29)

for all k€ K, and k'€ K'. In particular, the theta function has weight
¢ = (n/2) — 1. Here w(k’)" denotes the action of K’ on the space S(V(A,))” dual to
its action on S(V(A)).

Now suppose that F: G,\G', — S( V(Af))K is a function such that

F K K) = 1_y(ki) oK) F(g) (1.30)
for all k& € K and k' € K'. Then, as a function of g’, the C-bilinear pairing
(F(g),0(g',z, ) = 6(g', z, h; F(g)) (1.31)

is left G{,-invariant and right K K'-invariant. Its integral over G(,\G’,, defined in
general by a suitable regularization, is a function
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O(z,h; F) = / (F(g),0(g,2,h) )dg' (1.32)
Gu\Gy
on Xg.

The Borcherds forms [2] arise when F comes from a certain type of vector valued
automorphic form with possible poles at the cusps. To describe these, it is convenient
to pass to a point of view intermediate between that just explained and the classical
formulation.

Observe that G{, N (G{K') =~ SLy(Z). Let I" be the full inverse image of
SLy(Z) € SLy(R) = G(R) in the metaplectic cover Gj;. Thus I" is an extension of
SL,(7) by {£1}. For each y € I"", with image 7 in SL,(7Z), there is a unique element
7" € K’ such that y"y” =y € G|, N (GxK'). For t = u + iv € 9, the upper halfplane, let

gfz(l ”{)(1’% ) (1.33)
V2

and let g, = [g, 1] € G};. We then have

78 = &nkac (', 7) (1.34)
for a unique k__(y',7) € K. For r € %Z, define an automorphy factor by
JriT X H— CF, 700 = 1k (0, D) ler + I (1.35)

if = (“?). For example, if r € Z, j,(/,7) = (ct + d).

LEMMA 1.1. Suppose that (p, V) is a representation of K’ and that ¢: G, \G', —V
is a function such that ¢(g'k_ k') = y, (k) (k)L p(g). Let fizx) = v"/? ¢(g.). Then,
Jor all y =yy" € SLao(Z), f(y(1) = ji (7', 1) p( WD)
Proof. We have
f(0) = v((@) " $(g)r)
= let+dI" v g2k (7,07 ()7
= lev+dl" 7, (ko (', D) 0™ p(") (&)
=, 1) p(") D), (1.36)

as claimed. ]

Note that we can view V as a representation of I by setting p(y') = p(y").
Applying Lemma 1.1, via (1.29) and (1.30), we obtain automorphic forms
9(t,z,h) = =0z, z, h), (1.37)
of weight /¢, and
f@) = v Ry, (1.38)

of weight —¢, valued in S(V(A,))" and S( V(A_;))K, respectively. Note that 3 is not
holomorphic in 7. Then the quantity in (1.32) is given by
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Oz, h; F) = / (f(x), ¥z, z, b)) v dudv (1.39)
SLa(Z)\9
for a suitable choice of measure on G{,\G',.

Let M be a Z-lattice in V, on which the quadratic form Q(x) = %(x, x) takes inte-
gral values, and let M* be the dual lattice. Let Sy C S(V(Ay)) be the space of func-
tions with support in M =M, 7, and which are constant on cosets of M :=
M ®7, 7.. We will use the characteristic functions of cosets as a basis for this finite
dimensional space. The space S, is stable under the action of K'. The restriction
to Sy, of the theta function 3(z, z, 1), viewed as a linear functional, defines a (non-
holomorphic) modular form of weight £ = (n/2) — 1 valued in (w", SY,), the dual
of the representation (w, Sy,) of K'. Note that

S(V(Ay) = lim Sy,

Suppose that F (and hence /) takes values in Sy, and is meromorphic at the cusp in
the following sense. Write

D=/, (1.40)
®
where ¢ runs over the coset basis for Sy, and let
fo@ = colm)q” (1.41)
meQ

be the Fourier expansion of f,,, where ¢" = e(mt). We will sometimes write co(m) for
the Fourier coefficients of f,,, where ¢, is the characteristic function of M; the con-
stant term ¢o(0) will play a crucial role. The Fourier coefficients ¢,(i) are nonzero
only for m € (1/N)Z, for some integer N, and we require that only a finite number
of ¢,(m)’s with m < 0 are nonzero. Then the pairing

(f(1),9(z,z, W)= Z Jo(D) 3(z,z,h; @) (1.42)
®

defines an SL,(7Z) invariant function on . It can be very rapidly increasing on the
standard fundamental domain for I' = SL,(Z). The regularization used to define the
integral (1.39) will be reviewed in detail below. Note that the pairing (1.42) does not
depend on the choice of the lattice M.

A basic result of Borcherds, [2], expressed in our present notation, is the following:

THEOREM 1.2 (Theorem 13.3 of [2]). Suppose that F (and hence ) takes values in
SKX. and that the Fourier coefficients c,(m) for m < 0 are integers. Then, for z € D and
h € H(Ay), the regularized integral
Oz F) = [ (9902 v dude
o

can be written in the form
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O(z, h; F) = —21og |¥(z, h; F)|* — co(0)( 2log|y| + log(2n) +I'(1))
Sfor a meromorphic modular form Y(f) on D x H(4y) of weight k = %CO(O).

More precisely, suppose that ¢y(0) is even, so that k = %Co(()) € 7. Then, there is a
unitary character ¢ of H(Q) such that, for all y € H(Q),

W(yz, vk F) = E0)J(y,2) Wz, b F). (1.43)
Moreover, as a function of h € H(Ay), W(f) is right K-invariant for any compact
open subgroup K C H(A,) for which the values of F lie in Sy C S(V(Af))K and,
hence, W(f) defines a meromorphic section of the bundle £&* ® Ve, where Ve is
the flat bundle defined by &. Since our calculations only involve log [|¥(f)||*, the
character &, which, in fact, has finite order [4], will play no role in the present paper.
If the coefficient ¢y(0) is odd, W(f)* = W(2F) is an automorphic form of weight 2k.
Note that, in any case, it is the quantity 2log |¥(z, ; F)|> which occurs in ®(z, i; F),
so that the parity of ¢o(0) will not matter.

Borcherds also determines the divisor of W(f). To describe this in our setup, we
first recall the definition of the special cycles in Xk, from [26]. For x € V(Q) with
O(x) > 0, let V, = x*, and

Dy={zeD|xLlz) (1.44)

Let H, be the stabilizer of x in H, and note that H, ~ GSpin(V,). For h € H(Ay),
there is a natural map

HA(ON\Dy x Ho(Ap)/(H(A) N KRy — HQN\D x H(A)/K
() (2, ) (1.45)

which defines a divisor Z(x, 4, K) on Xg. This divisor is rational over Q. For a
Schwartz function ¢ € S(V(Af))K, and a positive rational number m € Q-(, we
define a weighted linear combination Z(m, ¢, K) of these divisors as follows. Let

Q,={xeV| Q) =m} (1.46)

be the quadric determined by m, and fix xy € Q,,(Q), assuming that Q,,(Q) # ¢.
Then Q,,,(Ay) is a closed subset of V(A,), and we can write

supp(e) N Qu(A) = [K- &' xo (1.47)
for some finite set of ,’s in H(A). Define

Z(m, ¢, K) =Y (& "' x0) Z(x0, &, K). (1.48)

If Q,,(Q) is empty, then Z(m, ¢; K) = 0. These cycles, which are defined for arbitrary
codimension in [26], include the Heegner points, Hirzebruch—Zagier curves, and Hum-
bert surfaces as particular cases. Various nice properties of the weighted cycles are descri-
bed in [26]. For example, if K’ C K and if pr: Xg — X is the associated covering, then
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priZ(m, ¢,K) = Z(m, ¢, K’), (1.49)

so that the special cycles are defined on the full Shimura variety associated to (H, D),
[41]. Because of this relation, we will frequently omit K and write simply Z(m, @) in
place of Z(m, ¢, K). Also, if h € H(Ay), then right multiplication by 4! defines a
natural morphism, rational over Q,

r(h): Xk — Xy, (1.50)
and
r(h)*Z(m,q),K) = Z(m,w(h)qo,hKhil), (151)

where w(h)@(x) = @(h~'x). This relation describes the compatibility of the special
cycles with the Hecke operators. Finally, by Proposition 5.4 of [26], we can give
an explicit description of these cycles with respect to the decomposition (1.3) of
the space Xx as a disjoint union of arithmetic quotients of D*:

Z(m, ¢, K) =) Zj(m,¢,K), (1.52)
J
Zm, 0, K) = > ol x)pr(Dy),
x€Q,,(Q)
mod T

where pr;: D* — I'\D" ~ Xj is the natural projection. Note that it follows from
this formula that,

Z(m,p; K) = Z(m, ¢"; K) (1.53)
where ¢V(x) = ¢p(—x).

THEOREM 1.3 (Theorem 13.3 of [2]). For f with Fourier expansion given by (1.40)
and (1.41),

div(¥()) =) D cpl=m) Zm, ¢, K).

®» m>0
Here ¢ runs over the coset basis for Sy;.

Finally, the following convergence result for the integral (1.0) will be proved in
Section 3.

PROPOSITION 1.4. Suppose that V is not an isotropic space of dimension 3 or a split
space of dimension 4. Then, for every Borcherds form Y(f),

log [IP(/)Il € L'(X,du(2)).
Remark 1.5. For elliptic modular forms ¥, i.e., for the first case excluded in

Proposition 1.4, the integral (0.1) will only converge when ¥ is nonzero at all cusps. In this
case, the integrals k() were evaluated by Rohrlich, [50], via the Kronecker limit formula.
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2. Computation of a Regularized Integral
Setting k = %00(0), recall that the Petersson norm of the section defined by W(f) is
19z, b F)IIP = [z, b PPy 2.1

We view the function ||'P(z, 4;; F)||* as a function on the component X; =T \D" of
Xk and will write ||¥(z; F)||?> for the resulting function on either X; or the (possibly
disconnected) complex manifold Xk. In what follows, we will write X for either Xk or
for one of the X;’s.

The basic problem is to compute the following integral:

kx(Y(f))
1

e . 2
= i /X log |¥(z: )| du(2)

1 . 2
—— i eI P ) anca

1 1 '
3 TS /X ®(z: F) du(z) + k (log(2m) + T'(1))

1 . |
_EF(X) //\/( l_\@((f(f)alg(f,Z) )v dudv)d‘u(z)+kco

e )
=2 /mb Zp: £ Ix(z; @) v~ dudv + k Co, 2.2)
where Cy = log(2n) + I''(1), vol(X) = vol(X,du(z)) and
I 0) = o L 965 00 duta 2.3)

In fact, the last interchange of order of integration (where one of the integrals reg-
ularized!) will be justified in the next section, provided the theta integral (2.3) conver-
ges. We will discuss this point in a moment. Here du(z) is a H(R)-invariant top
degree form on D; the quantity xy(Y'(f)) is independent of the normalization of this
form.

We want to relate the integral Iy(t; @), over the complex manifold X = Xk or X;,
to a usual theta integral over an adelic coset space appearing in the Siegel-Weil
formula. This is done in detail in section 4, below, cf. Theorem 4.1. Note that there
is an exact sequence

l1—Z—H—SO(V)—1

where H = GSpin(}V), as before. Let H; = Spin(}") be the kernel of the spinor norm
v: H — G,,. Note that, for the decomposition (1.2), we have

H(QH(R) K = (h € H(A) | v(h) € Q" REv(v(K)},

so that the number of components of Xk is the index |ZX : v(K)|. For simplicity, we
assume that the compact open subgroup K C H(A,) satisfies the condition:
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Zi = Z(A)N K ~ 7% (2.4)

under the natural identification Z(A,) ~ é\fx A slight variant of the proof of Propo-
sition 4.17 yields:

LEMMA 2.1. Let ¢, be the Gaussian, as in (1.18) above. Then, for ¢ € S(V(.A,))K,
(i)

Ig: 9 ®p) = / 0¢', I 9o ®p) di
O(M)Q\O(V)(A)

1 ;o
e /X 075 )42,

(i) Ifn>2, and X = X, then

L(g: 90 ® @) = / 0(g', h1; 9o ® @)dhy
Hi(Q\H) (A)

1 ) .
B F(X)/x@(g 2, hys @) du(z).

Note that both sides are independent of the choice of du(z).
COROLLARY 2.2. Ix(t; ) = v™? (g\; 9oy ® @)

COROLLARY 2.3. Assume that F is valued in S( V(Af))K. Then
1 L]
SN =3 [ 3 S0 I 00 dudo + kG
ne =

1 L]
2 /F\- Y Lo P I 9 ® @) v dudv + k G,
9%

with Cy = log(2n) + I"'(1). Here, if n < 2, then X = Xk.

Remark 2.4. By Weil’s criterion, [56], p.75, Proposition 8, the theta integral
I(g.; ¢, ® @) is absolutely convergent whenever n —r > 0, where r = 0, 1, or 2 is the
Witt index of V(Q), i.e., the dimension of a maximal isotropic subspace of V(Q).
Note that r = 0 is only possible when n < 2. The only exceptional cases will thus be
n = 1 with V isotropic (r = 1) and n = 2 with V split (r = 2). We will exclude these
cases — although they can be handled by the regularization process used in [33].

We consider the regularized integral in the expression for xy(*Y'(f)) in Corollary
2.3. Note that xy(‘\Y(f)) is independent of the choice of the lattice M and of K.
Recall that, for a I' = SL,(Z) invariant function ¢ on £, the regularized integral

P() du(), (2:5)

no
used by Borcherds, is defined by taking the constant term in the Laurent expansion
at ¢ = 0 of the function defined, for Re(o) sufficiently large, by
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lim / H(t)v ™" dudv. (2.6)

T—o0 F

Here F is the standard fundamental domain for the action of I' on §, and F 7 is the
intersection of this with the region Im(z) < 7. This procedure can be applied provi-
ded that (i) the limit as 7" goes to infinity exists in a halfplane Re(g) > oy, and (ii) the
resulting holomorphic function of ¢ has a meromorphic analytic continuation to a
neighborhood of the point ¢ = 0. In short,

[ o0 e =ctitin [ o0 ano). e

where CT,—y denotes the constant term of the Laurent expansion at the point ¢ = 0.
The following result will be proved in the next section.

PROPOSITION 2.5.

o= O{TILm _/ wa(T)IX(T Qv 2dudv}

Fr o

T—o0

= lim |: / Z Jo(0) Ix(t; @) v2 dudv — ¢(0) log(T) :|
Frg
Thus we need to evaluate the basic integral
/ > fo(@) Ix(t: @) v~ dudv (2.8)
Fr5

where f,(7) is holomorphic on F and where ¢ has been set equal to zero.
Following the suggestion of Section 9 of [2], we would /ike to define an auto-
morphic function J(t; ¢) on H for which

9 V@ @)} = Ix(z; ) 072 (2.9)
ot

Then, by a simple Stokes” Theorem argument, we would have

/ > Lo Ix(t: @) v~ du A do
Fr ©

1 : ,

=5; /f T d(; fo(0) J(t; 9) dr)
1

-5 /0 . ; £(0) J(z: @) dr

1 —1/2+iT

> fo@® J(T: @) du

2iyjpir 5

1
=5 constant term of (g So(0) J(x; (p)) (2.10).

v=T
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In the next to last step, we have used the invariance of er Jo(1) J(7; @) dt under
T+ 7+ | and under T~ — 1/7.

To obtain a relation like (2.9), we apply the Maass operators and the Siegel-Weil
formula. Let

11 £\ _ ...
Xi=2(il. _1>eglz(u. 2.11)

Recall that, if ¢: Gy — C is a smooth function with ¢(g'k’) = y,(kK")¢(g), i.e., of
weight ¢, and if f(t) = vt ¢(g.) is the corresponding function on §, then X.¢ has
weight £ 42, and the corresponding function on © is

(Zig—{—l—f:f)(r) for +,
=2i* L(v) for —.
We now take advantage of the Siegel-Weil formula; the facts we need are reviewed

in the first part of section 4. For ¢ € S(V(Ay)), let E(g’, s, D, ® A(¢)) be the Eisen-
stein series of weight r on G', associated to ¢. If ¢, € S(V(R)) is the Gaussian, then

v X, p(gl) = { (2.12)

M) = D (50), (2.13)
where £ =% — 1, as above. By the Siegel-Weil formula, Theorem 4.1, we have the
following.

PROPOSITION 2.6. Exclude the exceptional cases of Remark 2.4 above, so that the
theta integral is absolutely convergent. Then

Iy(t; 0) = v "2 I(gl; 0oy ® @) = v? E(g), 50; DL, ® i(00)),
where s =n/2 =€+ 1. Here, if n <2, X = Xg.

On the other hand, an easy computation in the induced representation I (s, y) of
Gy shows:

PROPOSITION 2.7. Let @ _(s) € Ir(s, x) be the normalized eigenvector of weight r
for the action of Ky,. Then X1 @ _(s) = %(s +1x£r) <D’;f2(s).

Therefore, we have the basic relation
1
X_E(g,s; 07 © Mo)) = F—0=1D E(g,5; D, ® A0)). (2.14)
Pushing this down to £, we obtain

. 8 1 / bl
—2iv? 5 {v 1 E(g s O ® M)}

=1(s = 50) v E(g., 5: D, ® i()). (2.15)
For convenience, we now write
E(x,s5: ¢, 0) = v~ E(g,, s0; Db, ® A9)), (2.16)

so that (2.15) becomes
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—2iv? 4 {E(r s; g0,€+2)} 2(S—SO)E(‘C 55 ¢, 0). (2.17)

Of course, the vanishing of the right hand side of (2.17) at s = 5o = n/2 just shows
the holomorphy of the special value
E(z,50; 0, £ +2) = ¢(0) + vol(X)™" Y _ deg(Zx(m, ¢)) - ", (2.18)
m>0
cf. Theorem 4.23. Here we have written deg(Zy(m,¢)) in place of
deg,v(Zx(m, ¢; K)) and vol(X) in place of vol(X, Q") to lighten the notation.

Remark 2.8. The vanishing of the right side of (2.17) depends on the fact that
E(z, s; ¢, £) has no pole at s = 5o = n/2. In the exceptional cases, n =1, r =1 and
n=2, r=2 a pole can occur, and its residue accounts for a nonholomorphic
component occurring in (2.14), cf. [16].

We write:
—4i 0
— 50 ot

Now, to evaluate (2.8), we use the Siegel-Weil formula (Proposition 2.6) and write

E(t,s;0,0) 0% =

[EG,s; 0,0+2)). (2.19)

[ ¥ rontertad = [ ¥ 4@ 000 dind

S=50
Then, for general s, we can use the relation (2.19) and the Stoke’s Theorem argument
(2.10) to obtain the following basic identity.

15, T) := / Z Jo () E(t, 55 ¢, 0) v 2 du A dv

. f (Z fol®)

— / Z Jo(©) E(t, 85 0,0+ 2)dt

E(‘L’ s; q)l—l—Z)dr)

S‘ — 50 Fr p
) 1/2+iT
= / Z Jo() E(t, 55 0,0 4 2)du
S=3S0J1jp+ir
2
= - const. term of Z Jo(D) E(z, 55 0,4 +2) (2.20)
S — 380 ? T
By Corollary 2.3, and Proposition 2.5,
kx(Y (/)
=3 Tlgr;0|: /X/,: Fo(0) I(z; @) v dudv — ¢o(0) log(T) } +k Cy
1
=5 Jim [ L(so, T) = co(0) log(T") ] + k Co, (2.21)
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It will be convenient to introduce the following additional notation. Write

E(,5:0,0+2) =) Ag(s,m,0)q", (2.22)

where the Fourier coefficients have Laurent expansions
Ay(s,m,v) = ag(m) + by(m, v)(s — s0) + O((s — %)), (2.23)
where the a,(m)’s are given by (2.16). With this notation,

I(s,T) =

2
constant term of <Z Jo(T) E(t, 55 ¢, 0 + 2))
— %

v=T

co(—m) Ay(s,m, T). (2.24)
ZZ p(=m) A

S - SO m

We consider the individual terms. For m = 0, we have

2SO Z ¢y(0) ((p(O) +0,(0,T)(s — So)) + O(s — s0)- (2.25)
¢

s —

so that the contribution of such terms to the constant coefficient in the Laurent
expansion at s = sp i

2> " ¢p(0)by(0, T). (2.26)
4

We will return to the polar part occurring in (2.25) in a moment. Similarly, from the
m < 0 terms, we have the contribution

23> cp(—=m)by(m, T). (2.27)

» m<0
Finally, for the finite sum of terms with m > 0, we have, initially:

1

(s —50) Vol(X) —m DD Co(—m) deg(Z(m, @)+

® m>0

+2) > ep(=m) by(m, T) + O(s — o). (2.28)

® m>0

Since our whole integral (s, T') does not have a pole at s = 59, the polar part here
must cancel the one which occurred earlier, i.e., we must have

22%(0)@(0)4‘ l(X)ZZC‘”( m) deg(Zy(m. ) = 0. (2.29)
® m>0
Since
divy(P(/)) =Y co(—m) Zx(m, ¢), (2.30)
m>0

this amounts to

https://doi.org/10.1023/A:1024127100993 Published online by Cambridge University Press


https://doi.org/10.1023/A:1024127100993

312 STEPHEN S. KUDLA

deg(divx(P(/)*) = Y ¢p(—m) deg(Zx(m, ¢)) = —vol(X) ¢o(0). (2.31)
m>0
Recall that we are using the coset basis for Sy, so that ¢y(0) =1 and ¢(0) = 0 for
¢ # ¢y. Also note that, since Q is the negative of a Kéhler form, vol(X) and
deg(Zx(m, ¢)) will have opposite signs (for a coset function ¢), cf. (4.49).

EXAMPLE 2.9. Suppose that n =1 and r =0, i.e., V is anisotropic over O of
dimension 3 and Xk is a disjoint union of projective curves. Suppose that the image
of K in SO(V')(Ay) is neat, so that all of the I';’s act without fixed points on D >~ §.
Then, since Q = —(1/2x) y~2>dx A dy, vol(Xx) = 2 — 2g, where g is the genus of Xk,
and hence we have

deg(div(¥(/)*) = 2(g — 1) co(0), (2.32)
as expected. Here one must keep in mind the fact that W(f)* has ‘classical weight’
2.¢0(0).

Collecting the contributions of (2.26), (2.27), and (2.28), we obtain

PROPOSITION 2.10.

I(s0,T) = /f > Lo Ix(t @) v dudo =23 " ep(—m) by(m, T).
L

o m

The following result will be proved in the next section.
PROPOSITION 2.11.

(i) For m <0, by(m, T') decays exponentially as T — co.
(i) Tlglgo (2 >0 2m=0 Co(—m) by(m, T)) =0.
(ii1) For m =0,
. 1
Jim (800,75 low(T) ) 0.
and, for ¢ # @, Tlim by(0,T)=0.

Thus, we obtain an explicit expression for the quantity «(W(f)). The following
result summarizes the relations between the geometry of the Borcherds form W(f)
and the family of Eisenstein series E(t, s, ; @, £ + 2). Recall that we have excluded
the cases where dimJ) = 3, of Witt index 1 or dimV = 4, of Witt index 2.

THEOREM 2.12. For ¢ € S(V(A)), let

E(t,5:0,04+2) =Y Ay(s,m,v)q",
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with
Ap(s,m,v) = ay(m) + by(m,v) (s — so) + O((s — 50)°)

be the Laurent expansion at the point so =n/2 =€+ 1 of the associated Eisenstein
series of weight n/2 +1 = £+ 2. Let K be a compact open subgroup K C H(Ay) satis-
fying the condition (2.4), and let Xx = ]_[/X] as in (1.3).

Ifn <2, take X = Xg. If n > 2, then take X = Xg or X|.

(1) Suppose that ¢ € S( V(Af))K. Then,
E(T,So; (pv‘€ + 2)
= ¢(0) + vol(X)™" ) " deg,«(Zx(m, 9; K)) g

m>0
(i) For any ¢ € S(V(A)), let

Tlim bo(m,T), ifm>0, and

3Co9(0), ifm=0,

where Co = log(2n) + I'(1). Suppose that [ — S(V(Af))K is a modular form of
weight 1 — (n/2) = —{ for SLy(7.), with Fourier expansion f(t) = 20 2om Com) q" @
where ¢ runs over the coset basis with respect to some lattice M and where
co(m) € 7 for m < 0. Let Y(f) be the associated Borcherds form of weight c(0)/2.

Ko(m) =

Then
divCP () = ) D eol=m) Z(m, ¢; K),
®» m>0
and
—vol(X) co(0) = ) | ) cp—m) degp (Zy(m, : K)).
¢ m>0
Moreover
o L AR _ _
D) = =y TR GNP 802 = 12 3 ol st
Here
vol(X) = vol(X,Q") and deg, (Zx(m,q; K)) = / Q!
Zy(m,p;K)

are computed with respect to the invariant (1,1)-form Q = dd‘log(p), where p =
p(z) = —$(w(2), w(2)), ¢f. Proposition 4.10.

Remark 2.13. The quantity xx(\P(f)) is completely determined by the collection
of integers {c,(—m)} for m = 0. The universal quantities x,(m) are independent of
Y(f). They can be computed explicitly, cf. Section 5 for an example and [36] for a
more systematic discussion.
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3. Convergence Estimates

In this section we prove the crucial fact that the integration over X can be interchan-
ged with the Borcherds’ regularization. In the process, we will prove Proposition 1.4
as well.

THEOREM 3.1. Suppose that the integral of the theta function converges, i.e., sup-
pose that V' is not a ternary isotropic space of signature (1, 2) or a quaternary space of
signature (2,2) and Q-rank 2, the exceptional cases of Remark 2.4 above. Then

/X ((F(2), 8(z, ) du(®) dpu(2)

no

- ((F(2), /X 9(z,2) du(2))) du(),

e

where [* denotes the regularized integral, and both ‘double integrals’ are finite.

Writing Fr = F| U By, where By = Fr — F, we consider the first expression:

/ f (F(=), 8(z, 2))) du(x) du(2)
X JI\9

=0 | T—oo

- / CT{ lim / (F(2), 3(z, 2) v du(r)}du(Z)
X Fr

- /X gTO{ lim. fB (), 98,27 4t } duz)+
+ /X /f (@), 52, 2) dpte) )

T
:/CT{ lim/ C(v,z)v_”_ldv}du(z)+
X 1

=0 | T—o
4 ff | fX ((F(0), 9(t, 2)) duz) dpo), G.1)

where
C(v,2) = C(v, z, h)

=o' [ (o), %z, 2, b)) du

= Z Z cp(—m) Z (p(h_lx) e 2moR(x2) (3.2)

X
¢ meQ Q(x)=m

ol—

is the constant term of v~ '(( F(t), 9(z, z))). Here, in the term arising from integration
over F1, we have used the integrability of 3(z, z) over X. It now suffices to show that
the term

T
A= /X CT{ lim /] C(v,z)v_”_ldv}d,u(z) (3.3)

=0 | T—oc0
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in the last expression can be rewritten as

B:= CT{ lim / / C(v,z)v™°" ldvd,u(z)} (3.4)

T—o0

To see this, observe that the integral in B is then equal to

/X/lr C(v,2) v dodu(z)

_ / / (F(=), 8(z, 2))) v du() du(2)
X JBr

- / / ((F(z), 8(z, 2))) du(2) v° du(2), (3.5)
BrJx

again using the integrability of 9(t,z). Substituting the resulting expression for
B in place of A4 in the last expression of (3.1), we obtain

T { lim / /X (F0), 5z, 2))) du(2) o= du(x) }+

=0 | T—o0 Br

+ / / ((F(2), (2, 2)) du(z) du(2)

a=0

T{ lim / / ((F(2), 8z, ) du(2) v du(r)}
/ ) / (F(2). 9(z, ) du(z) (3.6)

ne

as required.
To show the equality of 4 and B, we break the function C(v, z) into pieces.

C+(U Z) _ZZC(P( m) Z (p(x)e_zm“R(Y’)

@ m>0
(vc) m
Co,2) =) cp(0) D lx)e ™F=, (3.7)
¢ 0(¥)=0,x£0

Coo(v,z) := Z cp(0)p(0) = co(0) (for the coset basis),

C_(v,z):= Z Z Co(—m) Z o(x) e~ 2RE2),

® m<0 o ¥§—m

We will write 4., Ay, Aoy, and A_ (resp. By, etc.) for the corresponding contri-
butions to 4 (resp. B).
For the Cy term, we have

T 1
/ vl dv=—(1-T79), (3.8)
1 g

so that
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T
CT{ lim / Coo(v, 2) dv} =0. 3.9
o=0 | T—o0 Ji

This giVCS A()() = Bo() =0.

Next consider the quatities A, and B, arising from C, (v, z). Note that the sum
on m > 0 in C4(v, z) is finite, since there are only finitely many nonvanishing nega-
tive Fourier coefficients c,(—m). For a given coset representative s = h;, we write
[ =T;= H(Q)NhKh™!, so that I'\D" is the associated component of Xk. For a
fixed m >0 and ¢ and on the chosen component of Xk, the sum in Cy(v,z)
involves

fx e M(Q) | Q(x) = m, o(h~'x) #0}. (3.10)

This set consists of a finite number of I' orbits. The contribution to 4 of a single such
orbit is ¢,(—m) @(h~'x) times the quantity

T
f CT{ lim / D ek v”ldv}du(Z). (3.11)
I I yerar

\D+ =0 T—o00
To prove the finiteness of this expression, it will suffice to prove the finiteness of

T
lim e 2R ==l qy dp(z), (3.12)
/l“\D* T—o0 Jq ye;;l‘

for ¢ = gy for some real oy < 0. Indeed, such finiteness implies that (3.12) defines a
holomorphic function of ¢ in the half plane Re(a) > ag¢. If z lies in the set

RE (3.13)
yel\I'

then none of the R(x, yz)’s vanish and the limit on 7 inside the integral is finite. Note
that the excluded set of z’s has measure zero. The following result will be proved
at the end of this section.

PROPOSITION 3.2. Let f,,(t) = loo e v~V dv. Then, if OQ(x) > 0, the integral

T
[ Thm Z e—27wR(x.",!z) U—D’—l do d,u(z)
n\p+ 1=%0J1 W SFAr

= [, X BenRe ) dutd)

yelA\D

- / Bt QTR 2) di)

rA\D

is holomorphic in the halfplane Re(o) > —1.
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Recall that f5,(f) = O(—log(?)) as t — 0 and f,(f) = O(e™’) as t — oo. Thus, when
o = 0, the integrand f;(2nR(x, z)) has a logarithmic singularity on the ‘waist’ I',\ D}
of the tube I',\D". Also note that this ‘waist’ can be noncompact.

COROLLARY 3.3. A, = B,.

Next we consider the terms A4y and By associated to the nonzero null vectors.
Again, for a given /& and ¢, the associated terms in Cy(v, z) will be

¢p(0) 2: o(h™'x) e 2moR(:2), (3.14)
x#£0
0(x)=0

There are a finite number of I" orbits in the space of null lines in V(Q). For a given
null line ¢ C V, we have the contribution to Ag:

co(0) CT { lim p(h™'x)x

/T
n\p+ o=0 L T=0 1 LSS wer(D) k0

x e 2eR(2) ==l qy } du(z). (3.15)
Again, the following result, to be proved below, will suffice.

PROPOSITION 3.4. Suppose that n > 1. Then the integral

[ et prsCroR(s ) duca)
FAD* veg(Q), x£0
is holomorphic in the halfplane Re(o) > —(n/2).

COROLLARY 3.5. 4y = By.

Finally, we turn to the terms where m < 0. Note that the sum on m in C_(v, z) is
now infinite so that we will need information about the growth of the Fourier coef-
ficients c,(—m). In fact, these can grow very fast!

As before, we fix ¢ and &, and, taking the limit with respect to T, we consider

/ ch(—m) Z f o(h™'x) e 2R y=o=1 qu du(z). (3.16)
\D* j<0 Q(x))(:m 1

Here we can push the integral over I'\ D" inside the sum on m, and again use the fact
that, for each m, there are only a finite number of " orbits in the set

fx € Q) | Q(x) = m, o(h~"x) #0). (3.17)

Thus, it will suffice to show:

PROPOSITION 3.6. The sum
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Setom 3 ot [ [ e dndn

m<0 X
O(x)=m
modI”

defines an entire function of c.

COROLLARY 3.7. A_=B_.
Proof of Proposition 3.2. To show the finiteness of the integral

f B 1 Q1R (x,2) dpi(2) (3.18)
rAD*

in the case Q(x) > 0, we introduce coordinates. We choose a basis for V(R) so that
the inner product has matrix /,, and so that x = 2ow; is a nonzero multiple of the
first basis vector. Then SO(V)(R)" ~ SO™(n,2) = G and the subgroup stabilizing
x is isomorphic to SOT(n — 1,2) = G.. Let zy € D* be the oriented negative 2-plane
spanned by 0,4 and 0,4, and let K = SO(n) x SO(2) be its stabilizer in SO*(n,2).
The plane spanned by vy and v,.;, the first negative basis vector, has signature
(1, 1). The identity component of the special orthogonal group of this plane is a
I-parameter subgroup

A=1{a, |teR) (3.19)

where a,v; = cosh(f)v; + sinh(?)v,41. Let A, be the subset of a,’s with ¢t > 0. Then,
from the general theory of semisimple symmetric spaces — a convenient reference
is [13] — one has a double coset decomposition

G =G A K (3.20)

and the integral formula

_ : n—1
/Gd)(g)dg_/G‘ /A+/I;qﬁ(gxa,k)lsmh(mcosh(t) dg,.drdk. (3.21)

For z =g.a, - zo € DT, we have
R(x, z) = 2msinh?(¢), (3.22)

since Q(x) = 20> = m. Then, our integral becomes (up to a positive constant depend-
ing on normalization of invariant measures)

f B (21 R(x,2) dp(2) (3.23)
C\D+
= Cvol(l'\Gy) vol(K) f Bo-r1(4mm sinh?(1)) sinh(r) cosh(n)"~" dr.
0
LEMMA 3.8.
(i) The function B, (1) = f’oe*tu w=V du is O(e™) as t — .

(i) If o <O, then B, 1(t) =O(t°) as t — 0.
(iii) If 0 =0, then
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u

du

Bi(1) = —Bi(—1) = —log(f) +7 + /0 ¢

is the expomential integral and this function has a logarithmic singularity,
—log(?), as t — 0.
(iv) If 6 > 0, then f,.1(1) =0O(1) as t — 0.

The integral (3.23) is finite for ¢ > —1, since, near the lower endpoint it looks like
/ sinh(#)*’ sinh(¢) cosh(z)"~' dr = f 2 (2 + 1772 du. (3.24)
0 0

Note that the signature of x* is (n — 1,2), so that the volume vol(T',\G,) is also
always finite. This proves Proposition 3.2. OJ

Proof of Proposition 3.4. Finally, we consider the integral
[ et @Rt 2) duo), (325)
FADT xep(Q), x£0

In this case, we choose a basis for ¥ such that the matrix for the inner product is

1
L1 (3.26)
1

and such that ¢ is spanned by the first basis vector. Moreover, we assume that
{x € (Q) | p(h~'x) # 0} C 27w;. (3.27)

The parabolic subgroup P, stabilizing the line ¢ then has Levi decomposition
Py = U MA with 4 ~ GL(¥), M ~ SO"(n — 1, 1), and unipotent radical U;. We take
z to be the oriented negative 2-plane spanned by %(vl — Uy42) and v,4; and let K be
its stabilizer. Then

G = SOT(V)(R) = UMAK (3.28)

and we have the integral formula

/G¢(g)dg=/;}/M/;/K(;’)(uma,k)r_”_l dudmdrdk, (3.29)

where a,v; = rv;. For z = uma, - zo, and x = 2avy,

R(x,z) = R(ar’lx7 z0) = 202572, (3.30)

since

1

a;'x = 20r v = 207 (o1 + vas2) + o1 — v4s2)) (3.31)
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has o7~ (v] — v,42) as its zy component. The integral (3.25) is then majorized by a
constant times

/ Z ﬁa+1(4noc2 1”’2) F el dr
0

o€, a0
= 2(4n)™" L(n) /0 ~ By (P L dr. (3.32)

The integral here is finite provided 20 +#n > 0, so we obtain the required conver-
gence provided n > 2 and Re(o) > —(n/2), i.e., in all isotropic cases except n =1
(which was an exceptional case). O

Proof of Proposition 3.6. For x with Q(x) =m < 0, we write x = pr.(x) + x" so
that

R(x,z) = (¥, X)) — 2m = 2|m|. (3.33)

We let R'(x,z) = (¥, X'), and note that R'(x,z) = 0 if and only if x € z. Then we have
the easy estimate:

00 00
f e—Zm;R(x,z) U—(F—l do < e—ZnR (x,z)/ e—4n|m\u v—a’—l dv
1 1

00
< e—27rR (X,Z)/ e~ e((—4n\m|)v U—O’—l do
1

00
< 67271R (x,2) etf4n|m\ / e 07071 dv
1

< C(e, 0) 672nR’(x.z) ef4n|m|’ (334)

for any € with 0 < ¢ < 4z|m|, where the constant C(¢, ) is uniform in any o-halfplane
and independent of m. Note that there is a positive lower bound for the quantity |m|
where m < 0 has c,(—m) # 0. This leads to the expression

§:|c¢,(—m)|e*4”'m' 2: o(h'x) f e R dp(z). (3.35)
m<0 X LAD*

O(x)=m

modI’

Recall that the modular form f,, with Fourier coefficients c,(—m) has weight
1 — (n/2), with some real multiplier for a congruence subgroup of SL,(Z), and is
holomorphic in the upper halfplane with possible poles at the cusps. Then it is
known that

co(—m) = O(jm| ™% VI, (3.36)

i.e., these coefficients grow at most subexponentially. The (explicit) constant C
depends only on the order of the pole of f, and on the multiplier. If n > 2,
so that f, has negative weight, this fact follows from the classical work of
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Rademacher [46], Rademacher and Zuckermann [47], Zuckermann [58], and
Petersson [45], cf. also Hejhal [22]. The cases n =1 and 2 are covered by Hejhal
[22] and Niebur [42].

Finally, it remains to estimate the quantity

> oty [ eI duce) (337

X
0(x)=m
modI”

To estimate the integral here, we choose basis for V' so that the inner product has
matrix —/, and such that x =2av;. Let zyp be the span of v; and v, and let
A = {a,} be the 1-parameter subgroup which is the identity component of the special
orthogonal group of the plane spanned by v; and wv;. In this case «,v; =
cosh(#)v; + sinh(¢)v;. Again we have the decomposition (3.28) and an integral for-
mula analogous to (3.29), but with the cosh and sinh switched in the modulus
factor. For z = g.a, - z9, we also have

R(x, z) = 2|m| cosh?(7). (3.38)

and
R/(x,z) = 2|m| cosh?(£) — 2|m| = 2|m| sinh?(?). (3.39)

Then we have

/ e72nR’(x,z) d,u(z)
rA\D+

= C'vol(I'y\Gy) vol(K) / e=4niml sinh’ () it (/"= cosh(7) dt
0

= C'vol(T',\Gy) vol(K) L (4n|m]) r(g) (3.40)
Using this in (3.37) and using (3.36) an upper bound for (3.35) is
3 i VI N (17 ) vol(D\G). (3.41)
m<0 X
O(x)=m
modI”

Here m runs over the negative elements of N~!7Z for a suitable N depending on ¢ and
h. The resulting expression is finite since, [51],

Y p(h™ %) vol(T\Gy) = O(Im[*). (3.42)
Q(x);:m
modI

This completes the proof of Theorem 3.1. O

There are several more things which need to be proved.

Proof of Proposition 2.5. By (2.3), the left-hand side of the identity
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i vy ,,—0—2
o:’-g { 7151;10 /;:Tz(p: f‘P(T) IX(Ta(pe )U dudlj}

= lim [ /F > L@ Ix(t, ) v dudp — ¢o(0) log(T)i|

T— o0
T @

to be proved can be written as
vol(X)~! C"l(; { Tlim / / (f(2), %(t,2)) v > dudv d,u(z)}
o= —®JxJrr
= vol(X)~! / / ((f(1), 8(1, 2))) v > dudo du(z)+
X JF

T
+ vol(X)™! CT{ lim f f C(v,z)v“’_ldvdu(z)}.
=0 | T—o0 xJi

The analysis made in the proof of Theorem 3.1 above shows that the integral

[ [ e = cut. )0 dvduce

defines a holomorphic function of ¢ in the half plane Re(s) > —1. Note that in the
case n = 1 there are no Cy terms, since V is then assumed to be anisotropic. The
remaining term is

T
vol(X)~! /X/l Coo(v,2) v~ dvdu(z) = ¢o(0) %(1 -T7)
= ¢o(0)log(T) + O(o).

This term makes no contribution when we take the limit as 7 goes to infinity
followed by the constant term at ¢ = 0. Thus, once the term ¢y(0) log(7") has
been removed, we can pass to the limit on 7 with ¢ =0, and this proves
Proposition 2.5. O

Proof of Proposition 2.11. In the Fourier expansion (2.21) for E(z, s; @, £ + 2) for
a factorizable function ¢ = @), ¢, € S(V(Ay)), the mth coefficient, for m # 0, has a
product formula
Eu(t,8, 0,0 +2) = At,o(s>m7 v) qm = Wm.,oo(‘fvS; £+4+2). 1_[ Wm,p(sv @p)-
p
The following facts are well known, cf. [36] for more details.
Fors=so=¢+1=(n/2),

) (=20
IRCES))

m g™ ifm>0,

+

WmAOO <T7

S
3
~—
o
_I_

1):0, if m <0, and

n

[o¢]
+ 1) =qa(—i) 23" v / e Hrlmlor =51 e,
1

IS IS NI
IS IS IS

S

3

3
A/~

:‘\
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On the other hand, for any m # 0, the product over the finite primes is
Clm) = <H Wi s, <pp>) — o).
P §=80
Therefore, for m < 0, we have

00
by(m,v) = 75(—1')7'2171 273 C(m) 3 / e—4mlmlor —3-1 dr,
1

where C(m) = O(1). Thus
|bq,(m, U)| = O(U_%_l |Wl|_1 e—4n|m\v).

Using (3.36), this proves part (i) and (ii) of Proposition 2.11.
Finally, the constant term has the form

Eo(t, 5 ¢, £ +2) = 7170 0(0) + Wo oot 5: £ +2) [ Wo(s. ),
P

where
2= ()3 (s~ 5
FGs+3+2)TG(s—4+2)

Then, the derivative at s = 5o = (1/2) is

Wooo(T,5: £ +2) = 2m v+

I g)
TE+1)

1 n
E| (7,-, g; 0, g + 1) = 5 log(®) ¢(0) — ir (i) C(0).

This yields (iii) of Proposition 2.11. O

Proof of Proposition 1.4. 1t suffices to show that
0 F) = [ (F©,56,9) duo
N

T
= CT{ lim / C(v,z)v! dv} + / (( F(t), ¥z, 2) ) du(r),
o=0 | T—o0 J; F
is integrable over X, where C(v, z) is given by (3.2). The second term here is clearly
integrable, since 9(t,z) is. We break up the first term into pieces ., Oy, Oy and
®_ corresponding to the decomposition of C(v,z) in (3.7). By (3.9), ®gy = 0, while
the integrability of @, (resp. @) (resp. ®_) is give by Proposition 3.2 (resp.
Proposition 3.4) (resp. Proposition 3.6). O

4. Formulas for Degrees

In this section, we explain how the Siegel-Weil formula can be applied to yield
formulas for the degrees of certain divisors on the quasiprojective varieties attached
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to orthogonal groups of signature (#,2) over Q. More precisely, these degrees occur
as the Fourier coefficients of certain (special values of) Eisenstein series. This is
analogous to a result of Oda, [44]. We would like to show that such identities
between degrees and ‘class numbers’ arise in a very conceptual way. The basic idea
is be to apply the Siegel-Weil formula for two different quadratic spaces to describe a
special value of the same Eisenstein series! Comparison of the Fourier coefficients of
the two theta integrals and the Eisenstein series yields nontrivial identities, several of
which occur in the classical literature, [11, 44, 52, 57].

4.1. THE SIEGEL-WEIL FORMULA

For convenience of the reader, we briefly review the Siegel-Weil formula for the dual
pair (SLy, O(V")) needed in this section and in section 2.

Let V' be a nondegenerate quadratic space over (O, and let G = SL,. As before, let
G, be the metaplectic cover of G(A) = SL,(A). We identify G, = SL,(A) x {£1},
where multiplication on the right is given by [g1, €1][g2, 2] = [g122, €162¢(g1, £2)],
for the cocycle as in [54], [17]. In particular, we have subgroups

No=t=ton s e nt=(" 7)) @)

and

Ma = o) = (@) d L e A% e= 11, mi = (), 42)
An idele character y of Q*\A* determines a character y¥ of M, by

1 (Im(a), ) = € z(@) p(a, )™ (4.3)

where (-, ) is the global Weil index.

The group G', acts on the Schwartz space S(V(A)) via the Weil representation
o = wy determined by our fixed additive character y of A/Q, and this action com-
mutes with the linear action of O(V)(A). For g e G\, heO(V)A), and
@ € S(V(A)), the theta series

0 o)=Y @)k "), (4.4)

xeV(Q)

defines a smooth function on G’, x O(V')(A), left invariant under G{, x O(V)(Q),
and slowly increasing on the quotient (G{, x O(V)(Q))\(G'y x O(V)(A)).
By Weil’s criterion [27] in the present case, the theta integral

g 9) = / 0g', I ) dh, 4.5)
OV )\O(V)(A)

where vol(O(V)(Q)\O(V)(A),dh) = 1, is absolutely convergent whenever either ¥
is anisotropic or dim(V') —r > 2, where r is the Witt index of V. The resulting
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automorphic form /() on G{,\G’, is identified, by the Siegel-Weil formula, with a
special value of an Eisenstein series, defined as follows.
Let y = y,, be the quadratic character of A*/Q* defined by
1) = (x, (=)D det(1)), (4.6)

where m = dim(¥’) and det(V) € Q*/Q*? is the determinant of the matrix for the
quadratic form Q on V. For s € C, let I(s, y) be the principal series representation
of G', consisting of smooth functions ®(s) on G’ such that

(m(a)) la T O, s), if nis odd,

O m(a)d, s) = 47
(n()e’, ) { y(m(a)) lal*T d(g’,s), if nis even. “7)
There is then a G/, intertwining map

A=y SVA) — Mlso, 1), H)(E) = o(g)(0), (4.8)

where so = (m/2) — 1. As in Section 1, let K _K' be the full inverse image of
SO(2) x SLz(Z) in G, . A section ®(s) € I(s, ) will be called standard if its restriction
to KK’ is independent of s. By the Iwasawa decomposition G', = N, M, K K’, the
function A(¢p) € I(sg, x) has a unique extension to a standard section ®(s) € I(s, ),
where ®(syp) = A(¢). The Eisenstein series, defined by

Eg, 5 0)=Eg,s;0)= Y  ®(¢.9) (4.9)

=
VEPO\GY,

for Re(s) > 1, has a meromorphic analytic continuation to the whole s-plane.

THEOREM 4.1 (Siegel—Weil formula). (i) Assume that V is anisotropic or that
dim(V) —r > 2, where r is the Witt index of V, so that the theta integral (4.5) is
absolutely convergent. Then E(g', s; @) is holomorphic at the point s = sy = (m/2) — 1,
where m = dim(V"), and

E(g,s0; ) = k- 1(gs @),

where k =2 when m < 2 and k = 1 otherwise.
(i1) Suppose, in addition, that m > 1. Then

/ / K /
E(g',s0;0) =x-1(g0) =5 0(g', h; @) dh,

2 /SO(V)(Q)\SO(V)(A)

where dh is Tamagawa measure on SO(V)(A).
(i) Suppose that dim(V) = m > 4 and let H) = Spin(V'). Then, for any h € H(A),

1
B¢ 50,0) = + / 0, In: o) dhy,
4 Jmonm

where vol(H(Q)\H(A),dhy) = 1. In particular, this integral is independent of
h e H(A).
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When m > 4, this is the classic result of Siegel and Weil, in Weil’s formulation. The
variants for m < 4 are also mostly classical, e.g., due to Hecke, Siegel, etc., We do
not attempt to give systematic references. Of course, the analogous result holds
for any number field F.

The point of (ii) (resp. (iii)) is that we can almost always replace the integral over
O(M)(Q\O(V)(A) with the integral over SO(V )(Q)\SO(V)(A) (resp. H (Q)\H(A)).
The later is much more convenient, since SO(}') is connected. In the range m > 4,
this fact is again a very special case of the results of Weil, [56], pp.76-77, Théorém 5.

We explain briefly why the improvements of parts (ii) and (iii) hold. Let
I': S(V(A)) — C be the linear functional given by

I'(p) = 0(h: @) dh, (4.10)

/SO(V)(Q)\SO(V)(:\)
where 0(h; @) = 0(e, h; @), so that I’ defines an element of

Homgor)a)(S(V(A)), C), (4.11)
where SO(V)(A) acts trivially on C. The group

C(Ap) = O(V)A) /SO )(A) = pp(A) (4.12)
acts on the space of such functionals. In fact one has
PROPOSITION 4.2. If dim(V') > 1, then the action of C(&;) on the space of

SOV )(A)-invariant linear functionals on S(V(A)), (4.11), is trivial.
Proof. For any prime p < oo, consider the analogous local space

Homso(y/p)(S( Vp), C), (413)

with its action of C,. If the sign character ¢, of C, = O(V,)/SO(V,) occurs, then the
sign represggtation sgn, of O(V)) occurs in the local theta correspondence for the
dual pair (SL2(Q,), O(V,)). But it is known, [48], that the sign representation does
not occur for such a dual pair if dim(V') = m > 1. Thus C, acts trivially on (4.13),
and a standard argument then shows that C(A) acts trivially on (4.11), as
claimed. O

On the other hand, it is clear that
Ig's0) = f I (o(g)olh)p) de
C(Q\C(A)
I /
=5 [ reEheme
)

1
=5 I'(0(")9), (4.14)

where h € O(V)(A) projects to ¢ € C(A) and where vol(C(A), dc) = 1. The factor 1/2
occurs as the volume of C(Q)\C(A). This explains (ii). The statement of (iii) is
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obtained in the same way by considering the first occurrence of other nontrivial
characters of O()) in the local theta correspondence.

4.2. A MATCHING PRINCIPLE

For a nondegenerate quadratic space V" over Q of dimension m, let
II(V') = image(4y) C I(so, x) (4.15)

be the resulting G’,-submodule of the principal series, where y = y; and so =
(m/2) — 1. There are analogous local maps

dp = S(Vyp) —> Ly(s0, 1), (4.16)
with images
IT,(V,) = image(4,) C I,(s0, %), (4.17)

the local components of II(}") for the corresponding local induced representations.
Note that I1(}') and the I1,(}V,)’s are not always irreducible. The key idea is that the
Eisenstein series (4.9) associated to ¢ = ®,¢, € S(V(A)) depends only on the the
collection {/,(¢,)} of local components.

DEFINITION 4.3. Let V), and ¥/, be quadratic spaces over O, of dimension m and
fixed character y, = Ly, = Ip- Functions ¢, € S(V,) and ¢, € S(V,) are said to
match if 7,(¢,) = 7,(¢),).

Remark 4.4. This matching is analogous to that which occurs in the trace formula
and relative trace formula, and our identity of theta integrals can be viewed as an
analogue of a comparison of trace formulas.

Remark 4.5. 1f m > 4, or if m=4 and y, # 1, then the nonarchimedean local
principal series 7,(so, 7,) are irreducible and hence, for any pair V), and V,, every
¢, € S(V)) has a matching ¢, € S(V)).

If m =4, and y, = 1, then 5o = 1 and I,(s0, z,,) has the special representation as
irreducible submodule and the trivial representation as quotient. The split four
dimensional quadratic space V), has I1,(V}) = I,(so, 7,), while the anisotropic space
V', given by the reduced norm on the division quaternion algebra over Q,, has I, (V)
the irreducible special. Therefore the space of ¢,’s in S(V,) which have matching (p;,’s
has codimension 1.

If m =3, then so =4 and I,(s0, 7,) always has length 2 with a special repre-
sentation of G, as the irreducible subrepresentation and an irreducible Weil repre-
sentation — playing the role of the trivial representation for the metaplectic group
G;, — as irreducible quotient, [49]. The ternary quadratic space V), of trace 0 elements
in M>(Q,) with a scalar multiple (determined by y,) of the determinant form has
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I,(Vp) = I,(s0, %), and the analogous space V/, of trace 0 elements in the division
quaternion algebra over Q) has I1,(V}) C I,(so, x,,) the unique irreducible subrepre-
sentation. Now the subspace of ¢,’s in S(V,) which have matching ¢,,’s in S( Vp/) has
infinite codimension.

Remark 4.6. 1f m =2 and y, # 1, then the spaces I1,(V},) and IL,(})) are irre-
ducible and distinct, while, if m = 1, there is a unique space with a given y,,, so the
matching phenomenon of interest here will not occur globally.

Note that the cases m = 3 and 4 are precisely those for which sy is in or at the edge
of the critical strip |Re(s)| < 1.

Over R, the situation is the following. For r € %74, satisfing a suitable parity con-
dition, let @"(s) be the (unique) function in I (s, ¥,) such that

(K, 5) = 7,(K), (4.18)

for the character y, of K/ . The space of K -finite vectors in Io(s, %) is then span-
ned by the ®'(s)’s for r € ry + 27.

LEMMA 4.7. Suppose that Vs, and V., are quadratic spaces over R of dimension m
and with the same quadratic character, i.e., with signatures (p,q) and (p’, q") with
g = q¢'mod(2). Suppose that ¢, € S(V) and ¢, € S(V.,) are eigenfunctions for K,
with eigencharacter y,. and with ¢, (0) = ¢ (0). Then ¢, and ¢., match and
hoo(@o0) = (@) = ' (50).

PROPOSITION 4.8 (Matching Principle). Suppose that V and V' are quadratic
spaces over Q of the same dimension and with the same quadratic character
Ly = Yy =y Suppose that ¢ € S(V(A)) and ¢’ € S(V'(A)) match, ie., Np)=
(@) = D(sy). Assume that the convergence condition of the Siegel-Weil formula is
fulfilled by the spaces V and V'. Then I(g’, ¢) = E(g’, 5o, ®) = I(¢g’, ¢').

Remark 4.9. The definition of matching and the resulting equality of theta inte-
grals can be extended to dual pairs (Sp(r), O(V)), (Sp(r), O(V")) for any r > 1 over a
number field, dual pairs for unitary groups, etc.

Of course, the matching principle is a trivial observation, but, while the Eisenstein
series is built from purely local data, the theta integrals involved depend on global
arithmetic. In particular, their equality can yield some highly nontrivial identities.
We now describe one of these.

4.3. A GEOMETRIC EXAMPLE

Let V be a quadratic space over Q of signature (#,2), and let J' be a quadratic space
over Q with y;,, = x,, = x but with signature (n+ 2,0). Suppose that ¢ € S(V(A)))
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and ¢’ € S(V'(Ay)) are matching functions. By the discussion above, when n > 2,
any ¢ has such a matching ¢’. We next construct matching functions over R.

As explained in Section 1 above, the Gaussian for V(R) is the function
P € SV(R)) ® A9(D) given by

(poo(x! Z) — e—n(x,x)_. — e—ZnR(x,:) e—27‘cQ(x)' (419)
It has weight ¢ = (n/2) — 1 and ¢ (0,z) = 1, so that
Joo(@og) = D (s0)- (4.20)

Let V/(R) be a quadratic space of signature (n+ 2,0). The Gaussian ¢, €
S(V'(R)) is given by

@L(x) = e "W, (4.21)
It has weight (n+2)/2 = ¢+ 2 and ¢/ (0) = 1, so that
I (@) = O H(so). (4.22)

In particular, the Gaussians of V(R) and V'(R) do not match, and we will need to
find another function for V(R).
One of the main results of [29] was the construction of a Schwartz form for V,

@xm € S(V(R) @ 4"D(D), (4.23)

where 41-D(D) is the space of smooth (I,1)-forms on D, with the following
properties:

(i) For all h € O(V(R)),
W @ (™' x) = @ (%), (4.24)
where #* indicated the action of / on the space 4"D(D) by pullback.

(i) @, has weight £ + 2 for K, i.e.,

(K)o xar = 1042(K") @ s (4.25)
for the Weil representation action of K’ on S(V(R)).

(iil) @y, 1s closed:
dogy =0 (4.26)

for exterior differentiation d on D.

Note that it follows from properties (i) and (iii) above that ¢ x,,(x) € ATD(D) is a
closed O(V(R)), invariant form. For example,

Q = 0x(0) 4-27)

is an O(V(R)) invariant (1, 1)-form on D, which we will identify in a moment.
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In the present situation, ¢, is obtained as follows. Recall from Lemma 3.8 that
for t € Ry, the exponential integral §,(¢) has a logarithmic singularity, —log(¢), as
t — 0 and decays like e~ as t — 0o0. For x € V(R), x # 0, and z € D, let

&(x,2) = B1(2nR(x, ) e 20, (4.28)
This function is smooth away from the incidence locus

{[x,z] € V(R) x D | pr.(x) = 0}. (4.29)
For example, if x € V(R) is fixed, then £(x) is a smooth function on D — D,, where

Dy={zeD|zlx} (4.30)

as in (1.44). Moreover, &(x, z) decays exponentially as z goes to infinity away from
D.. Note that D, is nonempty if and only if Q(x) > 0. The crucial fact then is that,
for x #£0,

Pxp(x) = dd¢(x), (4.31)

where, d° = (1/4nri)(0 — ). In fact, as in [27], we have the stronger assertion, whose
proof we omit:
PROPOSITION 4.10. As currents on D,
dd¢(x) + 72 6p = [pgp(x)]:
We can recover the explicit formula for Q from this result.
PROPOSITION 4.11. On the tube domain D, let p = p(z) = —%(w(z), w(z)), be the

norm of the section z+> w(z) of Lp, as in (1.10). Then

Q = dd‘log(p)

I
===~ d) A (1,dD) + (3,) ' 5(dz, dD)].

Proof. We compute
4600 = — 5 0B|f2nR)) €270

1 —27nR 5 —270(x
— 2_711’8{6 R log(R)} e~

= 2%” [—27‘58R A 8_10g(R) + 99 log(R)] e~ 2nR-210(x)

= Pxm(X)- (4.32)

For a moment, we write o = (x, w(z)) and p = |y|> = —(»,¥), as in (1.10), so that, by
(1.16), R = p~'|a|>. Then

D 1log(R) = —881og(p), (4.33)

and
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OR A dlog(R)
=pldanda—padandp—padp Ada+plal>dp A dp. (4.34)

Notice that this last expression defines a smooth form on D.
Setting x = 0, we obtain:

Q = p1(0) = dd* log(p). (4.35)
But now, writing

p= _(y7y):%(z_faz_2)a (436)
we have

Q= —L.aélog(p)
2mi

1 B _
= 5= [—p™20p A Op+ p~'00p]

= [0 00 A (1, d2) (3,0, d2)] (437)

as claimed.

COROLLARY 4.12. The form
Q = @y, (0) = dd“ log s

on X is the first Chern form for the holomorphic line bundle £ dual to L. In parti-
cular, —Q is an invariant Kdhler form on D and hence determines a Kdhler form on X.

EXAMPLE 4.13. In the case n=1 we have D~C\R=9"uU$~ and
Q= —(1/2n)y~2dx A dy. In the case n = 2, we have D >~ § x § and
1
Q=-- (y12dx; Adyr + 57 dxa Adys), (4.38)
(compare [25], p. 104, [53], p. 102.)

We now return to the theta integral and its geometric meaning. Write

Prp(X) A QT = Gy (0) Q" (4.39)
for a function ¢x,, € S(V(R)) ® A®Y(D). Note that, since Q is O(V(R))-invariant,

Qxr(hx, hz) = @ gpy(x, 2) (4.40)

for all 1 € O(V(R)). Moreover, ¢x,, also has weight ¢ + 2 for the Weil representation
action of K/ .

LEMMA 4.14. For all z € D,

Mpgu(2) = O s0)Q and W Pgp(-,2) = (o).
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COROLLARY 4.15. For all ze D, the functions @gy(-,z)e SV(R)) and
oy € S(V'(R)) match.

We now return to the global situation, so that, for the matching functions
@ € S(V(Ay) and ¢’ € S(V'(Ay)) above,

Hpxu ® @) = 2 (9 ® @) = D(so), (4.41)
for a standard section ®(s) € I(s, y). Hence, we have an equality of Eisenstein series:
E(g/,S, }((;bKM b2 QD)) = E(g,,S, /A“/(q)é) ® QD,)) = E(g/a S, (I)) (442)

Applying the Siegel-Weil formula, we have

COROLLARY 4.16.
I, 0k @ @: V) =18, 0y @ ¢s V') = E(g, 50, D).

Here, in forming the theta integral of V, we use the theta function

0 pxu @ @)= Y o(&)Prar(hyx,20) o(h~" ), (4.43)
xeV(Q)

on G, x O(V(A)), where zp € D is a fixed point. In particular, as a function on
O(V(A)) this function is right invariant under the stabilizer of zy in O(V(R)).

Next we would like to explain the geometric content of the first of these expres-
sions. The key point is to determine the relation between the integral of the theta
function (4.5) over O(V)(Q)\O(V)(A) and the integral of the differential form
0(g, oxar ® @) A Q" over Xg.

PROPOSITION 4.17. Assume that the compact open subgroup K C H(Ay) satisfies:
Zx = KN Z(A) ~ 7%
under the isomorphism Z(A) ~ A*. Then

I B © 03 V) = (1) §vol(K) [0 01y © 0) A 2,
%
Moreover, if m =n+ 2 > 4, then, for cx = |2X :v(K)|,
B P © 03 V) = (<1 J0l(K)ex [ 006’ Iy s © 0) A0,
where, for any he H(4\),
L(gs o @ @3 V) = 0(g', b oy ® @) dh,

Hy (Q\H (A)

where vol(H{(Q\H(A),dhi) = 1. In particular, the integral over X; is independent
of J.
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Proof. By (ii) of Theorem 4.1,

/.o~ 1 / ~
g5 oxm @@ V) =5 0(g's h; pgpr @ @) dh (4.44)

2 /SO(V)(Q)\SO(V)(A)
where d/ is Tamagawa measure on SO(V)(A). A factorization dh = dhy x dhy will
be determined by the choice of di., made below.

We fix the measure dz on Zx with total mass 1, and we obtain a measure dk on K
by requiring that dk/dz be the measure on the compact open subgroup
K/Zg C SO(V)(Ay) induced by dhy. This provides a normalization of the Haar mea-
sure on H(Ay) and hence a measure d/' on Z(R)\H(A). Continuing the calculation
above, and noting that Z(A) = Z(Q)Z(R)Zg, we have

I(g; oy @ @3 V)
0 15 pxyr ® @) dh

!,
H(Q)Z(AN\H(A)

0(g' 1 pgpr ® ) di

: /
2
H(Q)Z(R\NH(A)

1

/ 0 hhy: G1eng ® 0) I
7 JHQ) Z@R\H(Q)HR)* 1y K

= §vol(K) ) / 0(g', hoohy: Py ® ¢) A, (4.45)
7 JTZRNH(R)*

Here we have used the fact that ¢ is K-invariant. The extra factor of % in the last step
arises from the fact that Z(Q) N K >~ {#1}. Finally, we normalize the measure d/,
on Z(R)\H(R) = SO(V')(R) by requiring that for ¢ € C.(D),

/ $(hsoz0) dhog = (1)’ / ., (4.46)
Z(R)\H(R) D

where zo € D is the base point used in (4.43). Then, using (4.39), we have
1" oy ® @ V)
=Vl Y [0 b 2 01
Y

:(—1)”%VOI(K)Z/F\D 0, s o ® @) A Q™!
j Y IADT

= (—1)”%vol(K)/ 0 oxp @ @) A o (4.47)
Xk

Let §=Q*R}\A*. Then, for a compactly supported function ¢ on
H(Q)Z(R)\H(A),

/ d(hydi = / / d(hihy) dhy da,
H(Q)Z(R)\H(A) S JH(Q)Z(R)\H(A)

where v(h,) = o and do is the invariant measure on S for which vol(S,da) = 1.
Applying this to the jth summand in the third expression in (4.45), we have
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[ 0g' W hy: oy ® @) I
HQ)Z(R\NH(Q)H(R) hiK

= / f 0(g', hihyhyj; @y ® @) dhy do
v(K) Y Hi(Q)Z 1 (R)\H1(A)

— 12 WK / 0(¢', ;s ® @)
Hi(Q)Z1(R)\Hi(A)

since the inner integral in the second line is independent of £,/;. Here he H(A) is

arbitrary. The claimed identity is obtained by identifying this with the jth term in
the middle expression in (4.47).

Remark 4.18. The same unfolding argument yields

1= / dh
OV NQNO()(A)

= (=1)"4vol(K) ¥ fr\p @
= (=1)" L vol(K) vol(X, Q"), (4.48)

and thus the useful formula

4

VOI(K) = (—l)n W

(4.49)

The sign in (4.44) has been introduced to make vol(K) positive.

Viewed as a differential form on D x H(A,)/K, the theta form is given by

0 1 oy @ @)=Y D (@)pgar(x) p(h™' %), (4.50)

meQ xeV(Q)
O(x)=m
on the set D x hK. Here note that w(g")@ g (x) is a (1, 1)-form on D and that (4.50)
is, in fact, the Fourier expansion of the theta form as a function on G,. Let
0m(g’; g ® @) be the mth Fourier coefficient, i.e., the partial sum over x € V(Q)
with Q(x) = m, and note that, since this form is itself H(Q)-invariant, it defines a
(1, 1)-form on Xkg.

We consider cycles both in Xk and in its individual components X;, (1.3). We
write X for either Xx or one of the X;’s. Similarly, for m >0 and for
@ € SV(AY)X, write

Z(m,p; K), if X = Xk,
Zxtm, ¢ K) = { Zoni 0. X

for the divisor in Xk or the part of it in X}, cf. (1.52). Also recall that the line bundle
L}, on D descends to a line bundle £" on X.

DEFINITION 4.19. The £"-degree of a cycle Z of codimension r in X is
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dego(2):= [ @,
zZ

where Q is the first Chern form of £V, as in Proposition 4.11 and Corollary 4.12.

Note that if X were compact and smooth, this would be simply ¢;(£")"~"[Z], for
the first Chern class ¢;(£Y).
Also observe that, for Z an irreducible subvariety,
(=1)""deg,«(2) > 0 (4.51)
since —Q is a Kédhler form on X.
The following result is a consequence of the Thom form property of @g,,

(Theorem 4.1 of [30], and Theorem 2.1 of [31]). As before, take t = u + iv € , and
write ¢ = e(mr).

THEOREM 4.20. For m > 0, and for g. € G},

/ B2l @rens ® 9) A Q1 = 02 deg o (Zy(m, : K)) - 4",
X

where { = (n/2) — 1.

Remark 4.21. A key point here is that the cycle Zy(m, ¢; K) always has finite
volume and the invariant form Q"' is, in particular, bounded. Thus, Theorem 2.1 of
[31] can be applied, even when X is noncompact. Alternatively, it is easy to obtain
Theorem 4.20 by a direct calculation, using the integral formulas for the affine
symmetric spaces, as used in the estimates in Section 3 above.

We now turn to the theta integral for the space V.
We fix a compact open subgroup K’ C O(V’)(Ay) such that ¢’ € S( V/(Af))K , and
write

o (A) = [ Jor (@) O(V')(R) hiK'. (4.52)
J

Note that, since V' is positive definite, the group
I; =0V ) Q)N (O )(R) th/hj_l) (4.53)

is finite; we set ¢; = |I;|. Again, we have a standard calculation, where we note that
the Gaussian ¢; is invariant under O(V”)(R):

g, o, ® ¢ V') = / 0(g', h: oy ® @) dh
OV QNO(F)(A)

->/ 0(&'. : 9y ® @) d
J

NO(V)(R)AK!
= vol(O(V")YR)K") Y e '0(g’, hy: 0y ® ¢) (4.54)
J
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If we take g’ = g7, then
o (g)pp(x) = v 2e(Q ()1). (4.55)
Note that, since

I = vol(O()(QN\O(V)(A), dh)
= vol(O("(RIK) )¢, (4.56)
J

we have

-1
vol(O(V')(R)K') = (Z ej_l) = w(K'), (4.57)

J

the mass of the K’-genus. Thus we obtain the classical expression

1200 ® ¢ V) = oK) D e 0 Iy 0y ® ). (4.58)
J

PROPOSITION 4.22. Form € Q, let ¢" = e(mt), and recall that £ = (n/2) — 1. Then
the Fourier expansion of I(g., oy @ ¢'; V') is given by

12, 00 ® ¢ V) = o2 3" rp(m) ¢,
m=0
where
re(m)=uK)> et [ > o'(h7'x)
j

xel'(Q)
Q'(x)=m

In particular, the constant term is V212 ¢/(0) = v"*2/2 (0), via matching.
The matching identity now amounts to:

THEOREM 4.23. For ¢ € S(V(Ay) and ¢" € S(V'(Ay)) matching, and for the cor-
responding standard section ®(s), with ®(sy) = (I)ﬁjz(so) ® (),

vF E(gl, 50, D) = p(0) + Y degp (Zy(m, 91 K)) - "
>0

1
vol(X, Q") 4

=¢'(0)+ Y ry(m)q",

m>0

where X = Xk. Moreover, if n > 2, then the same identity holds for each X = X, and,
in addition,

vol(X;, Q") = | 2% : W(K)|~' vol(Xk, Q")

is independent of j.
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Comparing coefficients, we have
COROLLARY 4.24. Suppose that X = Xk.

(i) For m > 0, deg,v(Zx(m, @; K)) = vol(X, Q") r, (m).
(i) Iy m=0, [\ 00(g., pxy ® @) AQ"" = oFI2 p(0) vol(X, Q").
(iii) If m <0, [ 0m(g., Pxy ® @) = 0.

Moreover, if n > 2, then these identities hold for each X = X; as well.

Several special cases of these identities occur in the literature, cf. for example,
[23, 24, 53]. Note that, whereas the Fourier coefficients of the theta integral for V'
involve degrees deg,.v(Z(m, ¢)), the Fourier coefficients of the theta integral for
the positive definite space V’ are weighted representation numbers and the Fourier
coefficients of the special value of the Eisenstein series, at least for factorizable data,
have a product formula, i.e., are ‘multiplicative functions’ in classical terminology.

5. Examples

In this section, we illustrate our results about integrals of Borcherds forms and
about generating functions for degrees with an explicit example. The basic idea is
the following. On the one hand, by using Hasse—Minkowski, one can construct
even integral quadratic lattices M of signature (n,2) with prescribed
local behavior. Associated to such a lattice are global geometric objects, the
quasi-projective variety Xy = I'y/\D™, the divisors Z(m, ), ¢ € M*/M, etc. On
the other hand, associated to cosets ¢ € M*/M are the Eisenstein series E(t,s; ¢)
of weight (n/2) + 1. These series and their Fourier expansions depend directly on
the local data defining M. The local and global objects are then related by the
degree identity of Theorem 4.23,

vol(Xur) - E(7,5: ) = vol(Xar) - 9(0) + Y dege(Zm, ) - ¢,

m>0
giving the first term of the Laurent expansion at s = n/2, and by Theorem 2.12,
expressing the (log-norm) integrals of all Borcherds forms W(f)* for C[M* /M]-valued
F’s of weight 1 —(n/2), in terms of the x,(m)’s arising from the second term of
E(t,s; @)’'s at s = n/2.
A more systematic discussion of examples will be given in a sequel with Tonghai

Yang, [36].
We recall an example due to Gritsenko and Nikulin [19]. Let
1
1
0= 2 ) (5.1)

https://doi.org/10.1023/A:1024127100993 Published online by Cambridge University Press


https://doi.org/10.1023/A:1024127100993

338 STEPHEN S. KUDLA

and let M = 7° with quadratic form, of signature (3,2), defined by

O(x) = Ix0x. (5.2)

The dual lattice of M is M* = Q7'M and |M*/M| = 2. Note that, if x € M* with
O(x) =m, then m € }11, and 4m = 0,1 mod (4), depending on the M coset x + M.
As explained in [19], pp. 186-188, and [52], there are compatible isomorphisms

GSpin(Mg) = Spy(R), D" = 9,, (5.3)
such that

I' = SO™(M) = Spy(7)/{14}. (5.4)
Let

X =T\D* = Spy(Z)\§s. (5.5)
Recall that, in the tube domain model, our invariant form Q = @,,(0) is given by

1 - - _ -

Q= —ﬁ[— 23,02 (,d2) A (7,d2) + (3,0) ' (dz,d2)]. (5.6)

In the case n = 3, we write
_ (721 22
z= (22 Z3> E@z (57)

and take the inner product of a pair of 2 x 2 symmetric matrices to be
(a,b) = —tr(ab"), for 1 the main involution on M,(Q). By an easy computation, not-
ing that (y,y) = —2det(y), we find:

Q3=—idet(y)’3(£>3dz AdZ Adzy AdZy Adzy A dE (5.8)
= 3 1 1 2 2 3 3 :
and so, [52], p. 331,
1 1
3y — — — = — — — = —— .
Vol(X, Q) = (-1 {(=3) = — 3 (=3 = — 1 (59)

Let V=M®;;Q be the associated rational quadratic space, and let
®o. @) € S(V(Ay)) be the characteristic functions of the sets M = M®; and
y1 + M respectively, where y; is an element in M*\M. As explained in [19] and
[52], the divisors Z(m, ¢,), for 4 =0, 1, are then given by

_ g4m’ if 4m = n mod (4)’
2m, 9,) = { @, otherwise, (5.10)
where
gA = Z VA/n? HA/nza (511)
nx=1
n2>|A

for Ha the Humbert surface of discriminant A and with
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1 ifA=1or4
=12 1 ) 5.12
' { 1, otherwise. (5.12)
We can define a vector valued Eisenstein series
E(T7 3 (pO) )
E(t,s; M) = 5.13
50 = (e 51

of weight 5/2. The Fourier expansion of this series can be computed, [36], and from
this it is easy to derive the following information. Write

E(, s 0,) =Y Au(s,m,v)q" (5.14)

m

as in (2.21), where the Fourier coefficients have Laurent expansions
Au(s,m, v) = a,(m) + by(m, v)(s — 50) + O((s — %)), (5.15)
as in (2.22).

PROPOSITION 5.1. The value of E(t,3; M) at the point sy =3 is given by the
following expression.

E(,3:09) =1+U(=3)" Y HQ,4m)q"
m=1

and

00

E3:0)=0-3)" Y HQ4m)q"

I
m—;=0

where H(2, N) are as in Cohen [11].

In particular, for the value, observe that

E(41,3; 0g) + E(41,3; 9)) = {(=3)" " Ha(0), (5.16)

is Cohen’s Eisenstein series of weight % Also, for convenient reference, we recall
some values from [11]:

N: o 1 4 5 8 9 12 13 16 17
—120H(2,N): —1 10 70 48 120 250 240 240 550 480

(5.17)

Recall that the positive coefficients in Cohen’s Eisenstein series H,(t) of weight
r+ 1 are given by

H(r,4m) = L(1 = r,75) Y 1(e) 24(0) ¢ oarm1(nfc), (5.18)

cln

where 4m = (—1)"n*d for a field discriminant d =0, 1 mod (4). The sum on ¢ is a
multiplicative function and it is easy to check that, in fact,
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H(r,4m) = L(1 = r, 1) [ [ bp(n. 1 = 1), (5.19)
4

where b,(n, s) is given by

1— Xd(p)X+ Xd(p)ka2k+l _pk+1X2k+2

b]’(nv S) = 1 _sz ) (520)
with X = p™ and k = ord,(n).
By Theorem 4.23, we have
E(,3; 9,) = 0,(0) +vol(X)™" > " deg(Z(m, p,)) ¢, (5.21)
m>0
so we obtain, for 4m = u mod (4),
1
deg(Z(m, ¢,)) = deg(Gan) = — 75 H(2, 4m) (5.22)

Thus, we recover the relation (1) of van der Geer, [52], p. 346, as well as his Theorem
8.1 on the generating function for the volumes of the Humbert surfaces.

A nice example of a Borcherds form W(f) is discussed in [19].

Let ¢y, (1, w), T € Oy, w € C be the holomorphic Jacobi form of weight 12 and
index 1 of Eichler and Zagier [12], pp. 38-39, so that

broi(t,w) =Y Cpdn—r)q' L, (5.23)

for ¢ = e(7) and { = e(w), where c(n) is given by the table on p. 141 of [12]:

n: 0 3 4 7 8 11 12 15 16

Cpm: 0 1 10 —88 —132 1275 736 —8040 —2880 (5.24)

(We write Ci2(n) in place of c¢j»(n) to avoid confusion with the coefficients ¢, (m)
which will occur in a moment.) Write

broa(T,w) = > hu(0)0 u(x, w), (5.25)
1=0,1
where
h@= Y  Cumgt (5.26)

m
m=—pmod(4)

has weight % for I')(4) and 0, ,(t,w) is the standard Jacobi theta series. Then, divi-
ding by A to shift the weight, we have

Pt w) :

= HZXO; Fu(@) 01(x, W), (5.27)
where

Su® =Y culmg”, (5.28)

m
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has weight — 1 and

fo() =10+ 108 ¢+ 808 ¢* + - - -,

; 3 1 (5.29)
Nh(@) =g —64¢ =513¢q"+---.

Associated to the vector valued form (see [2], Example 2.3, p. 500 and [12], Theorem

5.1, p. 59)

fs(x) = (/o(0),/1(1) = fo(D)py + f1(Dey, (5.30)
valued in C[M*/M], is a Borcherds form W(f5), identified explicitly by Gritsenko and
Nikulin:

¥(fs) = 27%As(2), (5.31)

where As(z) is the Siegel cusp form of weight 5 (and character) for Sp,(”Z). Then
W(fs)* has weight 10 (and trivial character) and

div(¥(£5)*) = Z(}, @1)- (5:32)

Similarly, for any positive integer 7, we can consider the form j(t)" - f(r). For
example, for 1 = 1, we get

J(0)fo(r) = 10g7" 4 7548 + O(g),

. _s 1 1 (5.33)
JOfi() = g7 4+ 68047 4 O(g),
so that the associated W(f3774)> has weight 7548 and divisor
10 Z(1, @) + Z(3, 91) + 680 Z(§, ¢y). (5.34)
For t =2, we get
J(1)* fo(r) = 1072 + 14988 ¢~ + 9634552 + O(g), (535
JOPfi(t) = 77 + 1424 g% 4851559 ¢ + O(q¥), '
so that the associated ‘P(f4827376)2 has weight 9634552 and divisor
10 Z(2, py) + 14988 Z(1, @) + Z(5, 91) + (5.36)
+ 1424 Z(3, ¢,) + 851559 Z(%, 0)). '
It is amusing to check the weight/degree relation, (2.30),
D0 eul=m){5 H2,4m) = —vol(X) ¢(0), (5.37)
n om>0
ie.,
=3 cu(=m) 120 H(2,4m) = ¢(0) (5.38)
w om>0

in these cases.
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To compute the quantities k(‘\W(f)) for these Borcherds forms, we need to deter-
mine the quantities «,(m) derived from the second term in the Laurent expansion
of E(, s; M) at the point s = 3.

THEOREM 5.2. (i) For m > 0, write 4m = n*d for d the discriminant of the real
quadratic field QO(/m), and let y, be the associated quadratic character®. Then, for

4mE,umOd(4),
7(=3) 1 L'(—1,19)
bu(m,v) = {(—3)"" H(2,4m )[ +2 (=3 2 g(d)_m_
by, (n, —1) 1 /3
—C+ ]Zln: <log|n|p By(n, =1 ) +3 (2,4nmv>}

where

C = log(4n) + 7,

3 (I 4rp—1
J<_7l> :/ e d+n-1 dr,
2 0 r

and for k = ord,(n),

1 byn,—1)
log(p) bp(n, —1)

2p? 4 )P+ 1ap) Ck + D — 2k + 2)1!73"+3

= 1 —p3 1 — /d(P)P + yd(p)p3k+1 _p%k+3
(i1) For m <0,
7T2 L(2 b4 ) 3
b m,v) = T\ AmZ v) "2 e—47‘£\m|u _E dr.
W= =3 Ty ),
(iii) For the constant term is given by
_1 n{(3)
bO(O’U)—EIO g(v )—*@ .

(iv) If 4m # p mod (4), then b,(m,v) =0
For m < 0, the L-series L(s, y,,) is a modified Dirichlet series analogous to that
occurring in the definition of H(r,4m). In any case, it is clear that,

lim,—, o0 b,(m, v) = 0 for m < 0. Similarly, for m > 0, lim,_, J(%, 4nmo) =

COROLLARY 5.3. For m > 0 with 4m = n*d and with 4m = p mod (4),

*When 4m = n?, we take Q(/m) = Q@ Q, y, =1 and L(s, ;) = {(s).
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o 403 (-1

) = =37 asam [ 32 55D Liowtay - HERAD
b (n,—1)

_C+p2|n:(10g|n|p_—bi(n,—l)>]'

If 4m # p mod (4), then x,(m) = 0.
Now, in calculating k(W(f)) via Theorem 2.12, we can use the degree relation:

k(W) =Y Y cu(—m) icu(m) + ¢o(0) % Co

n m>0
=D cu(—m) 120 H(2,4m)x
n m>0
1 L'(—1,1, by,(n,—1)
<[ gm0 2 (toetoh =5 ) |-
4 "(— 1
— ¢o(0) [5 +2 CC((—;)) —-C- ECO]' (5.39)
In the first example above, where m :%, d=1, y;=1 and L(s, y,) = {(s), we
obtain
o ay-l 4 03 =D 1
R e TR RALE LY
4 (=3 '-1) 3
=10 [ 3~ 2 i((_3)) + CC((—l)) + 3 log(2) + log(n)]. (5.40)
Noting that |y|> = 2det(y) here, we have
W)@ = 27" [As(2)]* 2° det(y)’, (5.41)

so that

—vol(Xx)~! / log (1As(2)? det(y)’) - @°
X

_ 4 U3 =D 3 B
= 10|: 3 2 = + =) + 5 log(2) —Hog(n)] 7log(2). (5.42)

In the second example, there are terms for m = %, 1 and %, and we obtain

o TUED | B
x(W(f3774)) =700 [ {(—1) + bz(Z, -1)

+48 [M+llog(5)j|+

+ log(2) }—f-

L(_laXS) 2
(=D
{(=1

4 U3 3
+ 7548 |: 37 2 ) + 3 log(2) + log(m) i|, (5.43)

+ 6800 +
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where
b,(2,-1) 9
22 7 7 og(2). 44
b2 1)~ 11 °8@ (5.44)
and so on.

In the next section, we explain why the values x,(m) which occur here should be
connected with the ‘arithmetic volumes’ of (suitable integral extensions of) the cycles

Z(m, ¢,).

6. Speculations

The integrals considered in this paper play a role in the arithmetic geometry of cycles
on the GSpin(n,2) varieties discussed above. While these Shimura varieties have
canonical models over Q, for all n, we do not have a sufficient theory of the integral
models to give a precise discussion of the integral extensions of the Z(m, ¢)’s for gene-
ral n. In addition, even for the archimedean theory, due to the non-compactness of
Xk, one will need a suitable theory of line bundles with singular metrics, Green’s cur-
rents with additional singularities, etc. Such problems are under consideration by
Burgos, Kramer and Kiihn [10]. For the case of arithmetic surfaces, i.e., n = 1, see
[5, 38]. Nonetheless, based on low dimensional calculations, it is possible to make
some rough speculations, which provide a setting for the results of this paper.

A metrized line bundle @ on a projective arithmetic variety X over Spec(”7) defines
a class @ € Iji\c(%) ~ CH' (X) and classes @" € CH' (X), the rth arithmetic Chow
group of X,with rational coefficients [18]. For a cycle 3 on X of codimension r, there
is a height /4,(:3) with respect to @, [6]. For example, for an integral horizontal 3 of
codimension r, with normalization j: 3 — 3 C i, assumed to be itself regular over
Spec(7,),

ho(3) = degj* (&™), (6.1)

where EE:E: CH"™'~"(3) — R is the arithmetic degree map. Also, if (3, g) € CH'(¥) is
a codimension r cycle with Green’s current g, then, for the height pairing (, )
between CH'(X) and CH"'~"(X),

(B.9.67) =ho@)+5 [ g-a@ (62)
2 Jxoy
where ¢;(@) is the first Chern form of @ on X(C).

For V of signature (n, 2), let X = X be the canonical model over Q of the arith-
metic quotient I'g\ DT. Here we are assuming that K is large enough so that X is geo-
metrically irreducible. Suppose that we have a regular model X of X over Spec(”),
with a regular compactification X. Suppose that the metrized line bundle £ dual
to £ (cf. (1.4) and (1.5)) on X is the restriction of a line bundle @ on X, where the
metric on @ is allowed to have singularities along X(C)\X(C). Note that the first
Chern form of @ is the form Q considered above. Suppose that one has a sufficiently
extended theory of an arithmetic Chow ring (with rational coefficients) @'@) so
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that the height construction can be applied. Thus, in particular, @ defines a class in
CH'(¥) and powers & € CH'(¥), etc.

Next, we consider a Borcherds form ¥ = W(f)* of weight ¢,(0). Then ¥ is mero-
morphic function on X(C) >~ X(C), whose divisor is rational over Q. We suppose
that, in fact, there is a (rational) sectlon ¥ of (a)—l)cO(o) whose restriction to
X(C)~ X(C) is ¥. It follows that dlv(‘I’) —co(0)w € CHl(%) Then, we would
have

—¢(0) (@, ") = (div(P), &")
— h,;,(div(‘i‘))—kl / log||¥|| 2 QY
2Jx©)

= hy(div(P)) + %Vol(X) k(). (6.3)

Recall that (Theorem 1.3), on X(C),
divy(¥) = dive, (P()) = ) Y col=m) Z(m, ). (6:4)

@ m>0

Then, on the integral model, we would have

dive(¥) =Y Y " ¢p(—m) 3(m, ¢) + (vertical components), (6.5)

@ m>0

where the 3(m, ¢)’s have generic fibers 3(m, ¢)o = Z(m, ¢).
Using the expression in Theorem 2.12 for x(¥) = 2k(W¥(f)), we obtain

—co(0) (D, @") =) D" co(=m)[ha(B(m, @) + vol(X) i, (m)]+

¢ m>0

=+ vol(X) ¢o(0) o (0)+

+ contributions of vertical components. (6.6)
Il\lis~ (hypothetical) relation is suggestive. For example, if ¢y(0) =0 so that
div(¥) = 0, we obtain

0= "% co(=m)[ha(3(m, 9)) + vol(X) i, (m)]+

@® m>0
+ contributions of vertical components, (6.7)

which suggests a close relation between x,(m) and the height /,(3(m, ¢)).
In our example for n = 5 from Section 5, we can write

Ku(m) =vol(X) ™" deg(Z(m, p))x

1 L'(—-1, ) b, =1
e N G

pln

1 vol(X)~" deg(Z(m, ¢)) [g +2 CC((:;)) - c], (6.8)
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so that (6.6) can be written as

—co(0) (@, ") =D Y cp(—m) 3(m, 9,)+

@ m>0
4 3
+ vol(X) ¢(0) |:;c0(0) —= =2 M + C]—i—
{(=3)
+ contributions of vertical components. (6.9)

where

o(m, @) =he(3(m, @)+

b (n,—1
+deg(2(m<o>>[——1 o(d) - & 1Xd)+2( |n|p—@)}.

L~z % by(m,—1)
(6.10)
Again, this suggests that
(2 __ _1 _LCELr
ho(B0m ,)) = = deg(Zom, )| —5log(d) =
b/
+y <10g|n|p En _1; )} (6.11)
pln by
and
5. &%) (=3 3
(@, @) _VOI(X)[ +2ﬂ—§1 g(2)—10g(n)i|, (6.12)

where, in both relations, we have still to account for a possible linear combination of
log(p)’s coming from vertical components. In addition, it is possible to shift a term of
the form

vol(X) ™! deg(Z(m, @)) - A, (6.13)

where A4 is a constant independent of u and m, between the two terms in (6.8),
so there is some further ambiguity. It seems reasonable to expect that 4 is a multiple
of {'(=1)/¢{(=1). This would be consistent with recent results of Bruinier and
Kiihn for certain Hilbert modular varieties, [9], Kiihn’s thesis [37], and conjectures
of Maillot and Roessler, [40]. Recall that vol(X) = {(—1) {(-3).

Of course, this discussion is too vague with respect to integral models, compacti-
fications, an extended theory of arithmetic Chow rings, and vertical contributions.
Nonetheless, it explains the motivation for considering the quantities ry(‘P(f))
and k,(m) and their possible applications.
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