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A SEMIGROUP APPROACH TO LINEAR ALGEBRAIC 
GROUPS III. BUILDINGS 

MOHAN S. PUTCHA 

Introduction. Let K be an algebraically closed field, G = SL(3, K) the 
group of 3 X 3 matrices over K of determinant 1. Let Jf^(K) denote 
the monoid of all 3 X 3 matrices over K. If e is an idempotent in Jfz(K)-> 
then 

Cr
G{e) = {a £ G\ae = eae), 

CG(e) = {a G G\ea = eae} 

are opposite parabolic subgroups of G in the usual sense [1], [28]. However 
the map 

e.-> (Cr
G(e), Cl

G(e) ) 

does not exhaust all pairs of opposite parabolic subgroups of G. Now 
consider the representation <f>:G —> SL(6, K) given by 

4>(a) = a@(a~]y. 

Let M denote the Zariski closure of K^(G) mJt6(K). Let S denote the set 
of zero determinant elements of M. Then S is a regular semigroup. The 
set of idempotents of S, 

E(S) = {e 0 / k 2 = e,f2 = / e Jt£K\ p(e), p(f) ^ 1, 

ef =f'e = 0}. 

Here p denotes rank. If e e E(S), then let 

P(e) = {a G G\<j>(a)e - e<t>(a)e), 

P~(e) = {a G Gk<J)(̂ ) = e<j)(a)e}. 

Then the map \p given by i//(^) = (P(e), P~(e)) is a bijection between 
E(S) and all pairs of opposite parabolic subgroups of G. Furthermore if e, 
f <= E(S), then ^/ = / i f and only if P(g) Q P(f) andfe = / i f and only if 
P~(e) Q P~(f). This example suggests that pairs of opposite parabolic 
subgroups of a reductive group should correspond naturally with the 
idempotents of a suitable regular semigroup. We will show this to be true 
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in the more general setting of a Tits system with a finite Weyl group or a 
Tits building with a finite Weyl complex. 

1. Regular semigroups. Let S be a regular semigroup, i.e., a e aSa for all 
a ^ S. H a, b Œ S, then afb if SaS = SbS, aSkb if aS = bS, aS£b if 
Sa = Sb, Jt? = 9t n Se, 3) = 9t o Se = S?o 9t. The semigroups encountered 
in this paper turn out to have the property that,/ ' = 2). If a e S, then 
Ja, Ra, La, Ha will denote the^-class, 5?-class, J^class, ^ c l a s s of a, respec­
tively. If a, ft e S, then Ja ^ ^ if SaS 2 SftS, £fl g i ^ if </S 2 ftS, 
La ^ L^ if Sa 2 Sft. See [2] for details. We will denote the partially 
ordered set S//by <%(S). Let 

E = E(S) = {e e Sic2 = e}. 

If e , /e £, then define/ =Sre if ef = f,f^fe if/e =/, g = ^ r n ^ , , 
# = g r n ( g r ) _ 1 , B S ? = § , n ( S / ) " 1 . I f / S r e, then set e o f = f, 
foe=fe^E. I f / â 7 e, then set 

foe=f9 e of = ef ^ E. 

Then the partial algebra (£, o) satisfies certain axioms [7, Theorem 1.1] 
and the resulting system is called a regular biordered set. This is the work 
of Nambooripad [7] who then goes on to show that conversely every 
regular biordered set (E, o) is isomorphic to the biordered set of 
idempotents of some regular semigroup. We denote the 'smallest' such 
semigroup by < E >. The < E > is characterized by the properties of 
being generated by its idempotent set E and being fundamental (i.e., 
having no non-trivial idempotent separating congruences). See [7] for 
details. 

A regular semigroup S is said to be an inverse semigroup if ef = fe for all 
e,f^ E(S). S is said to be a locally inverse semigroup if eSe is an inverse 
semigroup for all e e E(S). By [7, Theorem 7.6], S is a locally in­
verse semigroup if and only if the 'sandwich set' of any two idempotents in 
S consists of a single idempotent. The biordered set of a locally inverse 
semigroup is called a local semilattice. Local semilattices and locally 
inverse semigroups have also been called pseudo-semilattices and 
pseudo-inverse semigroups. Local semilattices were first studied by 
Nambooripad [8], [9], [10]. A weaker system was studied earlier by Schein 
[26]. Recently there has been much interest in local semilattices and 
locally inverse semigroups (see for example [4]-[ll], [29] ). We encounter 
local semilattices in the following special way. 

Let 12 = (12, ^ ) = (12, A) be a meet semilattice with a minimum 
element 0. Let J_ be a symmetric relation defined on 12 such that 0 1 0 . 
We will say that 12 = (12, J_ ) is a parabolic semilattice if the following 
conditions hold. 

(1) a!2 = {/? e 121̂8 ^ a } is finite (and hence a lattice) for all 
a <= 12. 
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(2) If y, a „ a2, fa, fa e 0, a, _L a2, ft JL j82, ô  ^ „ Y ^ a2, y â &, 
then a2 ^ fa. 

(3) If a l s a2, >Sj G fi, c^ _L a2, a i = jS1, then there exists /?2 G fi (unique 
by (2) ) such that a2 ^ fa, j8, _L 02. 

(4) If a, al5 a2, /?, ft, ft G fi, a ^ az, 0 è ft, az _L ft, / = 1, 2, then 

(a, V a2) JL 08, V ft). 

If fi = (fi, _L ) is a parabolic semilattice, then we let 

EQ = { (a, a') |a, a ' e ^ a l a '} . 

If e = (a, a'),f= (ft ft) G £ 0 , then define/ ère if )8 ^ a , / ^ , e if 
ft S a'. If/ ^ r e, then let ef = /,/<? = (ft 0*~) where /?~ G fi is such that 
j8 J- j8~~, fi~ ë a'. I f / ë , e, then let 

/ * = / , ef=<fiX9F) 

where ft G fi is such that ft J_ ft and ft ^ a. 

THEOREM 1.1. £ f i w Û local semilattice with an involution. 

Proof. Clearly the map (a, a') —> (a\ a) is an involution of E$. We need 
to show that the axioms (B1)-(B4) of [7, p. 2] are satisfied and that the 
sandwich set £f(e, f) consists of a single element for any e, f G E$. We 
let 

â = ^r n ^ , <* = (^r) n (^ r ) - ] ,^= (g7) n (^7r l . 

Let E = Eft and let 

e = (a, « " ) , / = (ft j8~), g = (y, Y " ) e E. 

Suppose first that / , g ^ r e, g = / / Then 

£ ^ a, Y ^ a, Y~ ë j8". 

Since /? _L / } ~ , Y -L y , we see that Y = ft So g ^ / Now if ge = (Y, y')» 
/ e = (ft ft), then ft, y' = «~. Since Y = ft we see that y' ^ ft. Thus 
ge ^ /e . So 

(*) / g =re>8 = / / i m p ! y g =f>ge = fe-

Next assume that g ^r f ^r e. Then y ^ /? ^ a. If ge = (y, y'), then 
y' ^ a~. Let 

(g*) / = (y, y"). 

Then y" ^ / î - . So by definition 

g / = (Y, Y") - (ge)f-

Thus the axioms (B1)-(B32) of [7, p. 2] are satisfied. 
Now let e = (a, a - ) , / = (ft /?") G E and set 
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M(e,f) = {A G E\h ^rf9h ^te}. 

Then M(e,f) Ç j S Q X a ^ i s finite. Let 

M(e,f) = {A„ . . . , hk) h, = (yz, y~), i = 1, . . . , fc. 

Then yz ^ /?, y~ S a - , / = 1, . . . , k. So 

y = y, V . . . V yk JL y~ = yf V . . . V y^. 

Clearly 

A = (y, y" ) G M(e , / ) , A,- S A, z = 1, . . . , A:. 

It follows that the sandwich set £f(e, f) = {A}. Now let g G £ and 
suppose that e,f ^r g. Then A ^i r g, A ^ ; e. So by (*), h ta e, hg ^â eg. 
Also, 

• hgmsrfafg 

whereby 

Hence hg G M(eg,fg). Let 

We claim that A' = hg. Now 

hrnhg^w ^rfg@ff^rg. 

So A' ^ r g. Also A' ^ eg ^ g. So by (*), A' ^ eg^e. So A' ^r e and 
A'e = e. Now 

A V W ë r / . 

So 

We ^rf and AV G M(e,f). 

Hence AV ^ A. So h'dth'e ^ A whereby A' ^rh. Hence h'^h^hg. Now 
Ag ^ eg, A' ^ eg. So by the dual of (*), A' = Ag. Thus 

^{egjg) = Sf(e,f)g whenever ej ^rg. 

Hence axiom (B4) of [7, p. 2] is also satisfied. It follows that E is a local 
semilattice. 

2. Buildings. By a complex is meant a semilattice B = (Q, ^ ) = (Î2, A) 
with a minimum element 0 such that for all a G B, 

«B - {/? G Q|j8 ^ a} 

is a finite Boolean lattice. The minimal elements of B\{0} are called 
vertices. If a E 8, then the rank of a is defined to be the number of 
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vertices in «12. The maximum elements of fi are called chambers. We will 
assume that all chambers are of the same rank d and that every element of 
Î2 is â a chamber. We define the rank of Î2 to be d. Let a, a' be chambers. 
We will assume that £2 is connected i.e., there exist chambers a = a0, 
ax, . . . , am = a' such that at A a; + 1 has rank d — 1 for / = 0, . . . , m — 1. 
If m is minimal, then we set 

dist(a, a') = m. 

An ideal of £2 is said to be a subcomplex. Q is said to be f/zz'cfc if every 
element of rank d — 1 is less than at least three chambers. 12 is said to be 
thin if every element of rank d — 1 is less than exactly two chambers. 

A (Tits) building is a pair A = (A, se) where A is a complex and se is a 
family of finite subcomplexes called apartments such that 

(1) A is thick. 
(2) Each apartment 2 is thin. 
(3) Any two elements of A belong to an apartment. 
(4) If 2, 2 ' G j ^ a n d if a, /? G 2 n 2 ' , then there exists an isomorphism 

<£:2 —> 2 ' such that 

<HY) = Y for all y E aA n ]8A. 

We refer to [27, Chapter 3, Section 3], [28, Section 3] for details. We will 
follow Tits [28]. Let 2 G se, a a chamber in 2. Then there exists a unique 
retraction pa :2 —» «2, i.e., (i) pa(/J) = /? for all /? G «2 and (ii) pa 

restricted to a! 2 is an isomorphism for any chamber a! G 2 . If /?, fî' G 2, 
then /?, ft are said to be of the same type, type (ft) = type (/?'), if 
pa(yS) = pa(ft). This concept is independent of the choice of the chamber 
a. If a G 2 is a chamber, then there exists a unique a' G 2 called the 
opposite of a in 2 such that dist(a, a') is maximum. There exists a unique 
automorphism /A:2 —» 2 such that for any chamber a of 2, a and ju,(a) are 
opposite. We then define ft and /x(yS) to be opposite for any /? G 2. Now let 
yS, /?' G A. Then we define /?, /?' to be of the same type, type (ft = 
type (ft), if they are of the same type in some (and hence every) apartment 
containing them, ft, ft are defined to be opposite (ft _L ft) if they are 
opposite in some (and hence every) apartment containing them. If a, a', /?, 
ft G A and if a _L a\ ft _1_ /?', then type (a) = type (/?) if and only if type 
(a') = type (ft). Let a, /? G A. Then by [28, Proposition 3.30], type (a) -
type (/?) if and only if there exists y G A with a _L y, /? _L y. If A is of rank 
1, then any two non-zero elements have the same type and any two 
non-zero unequal elements are opposite. 

It is easily seen that (A, _L) satisfies the axioms of a parabolic 
semilattice, defined in Section 1. Hence we can construct the local semi-
lattice E^ by Theorem 1.1. If 

e = (a, a ' ) , / = 0 8 , 0 0 e EA, 
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then we define e.fio be of the same type (e ~ f) if type (a) = type (/?) or 
equivalently type (a') = type (/?'). It follows from the above that 

In particular if e,f,f2 e JEA, e = f, / = 1, 2 and if/] ~ / 2 > t n e n / i = fi-
Thus by [9, Corollary 1.5], <E> has the property that e<E>e is a 
semilattice for all e e £. Also <%(<E>) = E/~ is clearly a Boolean 
lattice. We have shown, 

THEOREM 2.1. (i) E^ is a local semilattice. 
(ii) e<E^>e is a semilattice for all e e E^. 

(iii) ~ = ^ o i f o ^ = <eo@o & on E^andq/(<E^>) = £ A / ~ WA 
/zw'te Boolean lattice. 

Let a G A be a chamber, /} G A. Then by [28, Section 3.19] there exists a 
unique chamber a' G A, a' è /? such that dist(a, a') is minimum, a' 
is denoted by proj^a). Let a, a' e A be chambers, /?, /?' G A be of rank 
J - 1. Suppose a> P,a' > F, fi± /?'. Then by [28, Proposition 3.29] 
a 1 a' if and only if proj^a' ^ a. Let E = £A, £m a x be the set of 
maximum elements of (£, ^ ) . 

LEMMA 2.2. Let e = (a, a~) e £m a x , A = (/?, /?~) e Is, e covers /z. 77ze« 
//jere ex/s/.? a unique f* = f*(e, h) e Z£max st/c/z zTza/ ef* = f*e = h in 
< E > . Moreover 

f* = (proj^a") , proj^-Ca)). 

Let f G £m a x , f = h. Then ef = h if and only iffâlf*, and fe = h if and 
only iffSef*. 

Proof. Since a J_ a - , we see that 

pmj/r(«) ^ a - . 

But by [28, Theorem 3.28], 

«~ = P r°J/r Proj^a") . 

Hence 

proj^oT) _L projfi-(a). 

So 

/ * = (proj^oT), proj^-Ca)) e £m a x . 

Let 

/ = (y, y" ) G Emax9f>h. 

Then y > /?, y~ > ft . Suppose/^y*. Then y ^ p r o j ^ a - ) . So y _L a . 
Hence 
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e = ( a , a - ) % « - ) % y - ) = / . 

Hence effe in <E>. Thus ef ¥= h. Next suppose that/^?/*. Then 

y = proj £oT. 

So y is not opposite to a~. It follows that there is no ej G E with 
e J S ^ / So ej/e. Now 

e//î = hef — h. 

Since Je covers Jp effh. It follows that ef = /L This proves the lemma. 

If e, / G £m a x , then define e8fii in <E>, ef = fe is covered by e. Let 
8* denote the transitive closure of 8. Let 

[e] = {h G £|/z ^ / , /S*é> for some / G £ m a x } . 

Now let 

e = (a, a " ) G £m a x . 

Let 2 be the unique apartment of A containing a, a - . If /? G S, then let 
/ J - denote the unique opposite of /3 in 2 . Let 

i = { 08, 0 - ) |jB e 2 } . 

By Lemma 2.2, [e] = 2 . So 

([e], S ) s 2 . 

Let \:E -> El St denote the natural map. Let 

st' = {X( [e] ) \e e £ m a x } . 

We then clearly have, 

THEOREM 2.3. (2s/^, J / ' ) is a building isomorphic to (A, s/). 

Let Aut*E denote the group of all automorphisms <J> of E such that 
e ~ e<j> for all e G is. Let Aut*-<£V denote the group of all 
automorphisms of the semigroup <E> such that a^<J> for all a G <E>. 
Let Aut* A denote the group of all automorphisms <j> of A such that 
type (a) = type (a<£) for all a G A. 

THEOREM 2.4. Aut*£A = Aut*<EA> = Aut*A. 

Proo/l That Aut*£ = Aut* <E> follows from [7]. So we need to show 
that 

Aut*£ = Aut* A. 

First let <J> G Aut*A. Then <j> G Aut*E where 

(a, a')<j> = (a<J>, a'<J>). 
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Conversely let \p G Aut*£. Then for all e, é G E, e0te' if and only 
if e\p&e'\p and e££é if and only if e\pJ?e'\p. It follows that there exist <£j, 
<j>2 G Aut*A such that 

(a, pM = (atf>„ ^ 2 ) for all (a, 0) G E. 

We claim that ^ = <J>2. For suppose ac^ ¥= a4>2 for some a G A. Then 
« c ^ j ^ ^ a. Now a, a<J>i<£̂~ G 2 for some apartment 2 . So a _L fi for a 
unique /? G 2 . Then a ^ * ^ 1 is not opposite to /?. So a(j>] is not opposite to 
j&f>2. Thus (a, /?) G £, ( a ^ , /fy2) <£ £. But 

(<#„ ft>2) = (a, j8)^ G £, 

a contradiction. Hence <£j = <f>2. It follows that 

Aut*£ = Aut*A. 

This proves the theorem. 

Many important classes of groups, including reductive algebraic groups 
and finite simple groups of Lie type, admit what has come to be called a 
Tits system (see [27, Section 3.3], [3, Section 29] ). A Tits system is 
a quadruple (G, P, N, S) where G is a group, P, N are subgroups of G 
generating G, T=Br\N<3NJSa generating set of order 2 elements of 
W = N/T such that 

(1) pBp ¥= B for any p G S 
(2) oBp ç 5 a £ u BopB for all a G J*; p G 5. 

We will assume that the Weyl group W is finite. If I Q S, then let 

Wj = (/>, Pj = BWjB. 

The P7s are exactly the subgroups of G containing B. For any x G G, /, 
P ç S, we have by [28, Section 3.2.3] that x~]Pfx ç p[f, if and only if 
x G P,,, / ç / ' . Thus for x, y G G, 

x_ 1P7x ç y~lPry 

if and only if Pfx Q Pry. Let 

2 = {a~xPfl\a e W,I Q S}. 

Let 

jtf = {x~l 2 JC|JC G G}. 

Let 

A = {JC_1P7X|JC G G, / Ç 5 } . 

If P, , P 2 G A, then define P1 è P2 if P, Ç p 2 . Then by [28, Theorem 
3.2.6], A = AG = (A, s/) is a building which we call the building of G. The 
elements of A are called parabolic subgroups of G. Two parabolic 
subgroups are of the same type if and only if they are conjugate. The 
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conjugates of B are called Bore I subgroups. We will call EG = £A the local 
semilattice of G. 

3. Algebraic monoids. Let Kbe an algebraically closed field a n d ^ ( ^ ) 
the monoid of all « X « matrices over K. A (Zariski) closed and 
irreducible submonoid of Jin{K) will be called connected. Let M be a 
connected monoid with zero and group of units G. Then by [16] and [21], 
G is a reductive group if and only if M is a regular semigroup. The theory 
of connected regular monoids with zero is being developed by the author 
[12]-[20] and Renner [21]-[24]. 

Let M be a connected regular monoid with zero and group of units G. 
Let E = E(M) denote the biordered set of idempotents of M. For the 
purposes of this section, we need only consider the weaker system 
(£, ^r, ^i) where / ^ r e if ef = f f ^ 7 e if fe = / . As usual, 

& = ^ r n (^ry\& = ^ ; n ( ^ r 1 and ^ = ^r n ^,. 

We wish to show that EG (and hence the building AG of G) is completely 
determined by E. The length of (any) maximal chain in (E, ^ ) is called the 
rank of E. If e, f <E E, we define e ~ / if there exist ë', f ^ E such 
that 

e9të&f'9lf. 

By [13, Lemma 1.12], e ~ f if and only if ç^f in M. If *?, / e £, then 
Je = «ĵ if and only if e ^ / ' for some/ ' G £ w i t h / ~ / ' . Thus the finite 
lattice °U = °i/(M) = 2s/~ is completely determined by E. 

LEMMA 3.1. Let e, h, f G E such that e > h > / , e covers h covers f. 
Then there exists a unique h* = h*(e,f) e E such that e > h* > f and 
hh* = h*h = f Let hl e E, e > hx > f Then hx ¥* h* if and only if there 
exists h2 G E9 e > h2 > f such that either h&h2J£?h] or h^h20thv In 
particular h* is determined by E. 

Proof. By general considerations [14, Theorems 3, 11], we reduce to the 
case when e = 1 , / = 0. If G is a torus, then \E\ = 4, and the lemma is 
trivial. Otherwise dim M = 4 and the width of /z is 2. We are then done by 
[18, Theorem 13]. 

A useful concept in the theory of linear algebraic monoids is that of 
cross-section lattices [15], [17], [19]. A subset A of E is a cross-section 
lattice if (i) for all e e E there exists a unique ë G A such that e ~ ë and 
(ii) for all e,f e A, e ^ / i f and only if ^ è 7̂ . If T Q A, then we let 

Cr
G(T) = {a G G|ae = eae for all e G T}, 

C ^ T ) = {a G G|ea = ^ e for all e G T}, 

C c ( r ) = {A G G|fle - ea for all e G T}. 
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Fix a cross-section lattice A of E. Let 

B = CG(K), B~ = C'C(A), T = CG(A). 

By [17, Theorem 10], [19, Theorem 1.2], B, B~ are opposite Borel 
subgroups of G with respect to the maximal torus T. Any parabol­
ic subgroup P of G containing B is of the form P = Cr

G(T) for some chain 
T ç A. Moreover P~ = Cl

G(T) is the parabolic subgroup G opposite to P 
with respect to T. See [18, Theorem 4], [19, Theorem 2.7]. Let 
[A] denote the smallest subset of E containing A such that for all e, h, 
f G [A] with e covering h covering / i n (E, ^ ) , we have h*(e,f) G [A] 
where h*(e, f) is as in Lemma 3.1. Since E(T) is a finite relatively 
complemented lattice, we see that [A] = E(T). The point here is that [A] is 
determined by E. Clearly 

<f = <rA = ([A], s , ~ ) 

is the ^-structure of M studied by the author [15, Section 3]. In particular 
by [15, Theorem 3.9], the Weyl group W = NG(T)/T is recovered from ê 
as the group of all permutations a of [A] such that (i) e ^ / i f and only if 
e° g f° for any ej G [A], and (ii) e ~ ea for all e G [A]. Let 

SA = {o G W\a * 1, a2 = 1, 

a fixes a chain of length rank E — 1 in A}. 

By [19, Corollary 2.8], SA is just the set of simple reflections with respect 
to the Borel subgroup B and maximal torus T. Let / Q SA, Wf the 
subgroup of W generated by / . Then by [3, Theorem 29.3], Pl = BWrB is 
the (unique) parabolic subgroup of G containing B and having Wf as its 
Weyl group. We let 

A7 = {e G A\e° = e for all o G / } , 

% = {Je\e G A7}. 

By [19, Theorem 2.7], Pr = C^(T) for some chain T Q A. By [15, 
Theorem 2.3], T Q Ar. Clearly 

B Q Cr
G(Aj) c Cr

G(T) = Pj 

and Wj is contained in the Weyl group of Cr
G(AT). It follows that 

P, = Cr
G(A,). 

Similarly 

Pi =B~W,B- = Cl
G(A,). 

Let 

^ * = {%\I Ç SA). 

If /, / ' ç SA, then 
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% n %, = vrur. 
Also I Q F iî and only if %, c #7. Note also that ^ * is a family of 
sublattices of °U. Since any two cross-section lattices of E are conjugate by 
[17, Theorems 10, 12], we see that fy* is independent of the particular 
choice of the cross-section lattice A. 

If if G ^ * and if A is any cross-section lattice of E, then we let 

hr= {e G AlJ^e ^ } . 

Let 
A 

is = {A^|A is a cross-section lattice of E, V G $"*}. 
A 

\i A, A' G £, then define yl ^,.y4' if for all e ^ A there exists (necessar­
ily unique) ë ^ Af such that e^e'. Similarly we define A 1k{ A' \i for all 
e ^ A, there exists ^ G ^ ' such that eS£ë. As usual we let 

< = %r n ^ , # = ^ n (^ r)- \^ = ^ n (^r1 . 
If 4̂ e l , then we define 

type (A) = {Je\e G A) G <2f*. 

Let ^ , ,4' G £, ^ ^ r ,4'. Then type (^) ç type A'. We define 

,404 = A, AAf = {/ e , 4 ' ^ G type (^) }. 

Similarly if A ^=7,4', we define 

X4 ' = A, A'A = {/ G ,4'ljy G type (.4) }. 

Note that A ^ A' if and only if ^ ç ^ ' . Define 

0:£ -> £ c as ^ ) = (Cr
G(.4), C ^ ) ). 

A A 

THEOREM 3.2. E w a /oaz/ semilattice and 6:E = EG is a type preserv­
ing isomorphism. 

Proof. It is clear from the preceding discussion that 6 is a surjection. 
Let A, Af G E. Suppose A ^r A'. Then A Q k,A' Q A' for some cross-
section lattices A, A'. By [17], xAx~l = A' for some x G G. Since 
type (A) ç type (^4r), we see that JC^JC-1 Q A'. Thus 

J C ^ X - 1 ^ for all e G A 

Hence 

xe = exe for all e G 4̂ and JC G C^(yl ). 

Thus 

CG(A') Q C ^ x H ) = i C ^ ) ! " 1 = Cr
G{A). 

Thus 0(.4) ^ r 0(A'). Clearly O(A')0(A) = 0(A). Since v4<^L4' Ç ^ ' ? We 
have 
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0(AA') = (Cr
G(A\ Cl

G(AA')\ Cl
G(A') Q Cl

G(AA>). 

It follows that 

0(A)0(A') = 0(AAf). 

Next assume that A, A' e Ê, 0(A) ^r 6(A'). Let r = type (A), 
f"f= type A'. Now A Q A, A' Q A' for some cross-section lattices A, A'. 
So A = Ar, A' = A^v. Now xAx~l = A' for some x G G. So 

x C ^ A ^ ) * " 1 = C r
c(A^) = C r

c(^0 c Cr
G(^) = C r

G(A r). 

By [28, Section 3.2.3], x G Cr
G(A^) and >̂  ç ^ ' . So for all e G A ^ 

e^jcejc-1 G A ^ ç A^,. 

Hence 

.4 = A ^ ^r A'r, = A'. 

The dual statements concerning ^ 7 are similarly proved. In particular 
for A, A' G Ê, 6(A) =J(A') implies A ^ A' ^ A. Thus 0 is an iso­
morphism. Let A, A Œ E, 

type (A) = type (.4') = ^C 

Let ^ ç A, ^ ' ç A' where A, A' are cross-section lattices. Then A = A^ 
A' = Af

r. Now x~x Ax = A' for some x G G. So 

JC"UJC = v4r and x _ 1 C ^ ) x = C ^ ' ) -

So 6(A), 0(A') are of the same type. Assume conversely that A, A' G E 
such that 0(A), 0(A') have the same type. So 

x~ CG(A )x = CG(A ') for some x G G. 

Thus 

0(x~Ux)^0(yO-

Hence by the above, x~xAxStAf. So 

type (A) = type ( x " ] ^ x ) = type (A'). 

This proves the theorem. 

If A, A' G £, then define A ~ A' if type (̂ 4 ) = type (A'). Then we have 
by Theorems 2.1, 3.2, 

COROLLARY 3.3. In E, ~ - f o ^ o ^ = ^ o ^ o ^ 

Consider the natural map £:E —* El St. If A is a cross-section lattice of 
E, then let 

2 A = { A ^ G ^ * } . 
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Let 

srff = (£(2A) |A is cross-section lattice of E). 

Then we have, 
A 

COROLLARY 3.4. {El01, s#r) is a building isomorphic to aG. 

Aut*E is the group of all permutations <j> of E such that (i)f ^r e if and 
only if f<f> ^r e<t> for all e, f G E, (ii) / ^ e if and only if fy> là) e<j> for 
all e, f G £, and (iii) e — e<j> for all e & E. Aut*E is the group of all per­
mutations <#> of E such that (i) A t^r A' if and only if A<j> ^r A'§ 
for all ,4, Af G £, (ii) ,4 ë , ,4' if and only if ^ ^ ^ , ,4'<|> for all A, 
Af G £, and (iii) type (.4) = type (A<j>) for all ^ G É 

A 

THEOREM 3.5. Aut*£ = Aut*£ = Aut*EG = Aut*Ac. 

Proof. That Aut*E = Aut*£G = Aut*AG follows from Theorems 2.4, 
3.2. So we need to show that Aut*E = Aut*£. Let \b G Aut*^. 

A A A 

Define \p:E —> £" as 

A A A 

It is routinely verified that \p G Aut*£ and that the map vp —> ^ is a ho-
momorphism. Now let <f> G Aut*£, e G E. Let °U(e) denote the smallest 
element of °ll* containing Je. Let A be a cross-section lattice of E with 
e G A. Let 

Clearly 

é? G A7 = A ^ } . 

If 5 = Cr
G(A) then 

Cr
c(e) = W 7 i ? = Cr

c(A7) = C r
c ( A ^ ) . 

Similarly 

C'c(e) = dG(Ane)). 

If A' is another cross-section lattice with e G A', then 

(Cc(AW)), C ^ A ^ ) ) = (CG(e\ Cl
G(e)) 

By Theorem 3.2, 

Hence A^e) is independent of the choice of the cross-section lattice A 
containing e. Let 

A 
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Now 

type Te = type I > . 

Hence there exists a unique e§ e Ye§ with e ~ e<j>. Clearly 

( e $ ^ _ 1 = e. 

Hence 4>:E —» E is a bijection. Let e, / e £. Suppose <?J?/". Then by 
[12, Theorems 1, 9], Cr

c(e) = C r
G(/). Hence 

Cr
G(Te) = C ^ O » . 

So by Theorem 3.2, T^Iy-. Hence 

I>M)</>. 

So e<t>âlf<î>. Next assume that e = / . Then by [15, Theorem 6.2], there exists 
a cross-section lattice A of £ such that e, f e A. Since Te ^ A, we have 

e$ e I > ^ A<j>. 

So <?? G A<J>. Similarly /"$ e A<#>. Since e ~ e§, f ~ f<j>, we see that 
<?<j> = / $ . Next suppose t h a t / ^ r e. Then for s o m e / ' G E,fSftf = e. 
So 

H e n c e / ^ ^r efy. Conversely i f / ? = r e<j>, then 

/ = ( / $ ) * " ! ^ ( e ? ) * " 1 = e. 

Similarly/ ^ e if and only if 

Hence ? <E Aut*2s. Let A be a cross-section lattice of E. Then clearly 

A<#> = {e<t>\e e A}. 

Let TT <= #*. Then A ^ 0 â A</>, type (A^<J>) = iK So 

Â <J> = {e5k e A ^ } . 

Thus for all A e E, 

Acj> = [e<i>\e ^ A). 
A 

Hence the maps <f> —» <£, ̂  —» \p are inverses of each other. This proves the 
theorem. 

Let 7? denote the radical of G. Then G = RGX . . . Gnv where Gx, . . . , Gm 

are simple algebraic groups, (Gz, G-) — 1 for / ^ j (see [3, Theorem 27.5] ). 
Let Cl denote the center of Gz, G\ = G^/C^ Then 
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If the rank of Gz â 2, then by a theorem of Tits [28, Corollaries 5.9, 5.10], 
Aut*ACr is an extension of G\ by Aut K. Here Aut K denotes the 
automorphism group of K. Now 

Aut*AG = Aut*AGi X . . . X Aut*Ac 

Let C denote the center of G. We then clearly have, 

THEOREM 3.6. Suppose no reflection in Wis in the center of W{i.e., each 
Gt has rank = 2). Then Aut*is is an extension of G/C by the m-fold direct 
product Aut K X . . . X Aut K. 

Besides being a biordered set, E is a closed subset of M. Let Aut**(£) 
denote the subgroup of Aut*£ consisting of those <#> which are also 
automorphisms of the affine variety E. 

CONJECTURE 3.7. Aut**(£) = G/C. 

THEOREM 3.8. Let S = M\G. Then E(S) = EG if and only if<V(S) is a 
Boolean lattice. In such a case, S is a locally inverse semigroup. 

Proof Suppose first that ^(S) is a Boolean lattice. By [14, Theorem 14], 
for any e e E(S), He is a torus. In particular eSe = He is commutative. 
Hence S is a locally inverse semigroup. It is also clear that for any e,fx, 
f2 e E(S), e^fue^ f2,f]tg2 imply/, = f2. Define <j>:E(S) -> EG as 

&e) = (Cr
G(e), dG{e) ). 

Let e,fe E(S). Suppose/ ^r e. Then by [12, Theorem 1], 

/ e CG(e). 

Let B be any Borel subgroup of Cr
G(e) and let T be a maximal torus of B. 

By [19, Theorem 1.2], B = C^(A) for some cross-section lattice A Q 
E(T). There exists a e GG(e) such that 

é = aea~] e E(T). 

Then e^fe'. Hence by [12, Theorems 1, 9], 

CG(e) = CG{e>\ 

So B ç Cc(e'). By [19, Theorem 1.2], e' G A. L e t / ' e ^ n A. Then since 
/ e ^ A we have é = f . Since/ =r ë', we have 

Hence e' â / ' , g' g fe'J'Jfe' in 5. T h u s / ' = fe. H e n c e / » / ' . So 

5 ç cr
G(f) = Cc(/). 

Since 5 is an arbitrary Borel subgroup of CG(e), we see that 

CG(e) Q CG(f). 
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So <«/) =ir 4>(e). Clearly 

<Ke)4>(f) = <Kf). 
N o w / ^ / e â e. So 

Kfe) = (Cra(fe), CG(fe)), Cr
G(fe) = Cr

G(f), Cl
G{fe) 2 C'G(e). 

Thus &fWe) = <!>(/<?)-
Assume now that e,f e .EXS). <K/) = r ^>(e). Then 

CG(e) Q CG(f). 

Let r be a maximal torus of Cr
G(e) with e e 2s(!T). Let J denote the 

maximum ^c lass of S, 

A = {h e / n J?(f) |/z ^ e} = {A„ . . . , hk). 

Since £(7") is a relatively complemented lattice, <? = hx . . . hk. There exists 
a G Cr

G{f) such that 

Then fâlf. Let h ^ A. Then /z ^ e. So by [15, Theorem 6.2], there exists a 
cross-section lattice A Q E(T) such that e, h e A. So 

5 = C'C(A) ç CG(e) ç C c ( / ) = C' c( / ' ) . 

So by [19, Theorem 1.2], / ' <= A. Since J ^ Jf, we see that /i ^ / ' . So 

e = h]...hk^ / ' . 

Hence / ^ r e. Similarly <£(/") ^ $(e) if and only if f ^ e. In particular 
<f> is injective. Now let (P, P~) e 2SC. Then by [19, Theorem 2.7], there 
exists a chain T in E(S) such that 

p = cr
c(r), p - = c7

G(r). 
Let e denote the maximum element of T. Then by the above, 

(P,P~) = ( C ^ ) , c ' c (e ) ) = *00-

Hence E(S) = EG. Conversely if E(S) = 2iG, then by Theorem 2.1, 
<%(S) = E(S)/~ is a Boolean lattice. This proves the theorem. 

Remark. Renner [25] has been studying algebraic monoids M for which 
^ (M) \{0} is a Boolean lattice. Thus the monoids encountered in Theorem 
3.8 are dual to these. 

Let G be a reductive group, <£:G —» GL(n, K) a representation. Let 

M(4>) = WG) Q Jtn{K) 

denote the Zariski closure of K<j>(G) in Jtn{K). We call M(<j>) the monoid of 
<f>. We call E(<j>) = E(M(cj>) ) the biordered set of <J>. E(<j>) is a geometrical 
object which, in light of the results of this paper, may be viewed as a 
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generalized building. Thus the same group G gives rise to an infinite 
number of biordered sets E(cj)). We conjecture that for irreducible 
representations <£, the biordered sets E(<j)) are finite in number. 

For a finite simple group G of Lie type we get one finite biordered set (a 
local semilattice) directly from its Tits system. Getting other natural finite 
biordered sets related to the representations of G and finding geometrical 
interpretations for them, remains an important open problem. 
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