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LOCAL STRUCTURE OF SOME OUT(Fn)-COM?LEXES

by KAREN VOGTMANN*
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In previous work of the author and M. Culler, contractible simplicial complexes were constructed on which
the group of outer automorphisms of a free group of finite rank acts with finite stabilizers and finite quotient.
In this paper, it is shown that these complexes are Cohen-Macauley, a property they share with buildings. In
particular, the link of a vertex in these complexes is homotopy equivalent to a wedge of spheres of
codimension 1.

1980 Mathematics subject classification (1985 Revision): 2OJO5.

0. Introduction

Let Out(Fn) be the group of outer automorphisms of a finitely generated free group.
In [1] a contractible space X = X(n) was constructed on which Out(Fn) acts discretely
with finite stabilizers. This space may be thought of as analogous to the homogeneous
space of an algebraic group, with a discrete action by an arithmetic subgroup, or to the
Teichmuller space of a surface with the action of the mapping class group of the surface.
Two Out(Fn)-invariant deformation retracts K = K(n) and L = L{n) of X were also
described in [1]; these are locally finite simplicial complexes with finite quotient. In [1]
the complex K was used to prove cohomological finiteness properties of the group
Out(Fn). In particular, it was shown that Out(Fn) is VFL and has virtual cohomological
dimension 2M-3.

In contrast with homogeneous spaces and Teichmuller spaces, the space X is not a
manifold, and standard methods in manifold theory, such as Poincare duality, cannot be
used to study the group action and quotient space. Borel and Serre encountered the
same difficulty when studying S-arithmetic groups, where the role of the homogeneous
space is played by a Euclidean building. Euclidean buildings are simplicial complexes,
but are not triangulated manifolds; in particular, the link of a vertex is not homeo-
morphic to a sphere of codimension 1. However, there is a uniform local structure to
buildings which makes them homotopically similar to manifolds: the link of each vertex
is homotopy equivalent to a wedge of spheres of codimension 1. The purpose of this
paper is to show that the simplicial complexes K and L have similar local properties.

I would like to thank the referee for helpful comments and for pointing out an error
in the original version of this paper.
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368 K. VOGTMANN

FIGURE 1. Forest collapse.

1. Background

We briefly recall from [1] the definition of the complexes K and L and some basic
properties. Let Ro be an n-leafed rose, i.e. a connected graph with one vertex and n
edges. Vertices of L are equivalence classes of pairs (g, G), where G is a connected graph
with vertices of valence at least 3, and g is a homotopy equivalence from Ro to G. Two
pairs (g, G) and {g',G') are equivalent if there is a homeomorphism h:G-*G' such that
hog~g'. Vertices vo,...,vk of L span a /c-simplex if representatives (g0, Go),...,(gk, Gk)
can be chosen so that G, is obtained from Gf.j by collapsing each component of a
forest in G,_! to a point, and g( is the composition of #,_! with the collapsing map.
Here a forest in G is a subset of the edges of G which contains no cycle. This operation
is called a forest collapse (see Fig. 1).

The complex L can be thought of as the geometric realization of the poset (partially
ordered set) of its vertices, where the partial ordering is (g, G)^(g', G') if (g',G') can be
obtained from (g, G) by a forest collapse.

An edge e of a graph G is called a bridge if G minus the interior of e is disconnected.
There is a deformation retraction of L onto the subcomplex K spanned by points (g, G)
such that G has no bridges.

In [1] it is shown that K and L are contractible of dimensions In — 3, and Out(Fn)
acts on K and L with finite stabilizers and finite quotient. This implies the cohomo-
logical finiteness results mentioned in the introduction.

2. The Cohen-Macauley property for L

We recall some standard facts about posets. We refer to [2] for a more complete
discussion and proofs.

Let P be a poset, and let p e P. The height of p, ht(p), is the length of the longest
totally ordered chain of elements of P which are all less than p. The height of the poset
P is the maximum of the heights of its elements.

A poset is said to be k-spherical if its geometric realization is /c-dimensional and
(k— l)-connected. Note that the geometric realization of a k-spherical poset is homotopy
equivalent to a bouquet of /c-spheres.

Definition A poset P of height h is Cohen-Macauley if P is /i-spherical and
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LOCAL STRUCTURE OF SOME OC/T(Fn)-COMPLEXES 369

the link of every simplex of dimension k in the geometric realization of P is
(h — k — l)-spherical.

Define subposets P>p = {seP:s<p}, P<p={seP:s>p} and (p,q) = {seP:q<s<p}.
The Cohen-Macauley property for P is equivalent to the following properties:

(i) P is /i-spherical,
(ii) P>p is (ht(p) — l)-spherical for each peP, and

(iii) P<p is (h — ht(p) — l)-spherical for each peP.
(iv) (p,q) is (ht(q) — ht(p) — l)-spherical for every p<q in P.

The following standard lemma is useful in determining the homotopy type of a poset.
A map f:P-*P is a poset map if p^q implies f(p)^f(q)-

Lemma 2.1. (Poset Lemma) Let f:P-*P be a poset map such that f(p)^p for all
peP or f(p)^p for all peP. Then the geometric realization of P is homotopy equivalent
to the geometric realization of f(P).

The rest of this section is devoted to showing that L is Cohen-Macauley. Since L is
contractible and the dimension of L is equal to its height as a poset, L satisfies (i) above.

Let (g, G) be a vertex of L. Then L<(gG) can be identified with the partially ordered
set of non-empty forests in the graph G. The partial ordering is given by inclusion.

Proposition 2.2. Let G be a finite connected graph, and F(G) the poset of non-empty
forests in G. Then the geometric realization of F(G) is homotopy equivalent to a wedge of
spheres of dimension v — 2, where v = v(G) is the number of vertices of G. The geometric
realization of F(G) is contractible if and only if G has a bridge.

Proof. If e is an edge of G, we denote by G — e the graph obtained by deleting the
interior of the edge e, and by G/e the quotient graph obtained by collapsing e to a point.

Let e denote the number of edges of G. We will proceed by induction on e + v. If
e + v= 1, the theorem is trivial.

If an edge e of G is a loop, then F(G) = F(G—e); thus we may assume that G has no
loops.

If G has a bridge E, then 0u{e} is a forest whenever <p is. Then <p-KpKj{e}-*{e} are
poset maps giving a contraction of the geometric realization of F(G) to a point.

We now assume that G has no bridges. Fix an edge e of G. Let Fx = F{G) — {e} be the
set of all forests except the forest consisting of the single edge e, and let F o be the set of
all forests which do not contain e. Then $->$ — {e} is a poset map from F , onto F o

giving a homotopy equivalence of their realizations. F o is naturally isomorphic to
F ( G - E ) . Since e is not a bridge, G - e is connected. By induction, F o is homotopy
equivalent to a wedge of (v — 2)-spheres.

Now F(G) = Fl^> (star (e)), and F1n(star(6)) = link(e), where star and link are defined
as for simplicial complexes, i.e. the star is the set of forests <j> which contain e. The map
#-></>/e is a poset isomorphism from link(e) to F(G/e). G/e is connected and has no
bridges since G is connected and has no bridges. Furthermore, G/e has one less vertex
than G since e is not a loop. Therefore the geometric realization of F(G/e) is homotopy
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370 K. VOGTMANN

equivalent to a wedge of (v — 3)-spheres by induction. It follows by the Van Kampen
and Mayer-Vietoris theorems that

^ v S"'2 v susp( v Sv~3)^ vS""2.

Corollary 2.3. L>(g<G) is (ht(#, G) - l)-spherical.

Proof. We have already remarked L>igG) can be identified with F(G). We now note
that the height of (g, G) is the number of edges in a maximal tree in G, which is equal to
the number of vertices of G minus 1.

We now consider L<(9 G). If G is a rose, L>{gG) is the entire link of (g, G) in L.
In [1], the contractability of L was shown by reducing the problem to a local

problem in the link of a rose. We recall the formalism used to understand the link of
a rose. Fix a rose p=(r,R). Let E(R) = {el,ei,...,en,en} denote the set of oriented edges
ofR.

An ideal edge of R is a partition of E(R) into two subsets S and S = E(R) — S which
each contain at least two elements.

Two partitions {S,S} and {T, T} of a set are compatible if one of the following
inclusions holds:

A set of k distinct pairwise compatible ideal edges partitions E(R) into k +1 subsets. If
two partitions are not compatible, they are said to cross.

The motivation for this terminology comes from considering Venn diagrams for ideal
edges. Represent the elements of E(R) by In points in the plane. Then an ideal edge
{S, S} can be represented by a simple closed curve in the plane which separates the
edges in S from those in S. If two ideal edges are compatible, simple closed curves
representing them can be drawn to be disjoint. If they cross, the simple closed curves
must cross (Fig. 2).

The set of sets of distinct, pairwise compatible ideal edges of R is partially ordered by
inclusion. The geometric realization of this poset can be identified with the link of p as
follows. A set of k distinct, pairwise compatible ideal edges can be represented by a set
£f of simple closed curves in the plane (Fig. 3a). The corresponding graph in link(p) has
a vertex for each component of the plane minus !? and a maximal tree which is dual to
these components (Fig. 3b). The rest of the graph is obtained by adding an edge for
each pair {e, e} in E(R) (Fig. 3c).

We extend the concept of ideal edges to arbitrary graphs G. Let x be a vertex of G,
and let £(G, x) denote the set of oriented edges of G which terminate at x. Define an
ideal edge of G at the vertex x to be a partition of E(G, x) into two sets, each with at
least two elements. An ideal edge of G is an ideal edge at some vertex of G.

We introduce the convention that ideal edges at distinct vertices of G are compatible.
With this convention, a collection Zf of distinct, pairwise compatible ideal edges of G
corresponds to a graph in ^><g,G) as follows. For each vertex x of G, construct the tree
dual to a set of curves representing the ideal edges of Sf which lie at x (if there are no
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(a) Compatible ideal edges (b) Crossing ideal edges

FIGURE 2

(a) (b)

FIGURE 3

(c)

ideal edges at x in if, this dual tree is a point). Each vertex of each dual tree thus
corresponds to a set of oriented edges in G. Now connect the original edges of G to the
appropriate vertices of the dual trees to obtain the graph in L>{g G).

With these definitions, L>(gG) is the geometric realization of the poset of sets of ideal
edges of G for any vertex (g, G) of L. This poset is the barycentric subdivision of a
simplicial complex ./(G). It often simplfies notation to work with J{G) instead of the
geometric realization of L> ( 9 C). A /c-simplex in J{G) is simply a set of fc+1 distinct,
pairwise compatible ideal edges. J{G) can be decomposed as the simplicial join
f!*...* ~$V(G), where J-t is the subcomplex spanned by the ideal edges at the ith vertex of G.

To show that J{G) (and therefore L>(gG)) is (h — ht(g, G) — l)-spherical we will need
the following combinatorial theorem.

Let £ be a finite set, and let P be the set of partitions of £ into two subsets, each with
at least two elements. Let Z(£) be the simplicial complex whose vertices are elements of
P, and whose /c-simplices consist of sets of k + 1 distinct, pairwise compatible vertices.

Theorem 2.4. / / £ has m elements, then E(£) is homotopy equivalent to a wedge of
(m — 4)-spheres.

To prove this theorem, we make the following observations.
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FIGURE 4

Notation. Let B1,...,Bk be subcomplexes of a simplicial complex A. We denote by
<Bt, . . . , Bky the full subcomplex of A spanned by Bt u- -uB^. If v is a single vertex, the
subcomplex <B, u> is said to be obtained from B by adjoining the vertex u.

Lemma 2.5. (Coning Lemma) Let A be a simplicial complex with the property that a
set {vo,...,vk} spans a k-simplex if and only if any pair {v,,Vj} spans an edge. Let Be A
be a full subcomplex, and let v be a vertex of A — B. Then the subcomplex <B, y> obtained
from B by adjoining v is equal to

B[jC(J)
j

where J = (vertices weB such that {w,v} spans an edge"), and C(J) is the cone on the
subcomplex J with cone point v.

Corollary 2.6 Let A,B and v be as in Lemma 2.5. If B is contractible, then
<B,t)>^susp(J). IfB~s/SkandJ^vSk-\ then <B,v}^ v Sk.

Note that the Coning Lemma applies to our complex E(£). We are now ready to
prove that £(£) is spherical.

Proof of theorem. Denote the elements of E by eu...,em. The proof proceeds by
induction on m. If m = 4, the only allowable partitions are {S,S} with S = {el,e2},
{eue3} or {eue4}. Since no two of these are compatible, E(£) consists of three distinct
points, i.e. Z(£) ^ v S°.

Now assume m>4. Let vo = {So,So} with S0 = {eue2}. Let I o c l ( £ ) be the subcom-
plex spanned by partitions compatible with v0. Then £0 is a cone on the vertex v0, and
is hence contractible.

Any vertex v = {S, S} in £(£) — Zo crosses v0, i.e. the partition {S, S) separates ex from
e2. Define the inside of v to be the subset of the partition which contains eu and the size
of v to be the number of elements in the inside of v. If S is the inside of v, let
T=S-{e1}. If size (v)>2, then p(v) = {T, f} is in P and is compatible with both v and
v0 (Fig. 4). In fact, any vertex which is compatible with both v and v0 is compatible with
p(v).
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Let Zj be the subcomplex of Z(£) spanned by Zo and all vertices in Z(£) — Zo of size
greater than 2. We now show that Zi is contractible, by adjoining the vertices in
Z J - Z Q to Zo in order of decreasing size, and showing that the complex remains
contractible after each such adjunction.

Let p be a vertex of size r > 2 . Suppose we have adjoined all vertices of size bigger
than r, as well as possibly some vertices of size r, to Zo to obtain a contractible
subcomplex B of Zx. Let Jv be the subcomplex of B spanned by vertices w which are
compatible with v. Note that p(v) is in Jv, since p{v) is in Zo. In fact Jv is a cone on p(v):
if w is in Jv, w is compatible with v and either compatible with v0 (and so compatible
with p(v)) or of size at least r (and hence compatible with p(v)). Since Jv is contractible,
<£, y> is contractible by the Coning Lemma. We adjoin all vertices in Z, —Zo in this
way, to see that Zj is contractible.

Now let v be a vertex in Z(£) — I , , i.e. v is a vertex of size 2 which crosses v0. Let Jv

be the subcomplex of Z t spanned by vertices w which are distinct from v but compatible
with v. Then Jv in fact consists of all vertices in Z(£) distinct from v but compatible
with v. If S is the inside of w = {S,S}, the map S-*S — {el} induces a poset isomorphism
from Jv to Z ^ - j e , } ) . By induction Z ( £ - { e 1 } ) ^ v Sm~5. By the Coning Lemma,
(Xi,v}^ v sm~4. Since no two vertices in Z(£) —Zo are compatible, we see that
Z(£)~ vS m ~ 4 .

Corollary 2.7. L<(9>G) is {h-ht(g, G)-\)-spherical.

Proof. By the remarks preceding the statement of Theorem 2.4, we have

where v(G) is the number of vertices of G. If £(G,x,) has fe, elements, then Jta v Ski 4

by the theorem. Since Z/c; = 2( #£(G)) = 2(u(G) + n - l ) , we have

i ^ . . o2n-D(G)-3
L<(9,G)— V •*

To complete the proof we note that /i = height(L) = 2n — 3 and ht(g, G) = v(G) — 1.

To complete the proof that L is Cohen-Macauley, we need:

Proposition 2.8. ((g', G'), (g, G)) is (ht(g, G) - ht(g', G') - l-spherical for {g, G) >(g1, G').

Proof, (g1, G') is obtained from (g, G) by collapsing a forest in G, and ((g', G'), (g, G))
can be identified with the poset of proper subsets of the set of edges in this forest. The
geometric realization of this poset is the barycentric subdivision of the boundary of a
simplex of dimension ht(g, G) —ht(g', G') and is hence spherical of dimension
ht (g ,G)-h t (g ' ,G ' ) - l .

3. The Cohen-Macauley property for K

The methods used to study the link of a vertex in L can be extended to apply to the
subcomplex K spanned by vertices (g, G) such that G has no bridges. K has building-
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like properties missing in L. For example, any simplex of codimension 1 in K is a face
of at least two maximal-dimensional simplices, whereas L has codimension 1 simplices
contained in only one maximal simplex. In addition, the complex K has a more uniform
local structure than L: we will show in this section that the link of every vertex in K is
homotopy equivalent to a non-trivial wedge of spheres of codimension 1. In contrast,
some links of L are contractible.

Since K is a deformation retract of L, K is contractible. To show that K is Cohen-
Macauley, therefore, we need only to check the local conditions on K>v, on K>v and on
(v, v') for vertices v=(g, G) and t/ = (g', C) in K.

The proof that (v, v') is spherical of the correct dimension is identical to the proof for
L.

The complex K<v is isomorphic to the poset of non-empty forests in G, as for L.
Since v={g, G) is in K, G has no bridges; thus by Proposition 2.2, K<v is homotopy
equivalent to a non-trivial wedge of (u(G)-2)-spheres.

It remains only to show that K>v is homotopy equivalent to a wedge of (n — v(G) — 3)-
spheres. To do this, we need the following combinatorial theorem.

Let £ be a finite set, with P and £(£) defined as in Section 2. A grouping
<<? = {C0,..., Ck) of £ is a partition of £ into subsets of C, (called clusters), each
containing at least two elements. We define P<<? <= P to be the set of partitions of £ into
two sets S and S, each with at least two elements, such that some cluster in <£ is "split",
i.e. for some i, there are elements e and / in Cf such that eeS and feS. Note that
P — Py? consists of partitions into sets of the form Uie/C,, where / is some subset of
{0, \,...,k). Define Z(£,<if) to be the subcomplex of £(£) spanned by all elements of
P<<g.

Theorem 3.1. Let E be a set with m elements, and let # = { C o , . . . , Ck) be a grouping of
E. Then £ ( £ , 'S) is homotopy equivalent to a wedge of (m — 4)-spheres.

Proof. If k = 0, then £(£,#) = £(£) which is (m-4)-spherical by Theorem 2.4. Thus
we may assume that k^l.

The proof proceeds by induction on m. In order to make the induction work, we need
a slightly more complex induction hypothesis than the statement of the theorem. The
extra complexity involves putting a filtration @ on C,:

Cl=D1 := D 2 =>•••=>£, =>Z)/ + 1 = 0 , / ^ l .

If /= 1, we will say the filtration is trivial. We define £(£, #, 2>) to be the subcomplex of
Z(£, #) spanned by all elements of P%> except those of the form {S, S} with S or S equal
to

iei

for some l^j^l and some subset / c {2,...,k}. If the filtration S> is trivial, we have

Induction Hypothesis. £(£', W, 3>') is homotopy equivalent to a wedge of spheres of
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FIGURE 5. The vertex v0.

dimension #E' — 4for any £' with 4 ^ #E'<m, any grouping W of E and any filtration
3>' ofC\.

If m = 4 then there are exactly two clusters (since /c^l). The only possible filtrations
on Cj are the trivial filtration and the two maximal filtrations. For any of these
filtrations, there are only two allowable partitions, which are not compatible. Therefore
E(£,#,0) consists of two distinct points, i.e. I(£,<€,2>)~S°.

Now assume m>4. Choose an element eoeCo and e^sD^C^. Set S0 = {e0,el} and
vo = {So,So} (see Figure 5). Let Eo c: E(£, #, ®) be the subcomplex spanned by
partitions compatible with v0. Then Zo is a cone on the vertex v0, and is hence
contractible.

For any vertex v of E(£, (€, 3>), define the inside of v to be the subset of the partition
which contains eu and the size of v to be the number of elements in the inside of v.

Let v = {S,S} be a vertex of E(£, #, ®) - 20, with e,eS. If p(v) = {S-{el},Su{e1}} is
a vertex of £(£, #, ®), we say i; is pushable. If v is pushable, then p(v) is in Zo and is
compatible with both v and v0. In fact, any vertex which is compatible with both v and
v0 is compatible with p{v).

Let I , denote the subcomplex of 'L(E,<6,3i) spanned by Zo and all pushable vertices.
We will now show that Zj is contractible. To do this, we adjoin the pushable vertices in
Z(£, <6,2>) — Eo to £0

 m order of decreasing size, and claim that the complex remains
contractible after each such adjunction.

Let u be a pushable vertex of size r, and suppose we have adjoined all pushable
vertices of size bigger than r, as well as possibly some size r, to Eo to obtain a
subcomplex B of ! (£ ,# , 2>) which is contractible. Let Jv be the subcomplex of B
spanned by vertices w which are compatible with v. Note that p(v) is in Jv. In fact Jv is
a cone on p(v): if w is in Jv, w is compatible with v and either compatible with v0 (in
which case it's compatible with p(v)) or pushable of size at least r (and hence compatible
with p(v)). Since Jv is contractible, <B, v} is contractible by the Coning Lemma.
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w inside v w outside v

FIGURE 6

Note that any vertex with inside of the form {ej,x}, x^e0, is neither compatible with
v0 nor pushable, so is not in Z^ We now adjoin these vertices to 2^ to obtain a larger
subcomplex £2 of £(£, <£, 9>). Let v be any such vertex, and let E' be the set obtained
from E by identifying the points et and x. We will define a grouping # ' and filtration 3>'
on E' which depends on the location of x in E. In each case, one checks that the
quotient map q':E-*E' induces an isomorphism lk(t;)nS1-»Z(£',<£",Si'). Since # £ ' =
m —1, this shows by induction that lk(v) nT,t is homotopy equivalent to a wedge of
(m — 5)-spheres. This implies that E2 is homotopy equivalent to a wedge of
(m—4)-spheres.

Case 1. xeC0.
In this case we take W = {C0,...,C'k-1}, where C0 = q'(C0\jC1) and C'i = q\Ci+l) =

C1 + 1 for l g i g / c - 1 . The filtration 3>' of C'j is trivial.

= C, for all Ogig/c, and 3 ' =
Case 2. x e D r - D r + 1 for some g
Take <<f = {C'o,..., Q}, where C', =

where £>; = q'(0i) for
Case 3. x e Cp for some r ̂  2.
Take « ' = {Q,. . . ,Ci_1}, where Q = «'(C0) =

and C; = q'(C,+ 1) = C,+ 1 for
) for 1 g i g / and DJ + , =g'({

' = D\ > D;;+1, where
,- for

The vertices of S (£ , ^ ®) — Z 2 are those which are not compatible with v0, not
pushable, and have size bigger than 2. Any such vertex v must be of the form {S, S} for
some S = {e j}u(J J e / C , - , where I = {iu...,ir} a {2,...,k}. The number r of clusters
contained entirely in S will be called the cluster size of v.

We adjoin these vertices to Z 2 in order of increasing cluster size.
Suppose that we have adjoined with cluster size less than r, as well as possibly some

with cluster size equal to r, to £ 2 to obtain a subcomplex B of Z(£, <if, Si) which is
homotopy equivalent to a wedge of (m-4)-spheres. Let Jv be the subcomplex of B
spanned by vertices w which are compatible with v. We will say w is inside v if either the
inside or the outside of w is contained in S. w is outside v if the outside of w is contained
in S (Fig. 6). Since w is compatible with t;, it must be either inside or outside v.
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Every element of Jv which is inside v is compatible with every element of Jv which is
outside v. This is reflected in the simplicial complex Jv by the decomposition

Jv = (.{weJv:w inside v}} * ({weJv:w outside u}>

= Interior(v) * Exterior(v).

Let £" be the set obtained from £ by identifying all of S to a single point. Then
the quotient map q":E->E" induces an isomorphism Interior(v)-*I.(E",<#",&>"); here
<r = {C5,.. . ,C;}, where C^ = q"(Su{ei}) and q = tf"(C0) for l^j^r, and the filtration
2>" of C[ is trivial. If s = # S , then # £ " = s + 1 <m, so by induction we have Interior(v)^
v S*-3.

We now consider Exterior(v). Let £'" be the set obtained from £ by identifying S to a
single point. Then the quotient map q'":E-*E'" induces an isomorphism Exterior(v)->
£(£'", «"',&"); here *" ' = {C'«;',...,C4"_r_2}, where Q ' = q'"(C0), C r ^ ' X ^ u S ) , and
CJ" = <?"'((:() = £:,• for ie{2, . . . , /c}-7. The filtration 3)"' = D'[' =>•••=>D;+! is given
by D'i" = q"'(DivS) for l ^ i g / , and £>', +1 = q'"(S). Since S has s elements, # £ ' " =
m—s+1 <m; thus by induction Exterior(v)~ v Sm~5"3.

Thus

Jv = £xten'or(u) * Interior{v)

m~52; v S

By the Coning Lemma (B,v} is homotopy equivalent to a wedge of (m — 4)-spheres.
After adjoining all vertices ueZ(£, # , 9)) — L2 to Z2 i° this way> w e n a v e

1 - 4

Corollary 3.2. Let (g,G) be a vertex of K. Then K<(gG) is homotopy equivalent to a
wedge of spheres of dimension 2n — v(G) — 3.

Proof. K<(9,G) is the subcomplex of L> ( 9 G) spanned by graphs with no bridges. In
Section 2, we identified a vertex of ^ ( G ) ^ L > ( 9 G) with an ideal edge at a vertex x of G.
We need to understand when this ideal edge corresponds to a bridge.

Form a grouping (€x of £(G, x) by putting two oriented edges in the same cluster if
they are in the same connected component of G—x. Since G has no bridges, each cluster
in this grouping has at least two elements. An ideal edge at x corresponds to a bridge if
and only if the ideal edge is a union of clusters in <€x, i.e. the ideal edge is not in P#x.

As in the case of the complex L, we have a decomposition

** •*? in d\ ~~ *» 1 * **• 7 • * * * • /V ,.((Z\
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where Kt is the simplicial complex spanned by the ideal edges which lie at the ith vertex
Xj of G.

By Theorem 3.1, we have

where /c, is the number of oriented edges terminating at x,.
Thus

~ v Sk''**••

But Sfc,= #E(G) = 2(r(G) + w-l) ; thus

Remark. The complexes JC and L can be used to study the behavior of Out(Fn) "at
infinity". For n^3 , it can be shown that any action of Out(Fn) on a tree has a fixed
point. Therefore, by a theorem of Stallings, Out(Fn) has only one end. This implies that
the complexes K and L are connected at infinity. If they are (n — 5)-connected at infinity,
it can be shown that Out(Fn) is a virtual duality group, i.e. there is a module / and an
isomorphism Hi{0ut{Fn),M)^Hd_i{0ut{Fn),M ®/) for any Out(Fn)-rnodule M and any
iSd, where d is the virtual cohomological dimension of Out(Fn).

To try to understand the behavior of K and L at infinity, we define a norm on roses
p=(r,R) as follows. Let W be any set of cyclic words in Fn. Represent each word in
we W by a path co in Ro, and define the length of w to be the edge-path length of the
shortest path in R representing r(co). The norm of p is then the sum of the lengths of the
elements of W. Define the ball of radius m to be the union of the stars of roses of norm
less than or equal to m. In [1] it is shown that the ball of radius m in K deformation
retracts onto the ball of radius w—1. If W is chosen appropriately, these balls are
compact. In fact, one can choose W so that the ball of minimal radius is the star of a
single rose, and the deformation retraction maps the entire exterior of this ball onto the
link of that rose. There is a similar retraction for L, but the retraction is not onto. The
theorem in this section shows that the link of a rose in K is homotopy equivalent to a
wedge of (2n—4)-spheres, providing evidence that the space K = Kn may be (2n —5)-
connected at infinity.

Remark. The homogeneous space X(n) for Out(Fn) has a decomposition as a union
of "fat Teichmiiller spaces", i.e. contractible (3n — 4)-dimensional manifolds on which the
mapping class groups of surfaces with fundamental group Fn act. The methods of this
paper can be easily extended to show that the corresponding subcomplexes of K and L
are Cohen-Macauley.
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