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INDUCED HOMOTOPY EQUIVALENCES ON 
MAPPING SPACES AND DUALITY 

PHILIP R. HEATH 

Introduction, In this paper we present three results involving function 
constructions, together with an example which shows the usefulness of our 
considerations. The first result, Theorem 1, states roughly that homotopy is 
self related through function space constructions. Section 1 is devoted to the 
precise statement and proof of this theorem. 

In order to clarify the results of § 2 we draw an analogy. Recall that under 
certain mild restrictions on the spaces involved, a map p: E —» B is a fibration, 
and a map i: A —» X is a cofibration, if and only if the induced maps 
p*\ Ez —> Bz, and i*: Zx —> ZA, are fibrations for all spaces Z. The two 
theorems of § 2 give, in a more general category, analogous results for the 
notions of limit and colimit. Finally, in § 3 we suggest the importance of this 
type of result by using it, together with Theorem 1 and the above analogy, 
to deduce a result from its dual. 

Let T be a Cartesian closed topological category in the sense of [5]. Thus 
T could be the category of Steenrod's compactly generated spaces [8], or 
of Spanier's quasi-topological spaces [7]. We choose T to be Cartesian closed 
to ensure the existence of products, a point (or terminal object), and that the 
exponential map XYXZ —>• (XZ)Y is a homeomorphism for all spaces X, Y, Z 
in T. In § 3 we will also require T to be finitely complete and finitely cocomplete. 

1. Induced homotopy equivalences. 

THEOREM 1. Let f: A —> B be a map in T; then the following are equivalent: 
(i) / is a homotopy equivalence; 

(ii) The induced map /*: A z —> Bz is a homotopy equivalence for each Z in T; 
(iii) The induced map f*: ZB —> ZA is a homotopy equivalence for each Z in T. 

Proof. The results and proofs that condition (i) implies conditions (ii) and 
(iii) are w êll known and can be found, for example, in [1, Corollary 3.9]. The 
implication (ii) implies (i) is seen to be trivial by putting Z equal to a point. 

To show that (iii) implies (i) let g: AA —> AB be a homotopy inverse of 
/ * : AB —» AA and let h = g(lA)- Since f*g^ 1, it follows that there is a 
path K: I —» AA from hf to 1A, and hence a homotopy hfc^l. We cannot 
deduce that h induces g. However, we can deduce t h a t / *A* ~ 1: ZB X I —» ZB 

for all spaces Z (see [1, Proposition 3.8]). Since b o t h / * and 1 are homotopy 
equivalences for each Z, it follows that h* is a homotopy equivalence for each Z. 
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We repeat the argument applied to h* to deduce that h has a left homotopy 
inverse q. Thus f'h ~ qhfh ~ g& ~ 1. 

It is interesting to note that one can prove the implication (ii) implies (i) 
by an argument which is "dual" to the above proof, in the sense that this 
argument uses right inverses. 

2. Limits, colimits, and function structures. Let C denote any 
Cartesian closed category in the sense of [5], and let Hom(X, Y) denote the 
set of morphisms from X to F in C. We use the conventions of Mitchell [6] 
and refer to colimits and limits as opposed to direct, or inverse limits. 

The following two theorems show how the dual notions of limit and colimit 
are related through function structures. 

THEOREM 2. A family of morphisms F = {/*: L —> Dt} is a limit for a diagram 
D in C if and only if the family Fz = {/**: Lz —> D t

z] is a limit for the diagram 
Dz in C for each object Z of C 

THEOREM 2*. A family of morphisms G = {gt: Dt —> L) is a colimit for a 
diagram D in C if and only if the family ZG = {g*: ZL —» ZD%\ is a limit for 
the diagram ZD in C for each object Z of C 

Proof of Theorem 2*. Mitchell [6, Propositions 5.1 and 5.1* of Chapter 2] 
proved: (i) that a family of morphisms {L—^Di} is a limit for a diagram 
D in C if and only if for each object A of C, the family 

{Horn(4, L) -> Hom(i4, Dt)} 

is a limit for the diagram Horn (A, D) in the category of sets, (ii) that a family 
{D/ —» U) is a colimit for a diagram D' if and only if for each object A of C, 
the family {Hom(Z/, A) -> Hom(D/ , A)} is a limit for HomCD', A). 

Suppose that G is a colimit for D, then for all Z and A in C, Hom(G, ZA) 
is a limit for Hom(Z>, ZA). Now Hom(G, ZA) is naturally isomorphic to 
Horn (4 , ZG) and so H o m ( i , ZG) is a limit for Horn (4 , ZD) for all A and Z 
belonging to C. It follows that Z° is a limit for ZD for all Z in C. Conversely, 
suppose that ZG is a limit for ZD for all Z in C, then for A equal to a point 
object, *, Hom(*, ZG) 9Ë Hom(G, Z) is a limit for Hom(*, ZD) ^ Hom(£>, Z) 
for all Z in C. 

It should be noted that the above argument holds in a much more general 
category than C. It holds, for example, in a symmetric monoidal category in 
the sense of [5]. In fact, we require only that for each triple A, B, Z of objects 
of the category, there is a natural isomorphism Hom(A, ZB) = Horn(13, ZA). 
It is not even essential to have a point object in the category, since one can 
prove the converse implication of the argument by means of an indirect proof. 

3. Fibred and cofibred homotopy equivalences. This section gives an 
application of §§ 1, 2. Recall that a map p: E —± B is called a weak fibration 
if it has the covering homotopy property for all homotopies Z X I —> B 
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which are stationary on Z X [0, J]. This property has been shown by Dold [4] 
and Weinzweig [9] to be convenient for studying fibre homotopy equivalences. 

Consider the following commutative diagram: 

Q • ^ 

P 

in which Q and P are the pullbacks of g, q and / , p, respectively. 

THEOREM 3. / / p and q are weak ftbrations and </>, 0i, #2 are homotopy equi­
valences, then so also is <£. 

The proof of this theorem appears in [3]. We next show how we can use this 
theorem to prove its dual. 

Recall that a map i: A —» X is called a weak cofibration if it has the homo­
topy extension property with respect to all homotopies A X I —> Y, which 
are stationary on A X [0, | ] . The proof of the following lemma is left to the 
reader. 

LEMMA 4. A map i: A —» X in T is a weak cofibration if and only if the induced 
map i*: Zx —> ZA is a weak fibration. 

Consider the following commutative diagram: 

FIGURE 3* 

R and 5 are the pushouts of i, f and j , g, respectively. 
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THEOREM 3*. If i and j are weak cofibrations and </>, $1, <£2 are homotopy 
equivalences, then so also is 3>. 

Proof. For each object Z of T, Figure 3* induces a commutative diagram 

in which Zs and ZR are pullbacks of j * , g* and i*, /*, respectively, by 
Theorem 2*; i* and 7* are weak fibrations by Lemma 4; and </>*, <£i*, and $2* 
are homotopy equivalences by Theorem 1. It follows from Theorem 3 that 
<ï>* is a homotopy equivalence for all Z in T, and hence, by Theorem 1, $ is a 
homotopy equivalence. 

An alternative proof of Theorem 3* can be found in [2], in the case where 
i and j are cofibrations. 
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