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1. Introduction. With every connected graph G there is associated a 
metric space M{G) whose points are the vertices of the graph with the distance 
between two vertices a and b defined as zero if a = b or as the length of any 
shortest arc joining a and b if a 9e b. A metric space M is called a graph metric 
space if there exists a graph G such that M = M (G), i.e., if there exists a 
graph G whose vertex set can be put in one-to-one correspondence with the 
points of M in such a way that the distance between every two points of M is 
equal to the distance between the corresponding vertices of G. 

Necessary and sufficient conditions are given in §3 that a metric space be a 
graph metric space. 

It is natural to impose various conditions on graph metric spaces and to 
determine the properties which the corresponding graphs possess. In this 
paper we investigate the graphs whose associated metric spaces are ptolemaic, 
a metric space (M, d) being called ptolemaic if for each four points x, y, z, 
w € M, the three numbers d(x, y)-d(z, w), d(x, z) -d(y, w), and d(x, w) -d(y, z) 
satisfy the triangle inequality (1, p. 79). Calling such graphs ptolemaic, we 
characterize (in §4) the ptolemaic graphs satisfying a certain additional 
condition, called the weakly geodetic property, as those graphs for which any 
two vertices on the same circuit are adjacent. 

2. Definitions and notation. All graphs considered here are ordinary 
graphs, i.e., finite undirected graphs containing no loops or multiple edges. 
For the basic definitions and general information on this subject, see (4 and 5). 
We also assume throughout this paper that all graphs are connected. 

By an arc of length n is meant a finite sequence of edges (a0, #i), (#i, a2), . . . , 
(aw_i, an), where the vertices a0, a\, . . . , an are distinct from one another. 
If n > 3 and a0 = an but all other vertices are distinct, then this sequence is 
called a circuit of length n and is denoted by 

C = (<2o, &i, . . . , an_i, an = ao). 

Any edge (ait a3) with non-consecutively numbered vertices of C as end-points, 
i.e., with i and j such that i — j ^ ± 1 (mod n), will be called a diagonal of C. 

If we denote the distance between two vertices a and b by ab, then we can 
say a graph is ptolemaic if for every four of its vertices p, g, r, and s, the numbers 
pq-rs, pr-qs, and ps-qr satisfy the triangle inequality. 
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Should a graph have the property that there exists a unique shortest arc 
joining each pair of its vertices, it is said to be geodetic. A weaker property 
to be considered here is defined by assuming only that a unique shortest arc 
exists joining a pair of vertices a and b whenever ab = 2, and any graph 
which enjoys this weaker property will be called weakly geodetic. An example 
of a geodetic graph is a tree; a simple circuit of length six is an example of a 
weakly geodetic graph which is not geodetic. 

We shall use a definition of "lobe graph" which can be shown to be equivalent 
to the one proposed by Ore (5 ) : The lobe graph of a graph G determined by the 
edge E is the subgraph of G consisting of E and all edges F in G such that E 
and F belong to some circuit in G. It is clear that every edge of G belongs to 
one and only one lobe graph of G. 

A graph in which every lobe graph is either a single circuit or a single edge 
has been called a Husimi tree (cf. 3). Modifications of such graphs prove to 
be relevant to ptolemaic graphs. 

A vertex v of G is called a separating vertex (or cut point) of G if the removal 
of v and all edges incident with it disconnects G. A vertex is a separating vertex 
if and only if it belongs to two or more lobe graphs of G. 

Finally, we define a terminal lobe graph as one which has only one separating 
vertex in G. 

3. Graph metric spaces. Let M be a metric space with metric d. If a, 
b 6 M, then x £ M is said to be between a and b if d(a, x) > 0, d(x, b) > 0, and 
d(a, b) = d(a, x) + d(x, b). 

We now give a characterization of graph metric spaces. 

THEOREM. A finite metric space (M, d) is a graph metric space if and only 
if ii) the distance between every two points of M is an integer and (ii) if a, b G M 
and d(a, b) > 2, then there exists a point x £ M such that x is between a and b. 

Proof. It is clear that every graph metric space satisfies (i) and (ii) above. 
Let M be a metric space satisfying (i) and (ii), and consider the graph G 

whose vertex set can be put in one-to-one correspondence with the points of 
M and where two vertices of G are joined by an edge if and only if the distance 
between the corresponding points of M is one. It is a routine matter now to 
check the fact that M is the associated metric space of G. 

The familiar metric space (M, d) having d(x, y) equal to 1 or 0 according 
to whether x 9e y or x = y is now easily seen to be a graph metric space; in 
fact, (M, d) could be considered as the associated metric space of a complete 
graph. 

4. A characterization of certain ptolemaic graphs. It is a simple matter 
to show that if M = M (G) is a graph metric space which can be embedded in 
some Euclidean space, then either G is an arc (and can be embedded in E1) 
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or is a complete graph of order n (and can be embedded in En~l). A less strin­
gent restriction is imposed by assuming that M is ptolemaic. We shall see that 
a ptolemaic graph having the weakly geodetic property relaxes the condition 
that a graph be complete and forces only the lobe graphs of the graph to be 
complete. 

Suppose that a graph G has the property that each of its lobe graphs is a 
complete subgraph of G. We shall call such a graph a completed Husimi tree. 
One characterization of these graphs has been given by Harary (2). We now 
prove our main result. 

THEOREM. A weakly geodetic graph is ptolemaic if and only if it is a completed 
Husimi tree. 

Proof. Let G be a completed Husimi tree, and suppose p, q, r, and s are any 
four vertices of G. Since the triangle inequality is obviously satisfied for the 
numbers pq-rs, pr-qs, and ps-qr whenever two or more of the four vertices 
coincide, it may be assumed that p, q, r, and 5 are distinct. We employ induction 
on the number n of vertices in G (the result being trivial for the case n = 1), 
and assume that all completed Husimi trees having fewer than n vertices are 
ptolemaic. 

If p, q, r, and 5 are all contained in the same lobe graph, then the distance 
between any two of them is equal to one, and the result follows immediately; 
hence we may assume that the four vertices do not all belong to a single lobe 
graph. We may also assume that some one vertex of the four, say p, is a non-
separating vertex contained in a terminal lobe graph L of G, for otherwise a 
terminal lobe graph of G can be deleted with the separating vertex excluded 
without removing any of p, q, r, and s, and the desired result follows from the 
induction hypothesis. Let v be the separating vertex of L in G. If u is any 
vertex of G different from v, then either up = 1 if u lies in L, or, if not, 
up = uv + 1 since every arc joining u and p must pass through v. There are 
three cases to consider. 

Case 1. p and two of the three vertices q, r, s are contained in L, say q and r. 
Then pq = pr = qr = 1 and either ps = qs = rs if neither q nor r is v, or else 
ps = qs = rs + 1 if r = v, say. In any case, the triangle inequality is satisfied. 

Case 2. p and one other vertex of q, r, s are in L, say q. If q ^ v, then pq = 1, 
pr = qr, and ps = qs. The first inequality 

pq-rs < pr-qs + ps-qr 

is obvious while 
pr-qs < rs + pr-qs = pq-rs + ps-qr, 

and the third inequality follows like the second. 
If q = vy then pq = 1, pr = qr + 1, and ps = qs + 1. Here we have 

pq-rs = rs, pr-qs = qr-qs + qs, and ps-qr = qr-qs + qr, which are easily 
seen to satisfy the triangle inequality. 
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Case 3. None of the vertices g, r, s lie in L. We see that pq = qv + 1, 
pr = rv + 1, and £s = sv + 1. The removal of L with z; excluded and an 
application of the induction hypothesis on g, r, s, and v yields the fact that the 
three numbers 

qr-sv = ps-qr — qr, qs-rv = pr-qs — qs, and qv-rs = pq-rs — rs 

satisfy the triangle inequality. Since also r s < qs + qr, adding this to 

pq-rs — rs < {pr-qs — 55) + {ps-qr — gr), 

we obtain pq-rs < pr-qs + ps-qr. The other two combinations involved with 
the triangle inequality are obtained in like manner. 

This completes the proof that the condition is sufficient. For the proof of 
the necessity, let G be a weakly geodetic, ptolemaic graph. If G has no circuits, 
then it is a tree and is therefore a completed Husimi tree. Otherwise, we use 
induction on the length n (the number of edges) of the circuits in G to show 
that all diagonals of all circuits in G are present, thereby proving that G is a 
completed Husimi tree. For n = 4 (the first case in which a circuit can have 
diagonals), it is clear that such circuits contain all their diagonals from the 
fact that G is weakly geodetic. Suppose that all circuits of G of length less 
than n, n > 5, contain all their diagonals. Consider 

C = (a0, au a2, . . . , an = a0), 

a circuit of G of length n. If C contains a diagonal D = (ar, as), r < s, then 
D divides C into two circuits of length less than n, namely 

C\ = {do, # 1 , . . • , dri &S1 Gs+ly • • • î ®n = &o) 

and 

C2 — {CLr, # r + l ) • • • 1 as-li asi # r ) -

By hypothesis, C\ and C2 contain all their diagonals. Let at be on d and a ; be 
on C2 and both be different from ar or as. Then 

C3 = (flj, ar, ajf asy at) 

is a circuit of length four and therefore contains all its diagonals. In particular, 
the edge {au dj) is present in G and is a diagonal of C. It follows that C contains 
all its diagonals, that the induction carries, and that G is a completed Husimi 
tree. 

It remains to be shown that C must contain a diagonal such as D. Suppose, 
on the contrary, that C contains no diagonals at all. First we claim that for 
any two vertices ar and as, r < s, on C, ar as is equal to the minimum of the 
lengths of the two arcs 

P i = (ar, a r+i, . . . , as) and _P2 = («s, as+i, . . . , a0, . . . , ar). 
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For, if there were an arc P 3 of shorter length from aT to as, then of necessity, 
Pi and Ps, for example, would form a circuit C of length less than or equal to 
the sum of the lengths of P i and P 3 , which is less than n, and which contains 
at least two vertices at and aj of P i with i — j ^ ± 1 (mod n). Thus C must 
contain all its diagonals, so either Dr = (aiy aj) is an edge of C or a diagonal 
of C , but in either case, D' is a diagonal of C, and this is a contradiction. This 
proves the assertion. Taking p = a0j q = ax, r = a2, and 5 = afc with 
k = [in] + 1, it follows that 

^ • « = l - (* - 2) = [i«] - 1, 

^ r - ^ = 2(£ - 1) = 2[|«] > n - 1, 

and ps-pr = (n — k)*l = n — [%n] — 1, 

so that 

pq-rs + ps-qr = n — 2 < n — 1 < pr-qs, 

which violates the fact that G is ptolemaic. Therefore, C must contain at least 
one diagonal, hence all diagonals, and so G is a completed Husimi tree. 

Since a completed Husimi tree is a geodetic graph, we arrive immediately 
at the following corollary: 

COROLLARY. A weakly geodetic ptolemaic graph is a geodetic graph. 
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