Proceedings of the Edinburgh Mathematical Society (1992) 38, 271-283 ©

DISTINGUISHEDNESS OF WEIGHTED FRECHET SPACES
OF CONTINUOUS FUNCTIONS

by FRANCOISE BASTIN
(Received 5th July 1990)

In this paper, we prove that if % is an increasing sequence of strictly positive and continuous functions on a
locally compact Hausdorfl space X such that 7~ 7 n C(X), then the Fréchet space C#(X) is distinguished if
and only if it satisfies Heinrich’s density condition, or equivalently, if and only if the sequence % satisfies
condition (H) (cf. e.g.'[1] for the introduction of (H)). As a consequence, the bidual 1,(A) of the distinguished
Kothe echelon space Ay(A) is distinguished if and only if the space 4,(A4) is distinguished. This gives
counterexamples to a problem of Grothendieck in the context of Kthe echelon spaces.

1980 Mathematics subject classification (1985 Revision): 46E10, 46A45, 46A07.

1. Introduction

A locally convex space E is distinguished if its strong dual is barrelled. All the Kéthe
echelon spaces 4,(A) of order p=0 or 1 <p<oo are known to be distinguished; in fact,
for 1<p<oo, they are reflexive (cf. e.g. [4]), and the strong dual of Ay(A4) is
topologically isomorphic to the LB-space ind, . . , /,(a, '), A=(a,),n. The situation for
p=1 or p=o00 is more complicated.

The distinguished spaces A,(A4) were characterized by K.-D. Bierstedt, J. Bonet and
R. Meise (also see Vogt [6]): K.-D. Bierstadt and R. Meise [3] introduced the condition
(D) on a Kothe matrix 4 and proved that (D) implies A4,(A) distinguished. Then, K.-D.
Bierstedt and J. Bonet [2] proved that in fact (D) is also necessary for the distinguished-
ness of 4,(A).

Concerning the spaces A,(A4), which are the strong biduals of the corresponding
spaces Aq(A), the problem of characterizing when 1 (A) is distinguished is related to the
following question of Grothendieck: “Is the bidual of a distinguished Fréchet space also
distinguished?” This question of Grothendieck has already been answered in the
negative by J. Bonet, S. Dierolf and C. Fernandez [5]. These authors used Fréchet
spaces of Moscatelli type to construct counterexamples. Moreover, they proved that this
question is also related to the lifting of bounded sets: they show that if E, F are Fréchet
spaces such that EcF<E" and if F is distinguished, then F/E is distinguished and its
bounded sets are liftable (with closure). In our situation, this is a key point which allows
us to forget about the dual of 4,(A), which is not a sequence space, and hence requires
a new approach and other methods.
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In the present paper, we characterize the distinguished weighted Frechet spaces of
continuous functions on a locally compact Hausdorff space X in terms of condition (H)
(cf. Notation). As a particular case, we obtain a characterization of the distinguished
spaces A (A): this space is distinguished if and only if 2,(4) is. Hence, concerning the
preceding question of Grothendieck, we can say that every Kothe matrix A which does
not satisfy condition (D) (or equivalently (H), cf. Notation) gives a distinguished Fréchet
space Ay(A) such that (19(A))pp = A,(A4) is not distinguished.

2. Notation
Let X denote a completely regular and Hausdorff space and % =(u,,),.n denote a
countable increasing system of strictly positive weights on X. We set
vm:=um—l(mEN)’ V=(Um)meN
and

V= {5: X —[0, + oo[; sup |#(x)/v,(x)| < + 00,Vme N}.

qxeX

Then C#%(X) denotes the linear space of all the continuous function f on X such that
Pl f):=5UP,cx Un(x)| f(x)| < +00 VmeN endowed with the locally convex topology
defined by the semi-norms p,, meN. The notation A,(A), A=% is used in case X is
discrete. Further, C%,(X) denotes the subspace of C%(X) consisting of all the
continuous functions f such that u, f converges to 0 at infinity for every meN; in one
case X is discrete, 14(A) is used instead of C%,(X).

We will also use the following notation:

Q for the quotient map C%(X)—C%(X)/CU ((X),
b,, for the neighbourhood {f € A,(A): SUP,cx|un(x) f(x)|S1} in 2,(A),

D(X) for the space of all the continuous functions on X with compact support
(D(X, [0, 1]) denotes then the set of the elements of D(X) with values in [0, 1]),

if 5V, then 8(l,,), is the set {f € A,(A):|f(x)|Sd(x), Vxe X}
(={feio(A)Igel,,|g(x)|S1 VxeX: f=0g}).

Let us also recall the expressions of conditions (D), (H), (H**) and (ND), as well as
the relations between them, cf. [1] (these expressions are given in terms of ¥~ or %):

(D) 3J'_‘(Xm)meN7 Q#chxm+lvm:
(N, J)¥n,3m(n):inf, . x, 04(X)/0pm)(x) >0 VkeN
(M,J)V¥n and Y,(Y £ X,,,Vm)3n':inf, _y 0,(y)/va(y) =0;

https://doi.org/10.1017/50013091500005538 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005538

DISTINGUISHEDNESS OF WEIGHTED FRECHET SPACES 273

(H) Vi,>0(meN),VneN,35e Vand MeN:

Vxe X(lnfl SmM }‘mvm(x) g U,,(X) = 6(X) ; U"(X));

(H**) Vi,>0(meN)3se V:¥neN,VC>0,IMeN:

Vx € X(inf; << s Amm(%) 2 Cv,(x) = 3(x) 2 Cv,(x));

(ND) 3neN and a decreasing sequence J (keN) of non void subsets of X such that,
Yk=n:

(i) infee s, 0(X)/v(x)>0; (i) FUk) > k:inf, 5, 0(x)/v5(x) =0.

It is known that (D)<>(H)<>(H**)< T1(ND).

3. Main results

As will be proved in Proposition 2, under some continuity assumption, the possibility
of lifting the bounded sets of C%(X)/C%y(X) is equivalent to (H) (or to 71(ND)). To
obtain this result, we need some more information about the sets J, (ke N) appearing
in (ND):

Lemma 1. If ¥ = C(X), then in condition (ND), we can assume that the sets J’s are
such that (J,.,,)~ <J,=(J)° for every keN, i.e.

(ND) 3neN and a decreasing sequence J (ke N) of non void subsets of X such that
VkE N: (Jk+l)- CJk'_—(Jk)Oa
Vkzn: (i) inf,;, vi(x)/v,(x) >0,
(i) 31(k) > k:inf, . 5, v3y(x)/va(x) =0.
Proof. It is known that (ND) is equivalent to ~1(H). To obtain the result here, we

just change the proof of 1(H)=>(ND) of 1.2.7 of [1] slightly as follows.
As (H) does not hold, there are ne N and a sequence 4, >0 (me N) such that

Vie V,YMeN,IxeX: inf A,v,(x)2v,(x) and #(x)<v,(x). (1)

1=m=M

For every ke N, define

Je= {xeX: inf  A,v,(x)>(1 —2"‘)v,,(x)}.

1Ssmsk
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For every k, as (1) holds, the set J, is non void; and as the functions v,’s are
continuous, we also have

Jes1) " chi=(J)°VkeN,
Moreover, for every ke N, one gets

D) 1=27%
inf X—~2>—=
xeJx U,,(X) - j'k

hence (i) of (ND) is satisfied.
So, to conclude, we just have to prove (ii). If (i1) is not satisfied, there is k=n such
that '

Visk,o:= inf 23 5
xeJx U,,(X)
For m>k, let «,:=6,' and for m=1,...,k, let a,:=41,. Then define #:=inf, _y &0,
Since (1) holds, there exists xe X such that

inf 2,0,,(x)2v,(x) and 26 <v,(x).
1smsk

The first inequality implies x € J,. Moreover, by construction, Vye J, we have

AmOm(D)>(1 =270, (1227 0 (y) form=1,... .k,
Om  0() Z v,(1) 227 11, (y) for m>k;

hence also 2¢(y) = v,(y). But this contradicts xeJ, and 25(x) <v,(x). O

Now we can prove the main result of this paper, i.e., the characterization of the lifting
of the bounded sets of C#(X)/CU,X) (with or without closure) in terms of
condition (H).

Proposition 2. Let X be locally compact, ¥ " cC(X) and consider the following
properties:

(1) ¥ satisfies condition (H) (or equivalently (H**)),

(2) VB bounded subset of CU(X)/C%X),3C bounded subset of CU(X) such that
B=Q(C);

(3) VB bounded subset of CU(X)/CUyX),3C bounded subset of C%(X) such that
Bc (Q(C)) —C‘W(X)/quo(x).

Then (1)=>(3) and (2)=>(3). Moreover, if in addition we have V ~V n C(X), then (3)=(1)
and (1) =(2).
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Proof. Of course, (2)=(3).
(1)=>(3). Given B, there is a sequence 1,,>0 (meN) such that
B () (Ambm O C(X)) + Co(X)).

meN
Then condition (H**) gives i e V; we define

= supinf {4MAyD,A,v,,..., AyUpy}.

MeN
As i belongs also to V, the set
B =2i(l,), n C(X)
is a bounded subset of C#(X). We claim that
Bc () (C%O(X)+B’+('ll b,n C(X))).

neN
Indeed, fix ne N and take f € B. Define the sets
Fi={xeX:|u(x) f(x)| £1/2n}; F:={xe X:|u,(x) f(x)|21/n}.

Then F and F' are disjoint zero sets of continuous functions; so there is ge C(X,[0,1])

such that g=0 on F and g=1 on F. As we certainly have f=gf+(1—g)f and

(1—-g)fe(1/m)b, n C(X), to conclude it remains to prove that gf belongs to B’ + C%(X).
Using (H**) with n and C=1/4n, we get M = M(n) such that

VxeX{ inf A,v,(x)= Oa(X) =i(x) 2 (x) .

1smsM 4n 4n
We can write (recall that f belongs to B)

f=f™4g™ m=1,....M
with f™el b, C(X) and g™eC%yX) for every m=1,...,M. Then there is a
compact subset K of X such that
1
|4a(X).f (X)] £ Appthn(X) Um(X) + n (2

for every xe X\K and 1 m< M. It follows that every x e X\(K u F) satisfies

oS inf A0 (x) 3)

1SmsM

hence also (use (H**))

1) S0).
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A look at the definition of & shows that the previous inequality implies

3(0) Zinf (M Ay 5(x), A, 01(X), .., Apgvse(X)} = inf  A,0,(x)

1SmsM
for every xe X\(K u F). Moreover, (2) and (3) implies also

|f()|s2 inf  A,0.(x) (S24(x)) 4

1smsM

for every xeX\(Ku F). Taking now ¢eD(X,[0,1]), ¢=1 on K, we get gf=
dgf +(1—@)gf, with ¢gf e D(X)=C%y(X). Finally, by construction and by (4), we
obtain

(1—¢)e|f|<2a on X
hence (1 —¢)gf belongs to B’ and we are done.

Now, assume that in addition, every element of ¥ is dominated by a continuous
element of V.

(3)=(1). We proceed by contradiction. If (H) does not hold, condition (ND) is
satisfied and we can assume that it is satisfied with a decreasing sequence of non-void
subsets J, (ke N) verifying (J, ,,)~ =J,=(J,)° for every keN. We can also suppose n> 1.

For every k=n, we set &:=inf, ., u,(x)/u,(x) (>0, cf(ND)) and we define

B:= () (& b N C(X)) + Co(X)).

mzn

which is a bounded subset of C#(X)/C%(X).
As every bounded subset of C#(X) is contained in a set of the type i(l,), (7€ V), it
remains to prove that Vo=inf,,.n0puUm, (P >0Vm), we have

B¢ Co(X) +(5b, 0 C(X)) +(8(!); N C(X))=:C".

Indeed, let ¢,:=1 for m=1,...,n—1 and take 5e ¥ ~ C(X) and a sequence r,,>0Vm
such that

_l . - . _l
m=Em Vm, inf r,v, 2022 inf ¢, 'v,,.

meN meN

r

Now, we use (ND) and the fact that the J,’s are open to construct sequences k(j)eN,
x;€ X and V;c X(jeN) such that, VjeN

k(1)=n, k(j) <k(j+1);
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V;=open neighbourhood of x;;

Vicdp 0 {’“ Un(X) i+ 1)(X) < iﬂf{—‘l—— ! }}

3
20kG5+1) 2N+

(hence VicJi;\Uig+1) > VieN and VinV=g if j#l). Then, VjeN, let
f;€D(X,[0,1]), supp(f;) <V}, f(x;)=1 and define

We claim that e B\C'. To prove this, we proceed in several steps.

(a) fis continuous on X.
Indeed, take any xe X.
If xe ﬂ jendj, we obtain ¢, 'v,(x) 2 v,(x) Vme N, hence also

6()6) ; 2 irlfmeN Bm- ! Um(X) > U"(X).
Since v, and ¥ are continuous, the set

Vi={ye X:i(y)>v,(y)}

is a neighbourhood of x. Moreover, for every jeN, we have

Vi {y: 2r+ nyorg+ () < va(M} = {y:20(y) <va(1)}

hence V;n V= and finally f=0on V.

If there is j, such that x¢J;, then V=X\(J;)~ is an open neighbourhood of x
which meets only finitely many V}’s (because V,=J, V1 and Jy,<J;, for 12 j,), hence
f|v is a finite sum of continuous functions.

(b) f belongs to CU(X).
Indeed, fix me N, m=n. We have

supu (| f = sup ‘el iy
xeX jeN,xeV;y u,,(x)

Ssup { sup u,,,(x)’ & ‘}
xe U7y supp(sy) Un(X)

and hence the required conclusion.

(c) fbelongs to B=|")pzu(er " bm N C(X)) + CUo(X)).
Indeed, fix meN, m=n. Then
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f=f(l.m)+f(2.m’
with

m-—1 +
fEm=p, ¥ f; fEm=v,Y f
ji=1 j=m
and
fEmeD(X)c CUX);, fE™ee; b, N C(X).

(d) Assume that there are ge(1/4)b,n C(X), he(l,); and we C%(X) such that
[ =g+ 0h+w. Then, for every jeN, we have

I=u,(xpv,(xp)=u,(x;) f(x) S35 +“n(x;)|W(xj)| + Prii+ 1P+ 1)(X)Un(X))
<k+u,(x)|wlx)|+3.

As w belongs to C(u,)o(X), to conclude, it suffices now to prove that the set {x;: je N} is
not relatively compact.

Indeed, if it was compact, we could find xo€(\yen{x;: j2 N} ™. But for every NeN
and j=N, we have x;eV,cJ,<Jyn<Jy, which implies ey 'vy(x;) 2 v,(x;) and finally
the inclusion

{xj: 2N}~ = {xe X:ey vn(x) 2 v,(x)}.
This implies that x, satisfies inf, yé, 'v,.(x0) 2 v,(xo) hence also ¥(x,) > v,(x,). As in the

case (a) above, V={xe X:5(x)>v,(x)} is then a neighbourhood of xo and it follows that
there exists M such that §(x,,) > v,(x,). But this implies

T + 1Pk + 1)(Xpr) > Un(Xpg),

which is a contradiction because

xMeVMc{x: ty(X) < L }

U + 1)(x) 2rk(M +1)

(1)=>(2). We improve the proof of (1)=(3) in the case V that satisfies the continuous
domination property (ie. V=~V n C(X)).
As B is bounded in C%(X)/C%(X), there is a sequence 4, >0 (meN) such that

B () (Umbw N C(X)) + Co(X)).

meN

Using (H**) (equivalent to (H)), we get i€ V such that Vne N, IM(n) = n:
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Vx( inf Amvm(x)givn(xba(x);ivn(x)). s)
4n 4n

1=smsM(m)
We define

w:=supinf {4M Ay, A,0y,..., A0y}

meN

We have i e V. Let & be a strictly positive (the condition (H) implies the existence of a
strictly positive element of V) and continuous element of ¥ such that #>2inf, \4,0x
and 4= a’. We claim that

B:= () (b 0 C(X)+ CUo(X)) = 8il(l,.), + CUo(X).

meN

Indeed, let f € B'. For every meN, there are f™ e ,,b,, C(X) and g™ e C%y(X) such
that f=f™ +g¢™. Hence, for every neN, there exists a compact subset K,=X such
that

u,,(x)lg""(x)|§$; Vk=1,...,M(n); Vxe X\K,,. ©6)

We set Ky:=J; moreover, in the previous construction (this construction is possible
except if X is compact. But then, the property is of course true and we have nothing to
prove), we can assume that J# K, (K,+,)% VneN.

We proceed again in several steps.

(a) Let ¢,eD(X,[0,1]) be such that ¢, =1 on K,, supp(¢,)=(K;)° and, for every
n22, let ¢,eD(X,[0,1]) be such that ¢, =1 on K,\(K,-,)° supp(¢,)<(K,+;)°\K,-,.
Moreover, as the sets F:={xeX:|f(x)|<i(x)} and G:={xeX:|f(x)|22i(x)} are dis-
joint zero-sets of continuous functions, there is he C(X, [0, 1]) satisfying h=0 on F, h=1
on G.

We show that 1 —h, h¢,(neN) form a locally finite family & of continuous functions
on X such that ¢'(x):=1—h(x)+ Y 5 h(x)¢n(x)>0,Vx e X.

Indeed, for every x€(),en(X\K,), we have g®¥(x)=0 VkeN (cf. (6)), hence |f(x)|<
Abi(x) YkeN and finally | f(x)| Sinf, n 40,(x) <di(x); it follows that F is a neighbour-
hood of (),.n(X\K,). Then, as h=0 on F, the family & is locally finite on
Naen(X\K,), and, by construction of the functions ¢),, it is also locally finite
on (\pen Koo

To prove that ¢’(x)>0Vx e X, is suffices to remark that

h(x)#0=x€e |} K,

meN

{3 2Y S (021
¢(x)=1+h(x)(— 1435 ¢.(x))>0.
We set
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1=h . _h,

boi="g &

(neN).

(b) For every neN, let us define
FP:={xe X:u,(x)| f(x)|£1/2n}; FP:={xeX:u,(x)|f(x)|<1/n}
and take h™eC(X,[0,1]) such that K”"=0 on F{, h”=1 on F{. For every
xe X\(K, v F{), we have (cf. the decompositions f = f™ 4 g™ of f)

1 1
— <u,(X)|f(x)|Su,(x) inf Au(x)+—,
2 W E0) ol Aa(d+

hence

1
— v (x)< inf  Aw(x
I A k(%)

and (from (5))
0.0 ST

It follows that

inf  Av(x) Sa'(x) <idd(x)
15ksn

and that

If(x)l < inf AUi(X) + U(x)
15kSM(n) 4n

<2 inf  Au(x)
1sksM@)
< 2ii(x).

(c) Now, f can be decomposed as follows:
f=foo+f(¢1+¢2)+ 23 S h"= D 4 23 fé,(1—h=2),

For every n=3, we have

x¢Fp-2

=2 0=
SO (x) # {x €supp(9,) = (Kps 1) \Kp—2 = X\K, -,
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hence | f (x)| <2i(x) and finally

Eo S (X)$u(x)h"~D(x)| S6il(x) VxeX.

n=3

Next, let us verify that Y755 f¢,(1—h""?) belongs to C%o(X). First, this function
clearly belongs to C#(X). Now fix NeN and ¢>0. For every n23, we have

1

Soux)(1 =R D(x) #0=>xe X\F§ ™ =u,_,(x)| f(x)| < —

Hence, if N'e N is such that N’ 2sup {N+2,3¢~1+2}, for every x¢ Ky., we get

un(x) f S = K= 2() | =up(x) f Fu(1 =K D()

S 3 1151 —h~2(0)

3
“N-=-2

IA

IA

E.

Finally, as ¢,=0 on G={xeX:|f(x)|22i(x)}, we also have |f(x)|¢o(x)=<2i(x),
VxeX.
Hence the conclusion: f belongs to the set 8ii(l ), + C%(X). d

Let us now recall Lemma 1 of [5] which shows how distinguishedness and lifting of
bounded sets are connected.

Lemma 3 ([5]). Let E, F be Fréchet spaces such that EcF<E", and let . F—>F/E
denote the quotient map. Assume that F is distinguished. Then

(i) F/E is distinguished, and
(ii) V bounded subset B of F/E, 3A bounded subset of F such that B<(q(A4))~.

Proposition 2 and the lemma recalled above lead now to the following result.
Theorem 4. Let X be locally compact, ¥ =«C(X) and V=~V nC(X). Then the
following properties are equivalent:

(1) C%(X) is distinguished,
(2) CU(X) (resp. CUy(X)) satisfies S. Heinrich’s density condition,
(3) ¥ satisfies (H);
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(4) VB bounded subset of CU(X)/CUX), 3C bounded subset of C(X) such that
B<Q(C);

(5) VB bounded subset of CU(X)/C%yX), IC bounded subset of C¥(X) such that
BC(Q(C))—CQ“XVCQO(X).

Proof. From [1], we know that (2) and (3) are equivalent (this result is valid without
the assumption ¥ ~V n C(X)).

The equivalence between (3), (4) and (5) is proved in the preceding proposition.

As E=C%y(X) and F=C%(X) are Fréchet spaces satisfying Ec F< E”, we can apply
Lemma 1 of [5] and we get (1)=(5).

As S. Heinrich’s density condition for Fréchet spaces implies distinguishedness, the
proof is complete. O

Corollary 5. Let A=(a,),.n be a Kiothe matrix on a discrete space X and let q denote
the quotient map A (A)— A (A)/Ao(A). Then the following properties are equivalent:

(1) A2,(A) is distinguished,

(2) A(A) is distinguished,

(3) A,(A) (resp. 1,(A)) satisfies S. Heinrich’s density condition;

(4) VB bounded subset of A, (A)/Aq(A), IC bounded subset of A(A) such that B<q(C);

(5) VBboundedsubsetofi..(A)/Ay(A),ACboundedsubsetof A .(A)suchthat B < (g(C)) ~ A= AAold),

Remark. Completely independently from this paper, E. Shaliick (Universitit-GH-
Paderborn) obtained results about the distinguishedness of weighted spaces CVy(X). He
proved that if V is an increasing sequence of strictly positive and continuous functions
on a locally compact Hausdorff space X such that every lower semi-continuous
v: X - [0, + co[U{oo} satisfying sup,.x v,(x)/v(x) < oo Yne N is dominated by a continuous
function of the same type, then CV,(X) is distinguished.
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