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The class of prime Noetherian v-H orders is a class of Noetherian prime rings including the commutative
integrally closed Noetherian domains, and the hereditary Noetherian prime rings, and designed to mimic the
latter at the level of height one primes. We continue recent work on the structure of indecomposable injective
modules over Noetherian rings by describing the structure of such a module E over a prime Noetherian v-H
order R in the case where the assassinator P of E is a reflexive prime ideal. This description is then applied to
a problem in torsion theory, so generalising work of Beck, Chamarie and Fossum.
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1. Introduction

There has been considerable interest recently in studying the structure of injective
modules over non-commutative Noetherian rings using the techniques of the theory of
prime links; see, for example [2, 6, 8, 10]. Here we make a contribution to this theory
by discussing those indecomposable injective modules over a prime Noetherian v-H
order with enough u-invertible ideals that have an associated prime ideal that is
reflexive. Precise definitions and basic properties of the class of rings we are studying are
given in Section 2, but to give an idea of the scope of the results one should keep in
mind the following analogy: v-H orders stand in the same relation to maximal orders as
hereditary Noetherian prime rings do to Dedekind prime rings. In fact, at the level of
height one prime ideals the behaviour of v-H orders should be, up to technical details,
similar to that of hereditary Noetherian prime rings. This can be seen, for example, in
the structure theorem for injectives given in Theorem 4.1.

In Section 2 we give the definitions and basic properties of the rings that interest us
here. In Section 3 we recall the definitions of certain technical conditions—density,
stability, and the strong second layer condition—and show that these hold for the
reflexive prime ideals we are looking at. These conditions ensure that the injective
modules we wish to study have a reasonable structure. In Section 4 the structure of
injective modules is adapted from [2], yielding Theorem 4.1. This structure theory is
then applied to a problem concerning the stability of a certain torsion theory (Theorem
4.2), thus generalising results of Beck [1], Chamarie [4] and Fossum [5] on maximal
orders. The paper ends with two examples that set Theorem 4.2 in context.

For any unexplained notation, we refer the reader to [13].
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2. Prime Noetherian v-H orders

Our primary reference for this class of rings is [11]; the definitions and properties
listed in the following paragraph can all be found there.

Let R be a prime Noetherian ring with simple Artinian quotient ring Q. For a right
[resp. left] K-ideal / in Q, set I* = {qeQ:qI^R} [resp. I+= {qeQ:IqQR}']. Recall that
/ is said to be right reflexive [resp. left reflexive'] if I*+ = 1 [resp. / + * = / ] . A (two-sided)
ideal / is reflexive provided both these equalities hold; and in this case / is called v-
invertible if (//+)*+ =R = (/*/)+ *. The reflexive ideal / is u-invertible if and only if
Or(/) = 0,(1) = R. From this it follows easily that, for / u-invertible,

I* = I+ = {qeQ:IqIsI};

this set will be denoted by 7"1. If A and B are u-invertible ideals, then so is (AB)*+;
hence one obtains the structure of an abelian group (F(R), •) on the set of u-invertible
ideals and their inverses.

Notice that, if A is a maximal order, then every reflexive ideal / is u-invertible [13,
Proposition 5.1.4].

Definition 2.1. By [11, Theorem 1.13(2) and Theorem 2.23], we may state that R is a
(prime, Noetherian) v-H order with enough v-invertible ideals if and only if R is prime
Noetherian and

(i) each maximal u-invertible ideal of R is semiprime;
(ii) each maximal u-invertible ideal P is localisable, and RP (the Ore localisation at the

semiprime, localisable ideal P) is a semilocal hereditary Noetherian prime ring with
unique maximal invertible ideal J(RP), while

(iii) S(R) = {qeQ:qI^R,0^I-=3R} is a prime maximal order with no proper reflexive
ideals, satisfying the ascending chain condition on closed right or left ideals;

(iv) R = nRPr\ S(R) where P ranges over the set of all maximal u-invertible ideals of
R;

(v) for every ideal A of R,

A + * = nARP

and (vi) each regular element of R is a unit in all but finitely many of the rings RP.
Note that, in view of [4, Prop. 1.10] the prime Noetherian ring R is a maximal order

if and only if it satisfies (i),...,(vi) and every maximal u-invertible ideal is prime (or,
equivalently, every reflexive ideal is u-invertible).

Let R be a prime Noetherian v-H order with enough u-invertible ideals, and let / be
an ideal of R. We shall need the following generalisations to this setting of well-known
properties of maximal orders:

2.2 [11, Lemma 1.2]. / is right reflexive if and only if I is left reflexive.

https://doi.org/10.1017/S0013091500004983 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004983


REFLEXIVE IDEALS AND INJECTIVE MODULES 33

23. Suppose that I is v-invertible, and set S = II~i and T = I~lI, so that S and T are
ideals of R.

(a) [11, Lemma 2.5]. I^SnT,and SnT n<g(J)^<f>for every v-invertible ideal J of R.
Suppose in addition that I is semiprime. Then

(b) [11, Propositions 2.1 and 2.7]. / is right and left classically localisable; and

(c) for all n^ 1,

(/B)*+=(/n)+*

= I"RInR

= {reR:rdeIn, for some de<g{I)}

= {reR:dreIn, for some de<#(I)}.
The first equality follows from 2.1(v). The second equality also follows from 2.1 (v)

once one notes that IRP=RP for each reflexive ideal P that does not contain /, and that
Rj = n RP, where P ranges over the primes minimal over /. The third and fourth
equalities follow immediately from standard results on localisation.

We shall denote the ideal (/")*+ by /(n). Repeated use of [11, Lemma 1.3] shows that
/<"' = / • / • . . . / (n times), where • denotes the group multiplication in the set F(R) of
u-invertible ideals.

2.4. Let P be a maximal reflexive ideal of R. Then P is prime by [11, Lemma 1.4].
Also, either P is v-invertible or there exist maximal reflexive ideals P = P1,P2,..-,Pn such
that X = Pin---nPn is v-invertible, by [11, Lemmas 1.5, 1.9 and 1.11]. In either case, P
generates a maximal ideal in a localisation Rx of R that is a hereditary Noetherian prime
ring, by [11, Proposition 2.7]. Since HNP rings have Krull dimension one, this forces P to
have height one.

In summary, maximal reflexive ideals of R are prime, and if P is a reflexive prime ideal
of R then P has height one.

2.5. Although the localisation result alluded to in (2.4) is established without using
the modern terminology as presented in [8], we need this terminology to develop the
structure theory of injective modules that is presented in Section 4, so we give a brief
summary of it here.

A prime ideal Q of a Noetherian ring R is right linked to a prime P if there exists an
ideal A of R with QP^A^Pi \Q such that P n Q/A is torsion free as a left R/Q-module
and as a right R/P-module. If such a link exists, we write Qr+P; see [8, page 135]. A set
0> of primes of R is right stable if, whenever Pe&> and Q~»P, then Qe&>. Right and left
stable sets of primes are called stable. The {right) clique of P is the smallest (right) stable
set of prime ideals of R containing P.

A prime ideal P of R is said to satisfy the right strong second layer condition if,
whenever Q is a prime strictly contained in P and U and V are, respectively, a P-prime
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and a g-prime module, then there is no essential extension of U by V. If P satisfies the
right and the left strong second layer condition; it is said to satisfy the strong second
layer condition. A set 9 of primes satisfies this condition if each member of 0> does. For
a detailed discussion of these concepts, see [8].

Let P be a reflexive prime ideal of R, and let / be maximal among r-invertible ideals
in P. By (2.1), / is a maximal u-invertible ideal of R, and either I = P, or / = P)"=1M,
where P=M1,M2,..-,Mn form a cycle of reflexive ideals: (Af?)*+=M, for all i. It
follows easily from [11, Proposition 2.7] and the standard theory of HNP rings as
presented in [8, Appendix], for example, that clique(P) is {Mu...,Mn}, with links
Mf~*Mi+l (modn), and no other links.

3. Properties of reflexive primes

Let P be a prime ideal of a Noetherian ring R. An K-module U is said to be a
P-prime module if P is the annihilator of each nonzero submodule of U. In studying
injective modules a basic problem is to understand the possible non-split extensions of a
P-prime module U by a g-prime module V. In particular, one needs to know whether it
is possible to have a non-split extension of a torsion R/P-module by a torsion free R/Q-
module (or vice versa). In order to deal with problems such as these three conditions
are discussed in this section—the density condition, stability and the (strong) second
layer condition. In considering the first of these it is convenient to widen slightly the
definition given in [8, page 176]:

Definition. Let R and U be semiprime Noetherian rings, and let B be an
J?-l/-bimodule, torsion free and finitely generated on each side. Then B satisfies the
density condition if the following property, and its left-handed version, hold: Let E be an
essential right submodule of B. Then there exists a regular element d of R such that

The relevance of the density condition to questions of representation theory is made
plain in Corollary 3.5 below. For the proof of our result on the density condition, we
need an easy lemma.

Lemma 3.1. Let R be a prime Noetherian ring. Let A and B be right ideals of R, and
let I be a v-invertible ideal of R. Set T=I~1I. Then

(AInBI)T<={AnB)I.

Proof. Set S = ir1. Then (AI nBI)T=(AI nBiy^^iAir1 nB/ /~ 1 ) / =

Theorem 3.2 Let R be a prime Noetherian v-H order with enough v-invertible ideals.
Let I be a semiprime v-invertible ideal of R. Then I/I{2) satisfies the right and left density
conditions.
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Proof. We shall show that B: = I/I(2) satisfies the right density condition. Thus, let £
be a right ideal of R such that / ( 2 ) ££ and £//(2) is an essential right submodule of B;
we must find an element de<€(T), with d / s £ . Set T = I~1I.

Note that £ £ / and so El'1 £ / / " ' £ R . Suppose that

deErln<#(I)- (1)

Then dI^EI~1I = ET^E, and the proof is complete. It remains to prove (1).
By [13, Proposition 2.3.5] it is enough to show that (EI~l+I)/I is an essential right

ideal of R/I. Accordingly, let F be a right ideal of R with El'1 nF^I. By Lemma 3.1,
(with A = EI~1 and B = F),

But T n #(/) / <j>, by (2.3)(a), so the above shows that

ETnFI^l™, (2)

in view of (2.3)(c).
We claim that

(£T + /(2))//(2) »s essential in ///(2). (3)

For, let X be a right ideal of R with Ia%Xci. Since £//(2) is essential in ///(2),

I(2%EnX. (4)

Now there exists ce<#(I) n T by (2.3)(a), and

If ETnXs/ 1 2 1 , then it follows from the above and (2.3)(c) that £nX£ / < 2 ) , contradic-
ting (4). Hence, ETnX£Ii2\ and (3) is proved.

By (3) and (2), F/g;/(2), and so Firl^Iwrl n / ? £ / / ? / n « = /. But / / - 1 n # ( / ) # 0
by (2.3)(a), and so F g / . That is, (£ / " ' + /)// is essential in R//, as required.

The next lemma shows that r-invertible ideals satisfy a weak form of the Artin-Rees
property. The proof is adapted from the corresponding result for maximal orders, due to
M. Chamarie [12, Prop. IV.2.13].

Lemma 33. Let R be a prime Noetherian v-H order, with enough v-invertible ideals
and let I be a semiprime v-invertible ideal of R. Let E be a right ideal of R. Then there
exists a positive integer n and an ideal B of R such that B n #(/) # <f> and

(£n/n)Bc:£/.
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Proof. Note that, for each k^l, /<*> is u-invertible, by (2.3)(c), and (En/(*»)(/(t))"1 is
a right ideal of R. Thus, there exists a positive integer n such that

X (£n/»))(/(*))"1= Z (fn/^K/**')-1.
fcgi t=i

Now (£n/(' I+1))(/<'I+1))-1/( ' I+1) is contained in £j ;= 1(£n J(*))(/(*))-1J("+1)- Also> f o r

fcgn,

Therefore, YZ=i(E^Ilk))(Ilk))~1Iln+1)^EI, and so

Set B = (/(n+1))-1/(n+1). By (2.3)(a), Bn<if(/)*tf>, so the proof is complete.

Theorem 3.4. Let R be a prime Noetherian v-H order with enough v-invertible ideals.

(i) The set 9 of reflexive prime ideals of R is stable.
(ii) Each clique of reflexive prime ideals consists of the prime ideals minimal over a

maximal v-invertible ideal.
(Hi) 0> satisfies the strong second layer condition.

Proof. Once (iii) is proved, the remainder of the theorem will follow at once from
(2.5). Accordingly, let P e ^ , and note that P has height one, by (2.4). Thus the only way
that the right strong second layer condition could fail would be if there were a module
M that was an essential extension of a P-prime module U by a Q-prime module V with
Q the zero ideal. So if we can show that any finitely generated essential extension M of
a P-prime module U is annihilated by a power of the maximal u-invertible ideal /
contained in P then such a configuration is impossible and (iii) is proved. Since M is
finitely generated and R is prime, we need consider only the case where M is cyclic, say
M^R/C, for a right ideal C of R. Under this isomorphism, let U^E/C. Let / be as
above.

By Lemma 3.3 there exist n ^ l , and an ideal B of R, with B£P, such that
(£n / " )B££ / . In other words,

(M/"n l / )B£W=0.

Since all non-zero submodules of U have annihilator P, it follows that MI" n U = 0. But
U is essential in M, so this forces M/"=0, as required.

Our interest in the density condition is explained by the following corollary, whose
deduction from Theorem 3.2 is adapted from an argument of Jategaonkar [8,
Proposition 6.3.1].
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Corollary 3.5. Let P, Q be (not necessarily distinct) reflexive prime ideals of R, a prime
Noetherian v-H order with enough v-invertible ideals. Let U be a P-prime module that is
torsion as an R/P-module and let V be a Q-prime module that is torsion free as an R/Q-
module. Then there is no essential extension of U by V; (that is, there is no exact sequence
0->U-*M-*V-*0 with U an essential submodule of M).

Proof. Let / be the maximal D-invertible ideal contained in P. By (2.5) and (2.3)(b), /
is a (non-zero) semiprime, classically localisable ideal. Suppose that a module M exists
having the properties delineated above. Clearly, replacing U and V by submodules if
necessary, we may assume that M is finitely generated. As in the proof of Theorem 3.4,
Af/"=O for some positive integer n, since UI = 0 and U is essential in M.

Since AnnR(V) = Q,I"^Q, and hence / £ Q since Q is prime. Note that Q is minimal
over /, since Q has height one. Now M/2£MQP = 0. Let A be the right annihilator of
/(2>//2. Since J(2)//2 is finitely generated as a left module and, by (2.3)(c), is #(/)-torsion
on the right, An^(I)jt<f>. Now #(/)£#(P), so A is not contained in P. But M/(2U=0;
since the P-prime module U is essential in M, we deduce that M/<2) = 0.

Let we U and choose ce^(P) with uc = 0, so that u(cR + P) = O. Now (cR + P)/I is an
essential right ideal of the semiprime Noetherian ring R/I, and so contains a regular
element. Thus U is a #(/)-torsion module. Set U' = {ueM:uI=0}. Then V is a torsion
K//-module, by [8, Proposition 2.2.2(a)], since U is an essential submodule of V. Now
#(/)£#(6), so U'/U is a #(Q)-torsion submodule of the torsion-free R/Q-module
V^M/U. Hence U' = U. Let E = E(U), the R//(2)-injective hull of U, and write B = ///(2).
Applying HomR( — ,E) to the exact sequence 0-*B->R/I(2)->R/I-*0 yields

0-+AnnE(I)-+E^>HomR(B, £)->0.

As we have observed above, F: = AnnE(I) is #(/)-torsion. Now M s £ , and MnF=U,
so that V is an K//-torsion free submodule of HomR(B,E). This last module is just
HomR(B,F). If geHomR(B,F), then kerg is an essential right submodule of B, since
B/kergsimg£F is a torsion R//-module, and B is torsion-free. Since B satisfies the
density condition, there exists de^(I) with dB^kerg. That is, gd=0, so HomR(B,F) is
i?//-torsion. This contradiction shows that no such module M can exist.

4. Applications and examples

Our first result concerns the structure of certain indecomposable injective modules.
To state it, it is convenient to recall the following notation; see [8, §9.1] or [2, §5] for
details. Let Sf be a set of prime ideals of the Noetherian ring R which is (right) stable
and satisfies the (right) strong second layer condition, as defined in Section 3. Assume
also that if P, Q e & and P £ Q, then P = Q. Let E be an indecomposable injective right
/^-module with assassinator P, where P e ^ . The fundamental series {£n:n^0} of
submodules of E is constructed by setting Eo = 0, and defining EJEn_y to be the sum of
all the finitely generated submodules of £/£B_i whose annihilator is a prime ideal, for
«>0. Then £ = Un2o^n» a nd EJEn_t is a direct sum of Q-prime modules, for various

https://doi.org/10.1017/S0013091500004983 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004983


38 K. A. BROWN, A. HAGHANY AND T. H. LENAGAN

prime ideals Q. The primes Q occurring as annihilators of these summands of EJEn_l

are each linked by a chain Q-~»Fn_1-~»—~>Pi = P of exactly (n —!) second layer links to
P, [2, Lemma 5.4], [10].

When R is as in Section 3 and & is the set of reflexive primes of R, we can put more
flesh on the bones laid out above.

Theorem 4.1. Let R be a prime Noetherian v-H order with enough v-invertible ideals.
Let P be a reflexive prime ideal of R, with clique of P the cycle {P = M1,...,Mn} (in
correct cyclical order). Let E be an indecomposable injective right R-module with
assassinator P.

(i) ^n«JS(£,/£(_1) = Mt(modulon),/or all t^l.

(ii) If AnnE(P) is a torsion free R/P-module (that is, if E is a summand of ER(R/P), then
E,/E,_1 is the irreducible module over the simple Artinian quotient ring of R/M,{moduion),
for all t^l.

(Hi) If AnnE(P) is a torsion R/P-module, then EJEt_^ is a torsion R/Mt(mo6alon)-module,
for allt^l.

Proof. Let / be the maximal f-invertible ideal in P, so I = {\i=iMi by (2.5). By
(2.3)(c) and (2.5), / is classically localisable, the localised ring Rt being an HNP ring
with maximal invertible ideal J(RI) = IRl, and with {PRI,M2RI,...,MnRl} the unique
cycle of maximal ideals of Rj.

(ii) Suppose that AnnE(P) is 7?/P-torsion free. If E contained "<?(/)-torsion elements,
then so would its essential submodule AnnE(P), contradicting the hypothesis, since
#(/) £ ^(P). Hence E is <^(/)-torsion free, and so is easily seen to admit a structure as
an Rrmodule. In fact, as such it is the injective hull of the irreducible Rj/PRrmodu\e,
and the /?7-submodules E, constitute the socle series—again, this is routine to confirm.
The nature of the layers E,/E, _! can now be deduced from the well-known description
of injective indecomposables over an HNP ring with enough invertible ideals; see, for
example, [7, Theorem 22].

(i) This follows at once from (ii) and the fact that the annihilator of each layer is an
invariant of P, rather than simply of E [2, Corollary 5.9].

(iii) This follows from (i) and Corollary 3.5.

It would be interesting to know whether, in the setting of Theorem 4.1 (iii), the layers
£,/£,_! are uniform, or injective, as /?/M((modulo n)-modules. (Both are true when / is
polynomial, and the latter is true when / is invertible—see [2, §6].)

We now apply Theorem 4.1 to a question concerning the stability of certain torsion
theories. We continue to assume that R is a prime Noetherian ring. Let Q denote the
simple Artinian quotient ring of R, and put

S(R) = {qeQ: g/<=K,0#/<iK}.

Put E = Q@ ER(S(R)/R), and let T be the torsion theory cogenerated by E. Recall that a
torsion theory p is stable if the injective hull of a p-torsion module is p-torsion.
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Theorem 4.2. Let R be a prime Noetherian v-H order with enough v-invertible ideals,
and define x as above. Then x is stable.

Proof. Observe that £ is a direct sum of Q and copies of E(UP), where UP is a
uniform right ideal of R/P, and P ranges over the reflexive prime ideals of R. Let V be a
non-zero T-torsion R-module, so that there are no non-zero homomorphisms from V to
E; we must show that the same is true of E( V).

Suppose, then, that E(V) has a subfactor isomorphic to Up, a uniform right ideal of
the factor of R by the reflexive prime P. Thus, taking X to be an appropriate cyclic
submodule of an indecomposable summand of E(V), there exists a short exact sequence

0-> *"->*-• [/P->0 (1)

where X is cyclic and uniform, and V is an essential extension of V. By a routine
argument using a critical composition series of V, we may assume that V is a Q-prime
T-torsion module for some prime ideal Q.

Suppose first that

Now V £ Annx(Q). Suppose that this inclusion is strict. Thus, Q £ P. The height of P is
1 by (2.4), and so, in view of (2), Q = P. Replacing X by Annx(Q), (and noting that, still,
by our supposition, UP^0), (1) becomes a sequence of K/P-modules, so X cannot be
uniform since a finite direct sum of copies of UP contains a non-zero free R/P-mod\ile.

Suppose now that (2) holds, but V' = Annx(Q). Again replacing X by a submodule if
necessary, we may assume that AnnR(X) is maximal amongst annihilators of submodules
not contained in V. Then [8, Lemma 6.1.2] applies, and we deduce that either (a) P~~>Q,
or(b) Ann{X) = P^Q.

If (a) holds, then Q is a reflexive prime by Theorem 3.4. Since V is T-torsion, it must
be a torsion K/Q-module, so Theorem 4.1(iii) shows that X/V'^UP is i?/P-torsion. This
contradiction rules out (a).

In case (b), then (as for Q = P), (1) is a sequence of /?/P-modules, and a contradiction
follows in the same way as before.

We are thus left with the case where Q = 0. Here Proposition 4.3 below applies to
show that a sequence (1) cannot exist.

Hence if V is T-torsion, then so is £( V), and the theorem is proved.

Proposition 43. Let R be a prime Noetherian v-H order with enough v-invertible
ideals. Let P be a reflexive prime ideal of R and let I be the maximal v-invertible ideal
contained in P. Let

be an exact sequence of finitely generated R-modules, where (a) V is 0-prime, (b) U is a
uniform right ideal of R/P, and (c) HomR( V, E(R/I)) = 0. Then X is not a uniform module.
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Proof. Assume that X is uniform. Choose xeX\V. The exact sequence
0->xRn V-*xR^(xR+V/ F)->0 inherits all the above conditions and xR is uniform.
Thus, without loss of generality, assume that X = xR and aim to produce a contradic-
tion. Note the inclusions V^XI^VI^XI2.

Now HomR(V/XI2, E(R/I)) = 0, by (c). Thus, if X/XI2 is an essential extension of
V/XI2 then the density condition for /, as given by Theorem 3.2, implies that X/V is
i?//-torsion, a contradiction. Hence, there exists a submodule Y such that Y£V and
Yn V = XI2. Since YI^V this forces YI^XI2.

In order that multiplication by Z"1 makes sense, it is convenient to move into the
ring J?. Set L = {reR:xr=0}, E = {reR:xreV}, and F = {reR:xre Y+ V}. Thus L s £ ^
F, xE= V and xF= Y+ V. Now R/E^X/V = U is isomorphic to a uniform right ideal of
R/P and so is /^//-torsion free. Therefore

£ n #(/) = <£. (1)

However, R/F is a proper image of U and so is J?//-torsion; that is,

F n #(/)#<£. - (2)

The inclusions xFI^{Y+ V)I^XI2 + VI^VI=xEI imply that FI^EI + L. There-
fore, Fir1 cf;//-1 +LI'1 and so, more precisely, FII^Eir1+(LI1 nR). If
LI~lnR^L then choose a 6 ( L / " ' n R ) \ L Since al^LrH^L, we have x a / 0 while
xa/=0, contradicting hypothesis (a). Thus L/"1 nR = L and so FII~1^EII~1

However, FII'1 n<#(I)^<f> by (2), while £ n # ( / ) = 0, by (1), a contradiction.

Remarks 4.4. We sketch here another view of the preceding two results. Throughout,
assume that R is a prime Noetherian v-H order with enough u-invertible ideals.

(i) Let / be a maximal u-invertible ideal of R. For an K-module X, denote by -Cj(X)
the #(/)-torsion submodule of X. Arguments similar to those used to deduce Theorem
4.2 from Theorem 4.1 and Proposition 4.3 will also yield the conclusion that the torsion
theory defined by x, is stable. Moreover it is easy to check that

the intersection being over all the maximal u-invertible ideals of R. Since an intersection
of stable torsion theories is clearly stable, we retrieve the conclusion of Theorem 4.2.
(Other settings where localisation preserves essential extensions are discussed in [6].)

(ii) Let E be an injective K-module, say E=E(X). One can deduce from the preceding
results that T7(£) consists of all indecomposable summands of E which are not either (a)
.R-torsion free (i.e. isomorphic to the irreducible right ideal of Q(R)) or (b) isomorphic to
a summand of E(R/I). One can therefore conclude that

E(X) ®R R, = E(X ®RR,) =
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is the largest summand of E(X) consisting of modules of types (a) and (b). Thus, E/x(E)
is the direct sum of all summands of £ which are summands of Q(R), or of E(R/I), for /
u-invertible. For fully bounded maximal orders, these remarks are obtained as [4,
Corollaire 5.8].

(iii) A final consequence of the stability of T, due to Chamarie in the case of bounded
maximal orders, is also accessible in the present context. Let Mod R denote the category
of right i?-modules; then the quotient category Mod R/x has injective dimension at most
one. Theorem 4.2 and (ii) above can be used exactly as in the proof of [4, Theoreme 5.9]
to obtain this conclusion.

As already remarked, for the case of a bounded maximal order, Theorem 4.2 is a
result of M. Chamarie [4, Corollaire 5.5]. This improved on earlier work of R. Fossum
on orders satisfying a polynomial identity [5]; the commutative case is due to Beck [1].
(In all these cases, the Noetherian hypothesis can be weakened.) One. might first suspect
that the "correct" generalisation of Chamarie's result would give the stability of the
torsion theory p cogenerated by E(R) © E(Q/R)—but, as the following example shows, p
is not stable in general.

Example 4.5. Let U be the enveloping algebra of s/(2, C), let A be the minimal
primitive ideal of U contained in the augmentation ideal / of U, and set R = U/A and
M = I/A. Then R is a prime Noetherian maximal order [9, Corollary 2.10] having M as
its unique proper ideal. Let Q be the quotient division ring of R.

Claim. The torsion theory p cogenerated by Q © E(Q/R) is not stable.

By [14], R has Krull dimension 1. Let J be a maximal right ideal of R, J^M. By
[15, Theorem 2.6] J is projective. It follows that J is reflexive [13, 5.1.7]; in particular,
Q/R contains a submodule isomorphic to R/J. On the other hand, suppose T/R is a
right K/M-module contained in Q/R. Then TM2^M. But I2 = I, so M2 = M, and
therefore TMsM. Thus T^Ot(M), and O,(M) equals R since R is a maximal order;
otherwise put, T/R = 0. We conclude that the p-torsion modules are simply the direct
sums of copies of R/M. But R/M is not an injective K-module; indeed a non-split
extension of R/M is afforded by the dual of the Verma module with R/M as irreducible
image. Thus p is not stable.

Note that, in this example, T is just the Goldie torsion theory.

Since the ring of Example 4.5 fails to satisfy the second layer condition, one might
speculate that p is always stable for rings with the second layer condition. It seems very
unlikely that this should be true—indeed the Weyl algebras An(C) (for n^2) probably
afford counterexamples—but we are unable to confirm this.

Although Theorem 4.2 demonstrates that, in the bounded case, Chamarie's hypothesis
that R be a maximal order is stronger than necessary, (and indeed it is not hard to see
that t is stable when J? is a commutative Noetherian domain of Krull dimension 2), the
conclusion of Theorem 4.2 is not valid for all two-dimensional prime Noetherian PI
rings. This is shown by our final example.
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Example 4.6. Let k be a field, let T = k[X, Y], let / be the ideal of T with constant
term 0, and

Let F = M2(k(X, Y)), the quotient ring of R.

Claim. The torsion theory x cogenerated by F @ E(F/R) is not stable.

Indeed, set

- [ !
Then, as right modules, there is a non-split extension of R/Q by R/P, since PQ =
M2(I)^PnQ. But (R/Q)\R is r-torsion while (R/P)]R^(M2(T)/R)[R is t-torsion free.
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