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UNIQUE EXTREMALITY, LOCAL EXTREMALITY AND
EXTREMAL NON-DECREASABLE DILATATIONS

Guowu YAO

Given a quasi-symmetric self-homeomorphism h of the unit circle Sl, let Q(h) be
the set of all quasiconformal mappings with the boundary correspondence h. In this
paper, it is shown that there exists certain quasi-symmetric homeomorphism h, such
that Q(h) satisfies either of the conditions,

(1) Q{h) admits a quasiconformal mapping that is both uniquely locally-
extremal and uniquely extremal-non-decreasable instead of being uniquely
extremal;

(2) Q(h) contains infinitely many quasiconformal mappings each of which
has an extremal non-decreasable dilatation.

An infinitesimal version of this result is also obtained.

1. INTRODUCTION

Let A be the unit disk {z : \z\ < l} in the complex plane C. Given a quasisymmetric
homeomorphism h of the unit disk Sl onto itself, we denote by Q(h) the class of all
quasiconformal mappings from A onto itself with the boundary correspondence h. A
quasiconformal mapping f0 € Q(h) is said to be an extremal mapping for the boundary
correspondence h if it minimises the maximal dilatations of Q{h), that is,

K[f0] = K[h) := ini{K[f] : / e Q(h)},

where K[f] is the maximal dilatation of / . / is uniquely extremal if it is extremal and if
there are no other extremal mappings for its boundary values; the alternative is that /
is non-uniquely extremal.

The notion of non-decreasable was first introduced by Reich in [7] to investigate
the unique extremality of quasiconformal mappings between the unit disks with given
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boundary values. An element / in Q{h) has a non-descreasable dilatation (or / is called

non-decreasable), if the hypothesis that g is also in Q(h) together with the condition,

(1.1) \v(z)\ ^ |MC0 | almost everywhere in A,

imply that f = g, where /J. and v are the Beltrami coefficients of / and g, respectively.
Obviously, if / is uniquely extremal, then it has non-decreasable dilatation. But the
converse is not true. So the conception of quasiconformal mappings with non-decreasable
dilatations is a generalisation of uniquely extremal quasiconformal mappings.

In [8], Shen and Chen proved that, if Q{h) does not contain a conformal mapping,
then it must contain infinitely many elements with non-decreasable dilatations. So it is
more interesting to investigate extremal quasiconformal mappings with non-decreasable
dilatations; accordingly, such non-decreasable dilatations are called extremal ones. It is
still an open problem whether an extremal quasiconformal mapping with non-decreasable
dilatation always exists in Q(h).

Following [9], a quasiconformal mapping / of A is said to be locally extremal if for any
domain G C A the mapping / is extremal in G with respect to its boundary values. The
complex dilatation \i of / is then called locally extremal dilatation. Generally speaking,
both the uniqueness and the existence of locally extremal quasiconformal mappings in
Q(h) are not clear. An example due to Reich ([5], or see [11]) shows that local extremality
does not imply unique extremality.

Obviously, if / is uniquely extremal, then / is the quasiconformal mapping in Q(h)

that is both uniquely locally-extremal and uniquely extremal-non-decreasable. Con-
versely, one might ask

P R O B L E M 1. If / in Q(h) is the quasiconformal mapping that is both uniquely locally-
extremal and uniquely extremal-non-decreasable, is it then uniquely extremal?

R E M A R K 1. If / has an extremal-non-decreasable dilatation n(z) with the property
that \n(z)\ =constant almost everhwyere in A, then it is obviously uniquely extremal;
the converse is not true, as is a well-known result in [2]. There are a lot of examples (see
[8, Corollary 3.1]) to show that uniqueness of extremal non-decreasable dilatations does
not imply unique extremality.

On the other hand, it is natural to pose the following problem.

P R O B L E M 2. Does there exist h such that Q{h) contains infinitely many extremal qua-
siconformal mappings with non-decreasable dilatations?

Our main result Theorem 1 gives a negative answer to Problem 1 and a positive
one to Problem 2, respectively. Meanwhile, an infinitesimal version is obtained for the
tangent space of the universal Teichmiiller space.
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2. PRELIMINARIES

Let 2) be a domain in the complex plane C with at least two boundary points and
let M(5)) be the open unit ball of L°°(D). Every element /z e M ( S ) can be regarded as
an element in L°°(C) by putting fj, equal to zero in the outside of 5). Every \i € M(35)
induces a global quasiconformal self-mapping / of the plane which solves the Beltrami
equation [1],

(2.1) Mz) = n(z)fM(z),

and / is defined uniquely up to postcomposition by a complex affine map of the plane.
Conversely, any quasiconformal mapping / defined on 33 has a Beltrami coefficient
tiz) = Mz)/f.(z) in M(23).

Two Beltrami coefficients /z, u € M(S3) are equivalent if they induce quasiconformal
mappings / and g by (2.1) such that there is a conformal map c from /(33) to #(33) and
an isotopy through quasiconformal mappings ht, 0 ^ t ^ 1, from 2) to ID which extend
continuously to the boundary of 33 such that

1. ho(z) is identically equal to z on 2),

2. hi is identically to g~* o c o / , and

3. ht(p) = g'1 oco f(p) for any p € &D.

The equivalence relation partitions M(33) into equivalence classes and the space of
equivalence classes is by definition the Teichmiiller space T(33) of S3.

Given ^ € Af(33), we denote by [/z] the set of all elements v € M(33) equivalent to
H, and set

We say that fj. is extremal (in [/z]) if ||M||OO = &<>([/•*]), M ' s uniquely extremal if ||^||oo
> fco(M) f°r a n y other v € [//]; the alternative is that \i is non-uniquely extremal. We
say that /j. is non-decreasable if for any other v € [//], the set on which \v{z)\ > \fi(z)\

has positive measure. Obviously, \i is non-decreasable if it is uniquely extremal.
For any /x, define h* (/z) to be the infimum over all compact subsets F contained in

33 of the essential supremum norm of the Beltrami coefficient /x(z) as z varies over 1)\F.

Define h([n]) to be the infimum of h*(n) taken over all representatives fi of the class [n].

It is obvious that h([n]) ^ ko([n]). Following [3], we call a point [n] in T(S) a Strebel
point if h([fi\) < ko{[(i\).

Let A(1)) be the space of integrable holomorphic quadratic differentials ip on S
and let J 4 I ( D ) be the unit sphere of A(1)). By Strebel's frame mapping theorem, every
Strebel point [/z] is represented by the unique Beltrami differential of the form k\tp\/<p,

where k = fco([/z]) 6 (0> 1) a n ^ V is a unit vector in Ai(^D).

Two elements /z and v in L°°(33) are infinitesimally equivalent, which is denoted

by n « i/, if / / n<j>dxdy = u<j>dxdy for all 4> G A(A). Denote by N(D) the set
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of all the elements in L°°(2)) which are infinitesimally equivalent to zero. Then

= L°°CD)/N(1)) is the tangent space of the space T(2>) at the basepoint.

Given pi € £°°(2)), we denote by [n]B the set of all elements v € L°°(2») infinitesi-

mally equivalent to fi, and set

We say that n is infinitesimally extremal (in [(J]B) if IIMIIOO = ||MI|> uniquely in-
finitesimally extremal if Halloo > UMII f°r a nY other v 6 [(J]B- We say that \i is
infinitesimally non-decreasable if for any other v € [/X]B. the set on which \v{z)\

> U ( z ) | has positive measure. Then n is non-decreasable if it is uniquely extremal.
In a parallel manner we can define the boundary dilatation for the infinitesimal

Teichmiiller class [/x]s. The boundary dilatation 6([/i]s) is the infimum over all elements
in the equivalence class [H]B of the quantity b*(v). Here b*{u) is the infimum over all
compact subsets F contained in 33 of the essential supremum of the Beltrami coefficient
v as z varies over 2) — F.

An infinitesimally equivalent class [fx]B is called an infinitesimal Strebel point if
\\/j,\\ > 6([^]s). It follows from the infinitesimal frame mapping theorem (see [4, Theorem
2.4]) that if [H)B is an infinitesimal Strebel point, then there exists a unique vector <p in
Ai(T)) such that \i and | | M I I M / V

 a r e infinitesimally equivalent.

3. S O M E PREPARATIONS

FOI fj.eL°°{A), <j>e A(A), let

\u[<t>] = Re If fi(z)<f>(z)dxdy.

As is well known, a Beltrami coefficient fi is extremal if and only if it has a so-called
Hamilton sequence, namely, a sequence {<j>n € A(A) : \\<f>n\\ = 1, n € N}, such that

(3.1) lim A ^ n ] = lim Re jf n<j>n{z)dxdy =
n— ôo n—Koo J J A

Given \i S M(A), let / = /** be the uniquely determined quasiconformal mapping

of A onto itself with Beltrami coefficients /i and normalised to fix 1, - 1 and i.

Suppose that n and v are two equivalent Beltrami coefficients in T"(A). Let jl and

v be the Beltrami coefficients of the quasiconformal mappings f~l and g~l, respectively,

where / = /** and g = f . Let 3 C A be a Jordan domain with 3 C A.

LEMMA 1. Let n and v be two equivalent Beltrami coefficients in T(A). In ad-

dition, suppose fi(z) = v{z) for almost every z € A\3- Tien, f(z) = f{z) for all z in

A\3 and hence Jl(w) = u(w) for almost all w in /(A\3).
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P R O O F : For the sake of convenience, let / = f and g = /" . Let ngof-i(w) denote
the Beltrami coefficient of g o f~x. By a simple computation, we have

where r = fz/fz.
Thus, ngof-i(w) = 0 for almost all w G f(A\Z) and hence $ = </o}~l is conformal

on A \ J . Since * | s i = j o /"Ms" = *d, we conclude that <£ = id in / ( A \ 3 ) . Thus, p |A^5

= / | A \ 5 - By the continuity of quasiconformal mappings, it follows that <?|A\3 = / | A \ 3 - In
addition, it is evident that Ji(w) = v(w) for almost all w in / ( A \ 3 ) . D

The following Reich's Construction Theorem is very useful. It was used by the
author [10] to show that there exists h such that all extremal quasiconformal mappings
in Q{h) are not of Teichmiiller type.

C O N S T R U C T I O N T H E O R E M . ([6]) Let A be a compact subset of A containing

at Jeast two points and such that A\A is doubly connected. There exists a function

a G £/°°(A) and a sequence <pn € A(A) (n = 1,2,.. .) satisfying the following conditions

(3-2) | W | !
l l , for almost all z € A\A,

(3-3) li
n—foo

(3.4) lim |y>n(z)| = oo almost everywhere in A\A.

and as n -> oo,

(3.5) <Pn{z) -* 0 uniformly on A.

R E M A R K 2. Equation (3.5) is implied in the proof of Reich's Construction Theorem

[6]-

From Reich's Construction Theorem, we can get

LEMMA 2 . Let J C A be a Jordan domain with A = J C A. Let a(z) and

the sequence <pn G A(A) be constructed by Reich's Construction Theorem and let fi(z)

= ka(z) where k < 1 is a positive constant. Set

* > • { ;
I fi(z), z G A\A,

[j8(z), z e A,

where 0{z) is in M{J) with \\P\\oo < k. Then
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(1) v(z) is extremal in [i/] and for any x(z) extremal in [«/], x{z) — u(z) for

almost all z in A\A;

(2) u{z) is extremal in [v]B and for any \{z) extremal in [V)B, xiz) — y{z) for

almost all z in A\A.

PROOF: The proof of the first part of this lemma is the same as that of [10, Lemma

4] and the proof of the second part is included in that of [10, Theorem 3]. D

Recall that a Beltrami coefficient fj. in Q is said to be locally extremal if for any

domain G C 3) it is extremal in its class in T(G); in other words,

, Re ff ^{z)dxdy .
\\H\\G := esssup \ft\ = sup^ — fp- : <j> € A(G) \.

fj\^\dxdy
Obviously, extremality in the whole domain is a prerequisite for a Beltrami coefficient to

be locally extremal.

LEMMA 3 . Using the notations of Lemma 2, then v is locally extremal in A if and

only if 0 is locally extremal in J.

PROOF: The necessary part is a fortiori. Now let /? is locally extremal in J. For

given domain G C A with G\ J ^ 0, by

k / / \<Pn(z)\dxdy -Re fj,{z)<pn(z)dxdy ^ \\(pn\\ - Xa[tpn],
J JG\J J JG\J

and Reich' Construction Theorem, we have

: ff \<pn{z)\dxdy - Re ff v{z)<pn(z)dxdyj

^ lim [k / / \<pn{z)\dxdy- Re / / n(z)(pn(z)dxdy )
n->°°\ JJG\J JJG\J J

+ lim (A; / / \<pn(z)\dxdy - Re / / 0{z)<pn(z)dxdy ) = 0.
n-+ 0 O\ JJj JJj J

Moreover, by equation (3.4) and Fatou's lemma,

lim / / \ipn{z)\dxdy ^ lim / / \tpn(z)\dxdy = oo,
"-•<» J Jc n-*°° J JG\J

where the fact that {G\J)° # 0 is needed. Thus,

Re v{z)<pn{z)dxdy
k ^f y 0, n -> oo,

which indicates that u{z) is extremal in its class in T(G). Thus, v is locally extremal in

A. D
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4. M A I N T H E O R E M

By definition, the following lemma is evident.

LEMMA 4 . p is an extremal-non-decreasable Beltrami coefficient in [/J] if and only

if for any other r\ extremal in \jt], the set on which \T)(Z)\ > \n(z)\ has positive measure.

Let Ar-{z: \z\ < r) for r € (0,1). Choose s = \, t = | and A = A~t.

LEMMA 5 . Let x(z) be defined as follows,

where k < 1 is a positive constant. Then [x] as a point of the Teichmiiller space T(At)

of At contains infinitely many non-decreasable Beltrami coefficients 77 with ||?7||oo < k.

PROOF: Let s < r < t. Note that x(^) = 0 in 4 \A 5 . When restricted to Ar , [x]
as a point of T(Ar) has the property /i([x]) = 0 and hence is a Strebel point in T(Ar).
Thus, by Strebel's frame mapping theorem, there exist kr € (0,1) and a unit vector
ipr £ Ai(Ar) such that kT\ipr\/ipT and x are equivalent in T(Ar) . In addition, it is clear
that kr < k~. Put

{0, z£A-AT,

<Pr(z)

Then Xr and x a r e equivalent in T(A«). Applying Lemma 1, it is easy to see that Xn
and Xr2 restricted to Ar2 are equivalent in r ( A r , ) whenever s < r t < r2 < t. Thus,
kT is a strictly decreasing function as r £ (s,t). Furthermore, we claim that Xr is non-
decreasable in [x]- Suppose to the contrary. Then there would exist 77 in [x] such that
\T}(Z)\ ^ |xr(z) | for almost all 2 € At . Obviously, rj(z) = Xr(z) = 0 on A — A r . Applying
Lemma 1 again, we see that 77 and Xr restricted to A r are equivalent in T ( A r ) . This
happens if and only if 77 = Xn which implies our claim. Thus, this lemma follows. u

THEOREM 1 . Let A = At and let a(z) be constructed by Reich's Construction

Theorem. Put /J(Z) = ka(z), where k £ (0,1) is a constant. Set

where k € [0, k] is a constant. Then,

(1) when k > 0, [v] contains infinitely many extremal non-decreasable Beltrami

coefficients;
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(2) ifk = 0, then u is the Beltrami coefficient in [v] that is both uniquely
locally-extremal (obviously, non-uniquely extremal) and uniquely extremal-
non-decreasable.

And hence, if we set h = / " , then either Q{h) contains infinitely many extremal qua-
siconformal mappings with non-decreasable dilatations (when k > 0) or admits an ex-
tremal quasiconformal mapping (but not uniquely extremal) that is both uniquely locally-
extremal and uniquely extremal-non-decreasable (when k = 0).

PROOF: First, let 0 < k ^ k. By Lemma 2, for any 77 extremal in [u], 77(2) = u(z)

almost everywhere on A \ A Then by Lemma 1, r)(z) and v(z) restricted to At are
equivalent in T(At). Therefore, by Lemma 4, if 77 restricted to At is non-decreasable in
its equivalence class [x] (defined in Lemma 5), then it is non-decreasable in [u\ in T(A).

For s < r <t, put

/x(z), z e

vJz) = { 0. z eA- Ar,

k <Pr(z)

where kr and <pr are from Lemma 5. Then vr is an extremal non-decreasable dilatation
in \v] by Lemma 5. Thus, (1) of Theorem 1 is proved.

Now, let k = 0. It follows directly from Lemmas 2, 4 that v is the element in \v\ that
is uniquely extremal-non-decreasable. Since /? = 0 on A, as an immediate consequence
of Lemma 3, v is locally-extremal in [v]. On the other hand, the uniqueness of local
extremal follows clearly from Lemma 2 and the definition of local extremality. D

REMARK 3. The example of local extremal (of course, instead of being uniquely ex-
tremal) given by Reich [5] has a constant modulus, whereas our example does not. The
modulus of certain extremal Beltrami coefficients was discussed in a recent paper [12] of
the author (joint with Yi Qi).

5. INFINITESIMAL VERSION

We have the infinitesimal version of Lemma 4 as follows.

LEMMA 6 . /J is an infinitesimally extremal-non-decreasable Beltrami coefficient

in [[J,]B if and only if for any other 77 extremal in [(J]B, the set on which \TJ(Z)\ > |/i(z)|
has positive measure.

LEMMA 7 . Let x(z) be defined as in Lemma 5. Then [X]B as a point of the space

B(At) of At contains infinitely many non-decreasable extremals 77 with \\TJ\\OO < k.

The proof of Lemma 7 is a suitable modification from that of Lemma 5 except that
the infinitesimal frame mapping criterion is used here.
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THEOREM 2 . Let v be the same as in Theorem 1. Then either [V]B contains

infinitely many inGnitesimadly non-decreasable extremals when 0 < k ^ k, or v is the

element in \U\B that is both uniquely locally-extremal (obviously, non-uniquely inBnites-

imally extremal) and uniquely in&nitesimally extremal-non-decreasable if k = 0.

PROOF: By Lemmas 2, 6, 7, the proof almost takes word by word from that of

Theorem 1 and so is skipped. D

At last, we end this paper with an open problem.

P R O B L E M 3. Does there exist h such tha t each extremal quasiconformal mapping (of

course, non-uniquely extremal) in Q(h) has a non-decreasable dilatation?

If the answer is positive, then each extremal quasiconformal mapping in such Q(h) is also

locally extremal.
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