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TWO-BLOCK CONFIGURATION FORMULAE FOR
BTD'S WITH PARAMETERS (V,B,R,3,A)

M.A. FRANCEL

In this paper, we count two-block configurations in a general setting. In particular,
no restriction is put on the pair repetition factor (that is, the parameter A) of the
block designs being considered. Besides giving formulae for the counts of the two-
block BTD(V, B, R, 3, A) configuration classes, a basis for the formulae is given
and shown to have size four. Details of the special cases where A equals two
and three are also presented, along with 2-block BIBD(v, b, r, 3, A) configuration
results.

1. INTRODUCTION

In recent years, researchers have shown an interest in n-block configuration formu-
lae related to a variety of block designs [2, 3, 4, 5, 7]. For all known formulae, both K,
the design block size, and A, the design pair repetition factor, are restricted to single
values. The purpose of this paper is to demonstrate that limiting both the block size
and the pair repetition factor is unnecessary. To do this, the paper develops reasonable
two-block configuration formulae in a more general setting. In particular, the restric-
tion on the pair repetition factor is lifted. In the work that follows, the block size is
restricted to three, but the pair repitition factor can be any acceptable positive value.
In Section 2, we present the two-block configuration classes and the formulae in this
general setting. In Section 3, we give a basis for the set of formulae. In Section 4, we
discuss the special cases where A is two or three. We close by showing how the BTD
configuration formulae can be used to generate related BIBD configuration formulae.

A balanced ternary design, BTD, with parameters (V, B,R,K, A) is a collection
of B blocks on V elements such that each element occurs R times in the design;
each block contains K elements, where an element may occur 0 ,1 , or 2 times in a
block (that is, a block is a collection of elements rather than a set of elements); and
each pair of distinct elements occurs A times in the design. BTD's are regular in the
sense that every design element occurs singly in p\ blocks and doubly in pi blocks
where R = pi + 2p2 [1]. Because of this regularity, BTD parameters are given here as
(V\B;R,pi,p2;K;A).
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An n-block BTD configuration is a collection of any n distinct blocks in the BTD.
The set of all n-block configurations in a BTD can be partitioned, in a natural way,
into configuration classes. Each class can be represented by a template that reflects
the underlying relationships between elements and blocks in the configurations of that
class. For example, the 2-block configurations of the BTD{3; 4; 4 ,2 ,1 ; 3; 3) with blocks
{112, 223, 331, 123} partition into two configuration classes:

{{112, 223}, {223,331}, {331,112}} and

{{123, 112}, {123, 223}, {123, 331}}.

These are represented by the templabes aab, bbc and abc, a a b respectively.

Given an n-configuration class in a BTD(V; B; R, p1} p2; K; A), an n-configuration
formula for the class is a formula that counts the number of configurations in the class.
A set of m-configurations, m ^ n , is said to be a generating set for the n-configuration
formulae, if every n-configuration formulae can be expressed as a linear combination
of the counts of the configurations in the generating set plus a rational expression in
the design parameters. We are assuming configuration coefficients are also rational
expressions in the design parametrs. If the generating set is minimal, it is called a basis.

The simplest example of configuration formulae are the 1-configuration formulae:
| a a b | = Vp2, and |abc | — B — Vp?. Note each formula is expressed solely as a rational
expression in the design parameters. When this is the case, we say the configuration
is constant. Configurations that are not constant are said to be variable. Variable
n-configuration formulae first appear when n = 2.

As illustrated above, throughout the paper we shall use bolded triples to denote
BTD blocks. Unless otherwise noted distinct letters will be used to indicate distinct
elements. For example, the block pair aab, bbc contains three distinct elements; a
appearing twice in the first block, b appearing once in block one and twice in block
two, and c appearing once in block two.

2. TWO-BLOCK CONFIGURATIONS

There are fourteen distinct classes of two-block BTD configurations for designs
with block size three. The fourteen classes are represented by the following tem-
plates: {abc, abc}, {abc, abd}, {abc, ade}, {abc, def}, {aab, aab}, {aab, aac},
{aab, bba}, {aab, bbc}, {aab, ccb}, {aab, ccd}, {aab, abc}, {aab, acd},
{aab, bed}, {aab, cde}. Table 2.1 lists these two-block configuration templates along
with the formulae that count the number of configurations in the classes and the for-
mulae dependencies. In the table, each class is labelled C< for some i. Throughout the
paper, we shall use this label to refer to the configuration class. The symbol c< will be
used to denote |C» j , the number of 2-configurations of type Ci in the BTD.
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In this section, we shall show that B = {{abc, abc} , {aab, a a b } , {aab, b b a } ,
{aab, ccb}} = {Ci,Cs,Cr, Cg} is a generating set for the 2-configuration
BTD(V; B; R, p\, p2\ 3; A) formulae. In Section 3, we shall prove that B is a basis.

Below we generate a system of ten linear equations involving the c* 's that will give
us the desired formulae.

There are Vp2 blocks of type a a b in a BTD(V;B;R,pi,p2;3; A). If we match
each block a a b with every other block where a is double, we get each of the {aab, aab}
and {aab, aac} configurations twice. Thus,

(1) c5 + ce = Vp2{p2 - l)/2.

If we match each block aab with everh block bba;, x will be a or c, and we get each
{aab, bba} twice, and each {aab, bbc} once. Thus,

(2) 2c7 + c8 = Vp\.

If we match each block aab with every block ccx where c is neither a nor b , we get
each {aab, ccb} and {aab, ccd} twice, and each {aab, bbc} once. Thus,

(3) c8 + 2c9 + 2ci0 = Vp2(V - 2)p2.

We next look at counts that involve one block of form xyz and one of form wwt.
Since there are Vp2 blocks of form wwt, there are B — Vp2 blocks of form xyz. If we
match each block abc with each of the blocks where a, b , or c is double, we get each
{abc, aab} and {abc, aad} once. Thus,

(4) en + c12 = (B - Vp2)3p2.

If we match each block abc with each of the blocks that contains a double element
different from a, b , or c, we get each {abc, dda} and {abc dde} once. Thus,

(5) c13 + cu = (B-Vp2)(V-3)p2.

If we match each block aab with each of the other blocks that contain a pair ab, we
get each {aab, aab} and {aab, abb} four times and each {aab, abc} once. Thus,

(6) en + 4(c5 + a,) = Vp2(A - 2).

The last match we make with the blocks of form aab are with those blocks that contain
b singly. The remaining two elements in the second block can be aa, cc, ac, or cd.
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The blocks where the pair is aa or cc each appear twice. The ones where the pair is
ac or cd each appear once. Thus,

(7) 2c5 + 2cg + c u + C13 = Vp2(pi - 1).

Lastly we match two blocks each with form abc . We begin by matching the block
abc with all blocks that contain a pair of elements from abc . The generated list will
include each abc, abc six times, and each abc, abd and abc, abb twice. Thus,

(8) 2c1i + 6ci + 2c2 = ( S - V p 2 ) 3 ( A - l ) .

Next match each block abc with all blocks that contain a singly. The remaining two
elements in the second block can be bb, be, bd, de, or dd. The blocks that contain
bb or dd will each appear once in the list. The block pairs abc, ade and abc, abd
will each apear four times, and the block pair abc, abc six times. Thus,

(9) c u + 6ci + 4c2 + 2c3 + c13 = [B - Vp2)3(pi - 1).

Lastly, to count abc, cde configurations; we match each abc block with all other
blocks that contain no duplicated element. This gives us

(10) a + c2 + c3 + c4 = (5 - VP2)(B - Vp2 -

The above set of ten linear equations can be solved to give the formulae:

c2 = -3ci + 4c5 + 4c7 - 5Vp2A/2 + 7Vp2/2 + 35 A/2 - 35/2,

c3 = 3ci - 7c5 - 8c7 + c9 + 5Vp2A - 5Vp2 - 35A + 35/2 + 35pi/2 -

c4 = -c i + 3c5 + 4c7 - c9 - 5Vp2A/2 + 2Vp2 + 35A/2 - 5/2 + 2V>i/92

- Wpi/2 + B2/2 - BVp2 + V2p\,

c6 = -c5 + Vpl/2 - Vp2/2,

c8 = -2c7 + Vp\,

c10 = c7 - 3Vp!/2 + V2p\/2,

en = -4c5 - 4c7 + Vp2A - 2Vp2,

c12 = 4c5 + 4c7 - Vp2A + 2Vp2 + 3p25 - 3Vpj,

C13 = 2c5 + 4c7 - 2c9 - Vp2A + Vp2 + VPlp2,

c1 4 = - 2 c 5 - 4c7 + 2cg + Vp2A - Vp2 - Vp\p2 + BVp2 - Wp2 - V2p\ + Zp\.

We note these formulae have as independent variables ci, C5, c7, and C9. Thus
{Ci, C5, C7, C9} is a generating set for the set of 2-block BTD(V; B;R,pup2;3\ A)
configuration formulae.
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Configuration
Classes

Ci = {abc, abc}
C2 = {abc,abd}

C3 = {abc,ade}

C4 = {abc, def}

C5 = {aab,aab}
C6 — {aab,aac}
C7 = {aab, bba}
C8 = {aab,bbc}
Cg = {aab, ccb}
Cio = {aab, ccd}
Cn = {aab, abc}
C\2 = {aab, acd}

Ci3 = {aab bed}

CH = {aab, cde}

Configuration Count

Cl

- 3 d + 4c5 + 4c7 - 5V/92A/2
+7Vp2/2 + 3BA/2 - 3B/2
3ci - 7c5 - 8c7 + eg + 5VP2A - 5Vp2
-3BA + 3B/2 + 3Bpi/2 - 2^/32
-ci + 3c5 + 4c7 - eg - 5V>2A/2
+2Vp2 + 35A/2 - S/2 + 2Vp1p2

-3Bpi/2 + B2/2 - BVp2 + V2(4

c5

-c 5 + Vp2
2/2 - Vp2/2

c7

-2c7 + Vp\

C9

c7 - Wpl/2 + V2pl/2
-4c5 - 4c7 + VpzA - 2Vp2

4c5 + 4c7 - Vp2A + 2Vp2 + 3p2B
-Wp\

2c5 + 4c7 - 2cg - Vp2A + V>2

+VP1P2

- 2 c 5 - 4c7 + 2cg + Vp2A - Vp2

-VplP2 + BVp2 - 3Bp2 - V2p2
2 + 3p2

2

Count
Dependencies

Cl

Cl,C5,C7

Ci,C5,C7,C9

Cl,C5,C7,C9

C5

C5

c7

C7

C9

C7,Cg

C5,C7

C5,C7

C5iC7,Cg

C5,C7,C9

Table 2.1. Two-block BTD{V;B;R,px,p2\Z;A) Configurations

3 . A BASIS FOR THE 2-BLOCK CONFIGURATION FORMULAE

Each of the formuale in Table 2.1 is written in terms of the design parameters
and counts of the configurations in the set {{abc, abc}, {aab,aab}, {aab, abb},
{abb, ccb}} = {Cu C5, C7, Cg). To show that B = {d, C5, C7, Cg} is a basis, we
must show that the formulae for the configurations in B are independent of the design
parameters and each other. In each of the following examples, three of c\, c5, c7, and
c9 are equal with the fourth being different.

EXAMPLE 1. [6] Let Dn and Dr2 contain the blocks:

112, 113, 114, 115, 116, 117, 221, 223, 224, 225, 226, 227,

331, 332, 334, 335, 336, 337, 441, 442, 443, 445, 446, 447,

551, 552, 553, 554, 556, 557, 661, 662, 663, 664, 665, 667,

771, 772, 773, 774, 775, 776.
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Besides the ahready mentioned blocks, assume Du also contains the blocks:

137, 124, 235, 346, 457, 156, 267,

137, 124, 235, 346, 457, 156, 267.

Besides the ahready mentioned blocks, assume D\2 also contains the blocks:

137, 124, 235, 346, 457, 156, 267,

123, 145, 167, 246, 257, 347, 356.

£>n and Dr2 are both BTD's with parameters (7;56; 24,12,6;3;6). In Dn, cx = 7,
c5 — 0, c7 = 21, and c9 = 105. In £>i2, c\ = 0, C5 = 0, c7 = 21, and c9 = 105. Thus,
c\ is independent of the design parameters and C5, c7, and c9.

EXAMPLE 2. [4] Let £>2i contain the blocks

112, 114, 116, 133, 159, 159, 177, 188, 223, 224, 225, 267, 267, 288, 299,

335, 336, 348, 348, 377, 399, 445, 447, 449, 466, 556, 557, 558, 668, 669,

778, 799, 889.

Let £>22 contain the blocks

112, 113, 114, 155, 166, 177, 188, 199, 225, 226, 227, 233, 244, 288, 299,

338, 339, 344, 355, 366, 377, 445, 466, 478, 478, 499, 599, 568, 568, 577,

679, 679, 889.

D2i and D22 are both BTD's with parameters (9;33; 11,5,3;3;2). In Dn , cx = 3,
c5 = 0, c7 = 0, and c9 = 27. In D12, ci = 3, c5 = 0, c7 = 0, and c9 = 39. Thus, c9

is independent of the design parameters and c\, c5 and c7.

EXAMPLE 3. Let £>3i contain the blocks

112, 223, 331, 448, 889, 994, 556, 667, 775,

158, 346, 279, 147, 268, 359, 169, 245, 378,

158, 346, 279, 147, 268, 359, 169, 245, 378,

221, 332, 113, 884, 998, 449, 665, 776, 557,

259, 346, 178, 247, 169, 358, 268, 145, 379,

259, 346, 178, 247, 169, 358, 268, 145, 379.
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Let D32 contain the blocks

112, 223, 331, 448, 889, 994, 556, 667, 775,

259, 346, 178, 247, 169, 358, 268, 145, 379,

259, 346, 178, 247, 169, 358, 268, 145, 379,

225, 559, 992, 334, 446, 663, 117, 778, 881,

237, 458, 169, 124, 567, 389, 268, 479, 135,

237, 458, 169, 124, 567, 389, 268, 479, 135.

D31 and D32 are both BTD's with parameters (9; 54; 18,14,2;3;4). In D31, d = 18,
c5 = 0, c7 = 9, and c9 = 9. In D32, cx = 18, c5 = 0, c7 = 0, and c9 = 9. Thus, c7 is
independent of the design parameters and c1: c5 and c9.

Using the above three examples, it is straighforward to show that c5 must be
independent of the design parameters and cu c7, and c9. Thus {Cu C5, C7, C9} is a
basis for the desired formulae.

4. A PAIR REPETITION FACTOR OF TWO OR THREE

Configuration
Class

Ci = {abc, abc}
C2 = {abc, abd}
C3 = {abc, ade}

C4 = {abc, def}

C5 = {aab,aab}
C6 = {aab, aac}
C7 = {aab, bba}
C8 = {aab, bbc}
C9 = {aab, ccb}
Cio = {aab, ccd}
Cu = {aab, abc}
C\i ~ {aab, acd}
C\z = {aab bed}
CX\ = {aab, cde}

Number of Configurations
when A = 3

m

3(V(V-l) /2-Vp2)-3m
VPl(Pl-l)/2-3V(V-l)
-Vp2(pi - 7) + 3m + n
V 2 ( A - P2)

2/18 + ZV(V - l)/2 - m
-n - 23V/32/6 + ^ (3^2 + l)/3
-Vpl/2
none
Vp2(p2 - l)/2
none
Vp2

2

n

V{V - 3)P1/2 - n

Vp2

Vp2{pi - (h - 1)
Vp2{pl - 2) - 2n
Vp2{V{Pl - p2)/3 - 2Pl + P2 + 2) + 2n

Number of Configurations
when A = 2

m

V(pi - ft)/2 - 3m
[ ^ ( P I - P 2 ) ( P I - 3 )

+6m - n] /2
V(Pl - p2)
[^(Pi-P2)-9P1 + 15]/18
-n + m/2
none
VP2(P2 - l)/2
none
Vpl
n

V(V~3)pl/2-n
none
VfhiPi - fh)
{VP2{pl-l)-m)/2
Vp2(p1-p2)(V-3)/Z-m

Table 3.1. Two-block BTD Configurations
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When A is small, namely has value two or three, it affects the configuration types
that can occur (that is, the classes that are non-empty). When A is two, no configu-
rations of type C$,CT, nor C\\ can exist. When A is three, no configurations of type
C 5 , nor CV can exist. In both cases, the size of the basis is reduced to two.

In these special cases, the formulae can be simplified by replacing all occurrences
of c5 and cj (and e n in the case A = 2) with zero, and by replacing each occurrence
of A with its known value. Table 3.1, shown above, reflects these actions.

Note in the two special cases where A, the pair repetition factor of the designs, is
limited to two or three, the configuration classes Ce, C% and C12 are constants. Recall
in the general setting, where A can be any positive integer, all configuration types are
variable.

5. W H E N p2 is ZERO

A BIBD(V,B,R,3,A) can be thought of as a BTD{V; B; R, Pl,0;3; A). Thus,
all formulae for ra-block BIBD(V,B,R,3,A) configuration counts can be derived from
the corresponding formulae for n-block BTD(V; B; R, p\, 0; 3; A) configuration counts.
One simply needs to substitute zero for pi and ignore those configurations that contain
a block with a repeated element. Applying these actions to the set of formulae given in
Section 2, we get the following results:

There are four distinct classes of two-block BIBD(v, 6, r, 3, A) configurations. They
are {abc, abd}, {abc, abd}, {abc, ade}, {abc, def}.

The following formulae represents the counts for these configurations:

c2 = -3c! + 36A/2 - 36/2,

c3 = 3ci - 36A + 36/2 + 36r/2,

c4 = -c i + 36A/2 - 6/2 - 36r/2 + 62/2.

All of the above configurations formulae are variable, with the set {C\} acting as
a basis. But if we further restrict the BIBD to designs with parameters {v,b, r, 3,1),
then ci = 0 and the four formulae reduce to the two formulae, and all counts become
constant. This latter result was first presented by Grannell, Griggs and Mendelsohn in
the original paper on configuration counts [5].
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