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ON THE HAHN-BANACH EXTENSION PROPERTY

BY
TING-ON TO(*)

1. Introduction. In this paper, we consider real linear spaces. By (V: | [|) we
mean a normed (real) linear space ¥ with norm | |. By the statement ““ ¥ has the
(Y, X) norm preserving (Hahn-Banach) extension property” we mean the follow-
ing: Y is a subspace of the normed linear space X, ¥V is a normed linear space, and
any bounded linear function f: Y—V has a linear extension F: X—V such that
|Fl|=]f]l. By the statement “¥ has the unrestricted norm preserving (Hahn-
Banach) extension property” we mean that V has the (Y, X) norm preserving
extension property for all ¥ and X with ¥ < X. By (V: <) we mean a partial
ordered linear space (OLS) with the vector ordering < which is not necessarily
antisymmetric. By the statement “V has the (Y, X) dominated (Hahn-Banach)
extension property” we mean the following: (¥: <) is an OLS, Y is a subspace of
the linear space X, and for any sublinear (i.e., subadditive and positively homo-
geneous) function p: X— V, any linear function f: Y— ¥V such that f(y) <p(p) for
all y € Y has a linear extension F: X— V such that F(x) <p(x) for all x € X. By the
statement ‘¥ has the unrestricted dominated (Hahn-Banach) extension property”
we mean that V" has the (Y, X) dominated-extension property for all ¥ and X
with ¥ < X.

The classical Hahn-Banach theorem asserts that the real number field R has the
unrestricted norm preserving extension property and also the unrestricted domin-
ated extension property. In [1], G. Elliott and I. Halperin proved that for all
finite-dimensional normed linear spaces ¥V there is a single pair (Y,, X,) such that
when ¥ has the (Y,, X,) norm preserving extension property then ¥ must have the
unrestricted norm preserving extension property. This result is stated precisely as
follows:

THEOREM 1. Let Xy= C(3), the normed linear space with sup norm of all continuous
Sfunctionals on the discrete topological space of three elements, and let Y, be a sub-
space of X, generated by (0, 1, 1) and (1, 0, 1).

If a finite-dimensional normed linear space V has the (Y,, X,) norm preserving
extension property then V has the unrestricted norm preserving extension property.

The question arises: Is there a corresponding result to the above theorem for
dominated extensions in ordered linear spaces? The answer is “yes”. We shall
show in the main theorem (§3) that there exists a class 2 of OLS’s which includes
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the finite dimensional OLS’s such that there is a single pair (Y,, X,) of linear spaces
such that if ¥ € % has the (Y,, X,). dominated extension property then ¥ must have
the unrestricted dominated extension property.

2. Preliminaries. Besides Theorem I, some results proved in [2], [3], [4] and [6]
will be used in the proof of our main theorem. Let ¥ be a linear space. A non-empty
subset C of V is said to be a wedge if u, ve C and ¢ € R, >0, imply that u+v and
tu are in C. A wedge C is said to be sharp if u€ C and —u e C imply that u = 0,
the zero element of V. If (V: <) is an OLS, then the set C={v: v>0} is a wedge and
is called the positive wedge of (¥: <). Conversely, a wedge C in a linear space V
determines a vector ordering < by taking v>0iff v € C. Therefore, a wedge Cin V
uniquely determines and is determined by a vector ordering <. The positive wedge
C corresponding to the vector ordering < is sharp iff the vector ordering is anti-
symmetric. For convenience, if C is the positive wedge corresponding to the
ordering <, we sometimes write (¥: C) instead of (V: <). A wedge C in an OLS
(V: C) is said to be reproducing if ¥ is the linear hull of C. An OLS (V: <) is said
to have the least upper bound property if every set of elements with an upper
bound has a least upper bound (not necessarily unique). The least upper bound is
unique if the ordering < is antisymmetric (or, equivalently, the positive wedge C is
sharp). If (V: C) has the least upper bound property and if C is reproducing and
sharp, we call (V: C) a boundedly complete vector lattice. A point e of an OLS
(V: <) is said to be an order unit of V if e > 0 is such that, given any v € V' we
have —2Ae<v<Ae for some X € R. A point u of a wedge C in V is said to be a core
point of C if C contains a line segment through u in each direction. A wedge Cin a
linear space V is said to be lineally closed if every line intersects C in a set which is
closed in the natural topology of the line, or equivalently, if v, € C,ve C and
tr,—ve C for some real >0 implies that ¢, —ve C; wheret,=inf{t € R:
tv,—ve C, t>0}. We state without proof some results which will be used in the
sequel.

THEOREM 1I ([6]). If an OLS (V: <) has the least upper bound property, then V
has the unrestricted dominated extension property.

THEOREM III (W. E. Bonnice and R. J. Silverman [3], [4]). If a finite-dimensional
OLS (V: C) has the unrestricted dominated extension property, then C is lineally
closed.

THEOREM 1IV. (1) A4 point u is a core point of the wedge Cin (V: C) iff u is an order
unit of (V: <) where < is the vector ordering corresponding to C. (2) If C is a finite
dimensional wedge (i.e., the linear hull of C is finite dimensional), then C has a core
point relative to its linear hull.

THEOREM V ([3] p. 211). Let (V: C) be an OLS and let V, be the linear hull of C.
Then (V: C) has the (Y, X) dominated extension property (unrestricted dominated
extension property) iff (Vi: C) has the (Y, X) dominated extension property (un-
restricted dominated extension property).
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Let (V: || |) be a normed linear space, e be a vector of norm one in ¥ and let
P={peV:iv=MNu+e), A€ R, A\>0, |u|<1}. Then P is a wedge and (V: P) is an
OLS with e as an order unit. We shall call this OLS (V: P) the OLS deduced from
(V: | |) and e. Conversely, if (V: C) is an OLS with an order unit e and is such that
C is sharp and lineally closed then the function | |: ¥—R defined by |x||=
inf{Ae R: —de<x<2Ae, A>0} for all x € V, is a norm. We shall call this normed
linear space (V: | ||) the normed linear space deduced from (¥: C) and the order
unit e. Moreover, it is easy to verify that the set

P={xeVix=MNute),Ae R,A >0, |u| <1}

coincides with C and the OLS (¥: P) deduced from (¥: | |) coincides with the
original OLS (¥: C). From this remark and Theorem 1, Theorem 2 of [2], we have
the following theorem:

THEOREM VI (Nachbin [2]). Let (V: C) be an OLS with an order unit e such that C
is sharp and lineally closed. Let (V: | ||) be the normed linear space deduced from
(V:C) and the order unit e. Then (V: | |) has the unrestricted norm preserving
extension property iff (V: C) is a boundedly complete vector lattice.

3. The main theorem. We begin with the following lemmas:

LEMMA 1. Let (V: <) be an OLS with an order unit e such that the positive wedge
C corresponding to < is lineally closed and sharp, and let (V: || ||) be the normed
linear space deduced from (V: <) and the order unit e. If (V: <) has the (Y, X)
dominated extension property, then (V:||) has the (Y, X) norm preserving

extension property when X is normed by any normed linear space norm.

Proof. Assume that (V: <) has the (Y, X) dominated extension property and
that || || is a normed linear space norm on X. Let f: Y—¥ be a bounded linear
function and define a function p: X—V by p(x)=|f| |x|e for all x€ X. Then p
is sublinear. Moreover, from the assumption that (¥: || |) is deduced from (V: <)
and the order unit e of (V: <), and that C is lineally closed, we have

p() = f1 Iyle = 1f(Dle = f(y) forallye?Y.

Therefore, by the (Y, X) dominated extension property of (¥V: <) there exists a
linear extension F of f on the whole space X into ¥ such that | f| ||x]|e=p(x) > F(x)
for all x € X. Since |v]|=inf{A>0: —de<v<Ae} for all ve V, |f| |x|=]F(x)|
for all x € X. This implies that | F|| <|f||. On the other hand,
IF| = sup {|F()[: [x]| <1, xe X}
2 sup{[F()[: |¥] < 1,ye Y}
= |f1.

Thus, ||F|=|f]||. This shows that (V: | |) has the (¥, X) norm preserving ex-

tension property.
2—C.M.B.
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LEMMA 2. Let R,={(a, b): a, b€ R} and let Ry={(a, b, ¢): a, b, c € R}. If a finite
dimensional OLS (V: C) has the (R,, R3) dominated extension property, then the
positive wedge C is lineally closed.

Proof. We remark that if (¥: C) has the (R,, R;) dominated extension property
then it has the (R, R,) dominated extension property. With this remark, it is
casily seen from the proof of Theorem III ([4] pp. 844-849, [S]) that if the un-
restricted dominated extension property of (¥: C) is replaced by the (Rs, Rj)
dominated extension property the result is still valid and hence the lemma follows.

LemMA 3. If (V: <) is a finite dimensional OLS such that the ordering < is anti-

symmetric and if (V: <) has the (R,, Rs) dominated extension property, then (V: <)
has the unrestricted dominated extension property.

Proof. Let C be the positive wedge of ¥ corresponding to <. By Theorem V, we
may assume that V is the linear hull of C without loss of generality. Then by
Theorem IV, since V is finite dimensional, C has a core point e which is an order
unit of (V: <). Define || |: V—R by |v|=inf{A€ R: Ae=v=>= —Ae, A>0} for all
ve V. Since < is antisymmetric, C is sharp. Furthermore, since (V: <) has the
(Rs, R3) dominated extension property, then, by Lemma 2, C is lineally closed.
Hence (V: || ||) is the normed linear space deduced from (¥: <) and the order unit
e. Thus, by Lemma 1, (V: || |) has the (R,, Rs) norm preserving extension property
when R is normed by any normed linear space norm. Let X,=C(3) and let
Yo={20, 1, D+u(1,0,1): A, ue R} = C(3). Since C(3) is a three-dimensional
normed real linear space and Y, is a two-dimensional subspace of C(3), (V: || |)
has the (Y,, X,) norm preserving extension property. Thus, by Theorem I,
(V:| |) has the unrestricted norm-preserving extension property. Then, by
Theorem VI, the original ordered linear space (V: <) is a boundedly complete
vector lattice, and by Theorem II, (V: <) has the unrestricted dominated extension
property.

THEOREM. Let (V: <) be an OLS and let Vo={ve V:v>0 and —v=0}. If the

quotient linear space V[V, is finite dimensional, then the following two statements are
equivalent:

(1) V has the (Ry, R3) dominated extension property.
(2) V has the unrestricted dominated extension property.

Proof. Clearly (2) implies (1). To see (1) implies (2), assume that (V: <) has the
(R2, R3) dominated extension property. By Theorem V, we may assume that the
positive wedge C of (¥, <) is reproducing without loss of generality. Let V; be a
subspace of ¥ such that V; >~ V/V,. Then V=V, @ V,, the algebraic direct sum of
the subspaces V; and V,. We show that (V;: <) has the (R;, R;) dominated
extension property. Let p: R;— ¥V, be a sublinear function and let f: R,—V; be a
linear function such that f(y)<p(y) for all y € R,. Since (V, <) has the R;, Rj)
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dominated extension property, f has a linear extension F: Rz;—V such that
F(x)<p(x) for all x € R;. Let F(x)=Fy(x)+ Fy(x), where F1(x) € ¥ and Fy(x) € V,
for all x € R;. Since F(y)=f(y) e V, for all y € R,, Fo(¥)=0 and hence F;(»)=f(»)
for all y € R,. Also, the linearity of F implies the linearity of F;: thus F; is a linear
extension of f on R into V,. Furthermore, F; is dominated by p. Indeed, since
Fo(x) e Vo,

p(x)—Fy(x) = p(x)—F(x)+ Fo(x) = 0 forall x € Rs.

This shows that (¥;: <) has the (R,, R;) dominated extension property. By our
assumption (V;: <) is finite dimensional, and since the set {ve V;:v>0 and
—v>0}={0}, the ordering < is antisymmetric on V;. Therefore, by the proof
of Lemma 3 (V;: <) is a boundedly complete vector lattice. It follows that
V has the least upper bound property and hence, by Theorem II, ¥ has the
unrestricted dominated extension property.
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