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ABSTRACT. Powder-snow avalanches are natural hazards which affect the way populations live in
mountainous areas. Field measurements from avalanches remain one of the most significant and useful
sources of information about their dynamics and behaviour. In this paper, we consider all the video data
from the Swiss Vallée de la Sionne test site from the years 2003–05. General scaling laws are sought for
the avalanche front velocity based on plume theories. Avalanche Froude numbers are found, comparing
three different length scales: the cube root of the fracture volume; the avalanche height; and the depth
of entrained snow cover. We discuss the difficulties in defining the volume of a powder-snow avalanche:
should we include just the head or also the turbulent wake that extends back to the starting zone? This
relates to whether we use a compact model for the avalanche, such as the KSB model (Ancey, 2006;
Turnbull and others, 2006) or a plume model (Turner, 1973). Observations are made regarding the
lateral spreading behaviour of the avalanches. We show that the slow lateral spreading can be explained
by large internal velocities and anisotropic turbulence generated by the large-scale motion in the
avalanche head.

1. INTRODUCTION

Snow avalanches can adopt different flow regimes depend-
ing on the precise conditions of the snow cover and the
nature of the avalanche track. We consider powder-snow
avalanches, which usually occur when the avalanching
snow is dry, fine-grained and on a steep slope (McClung and
Schaerer, 1993). Powder-snow avalanches reach high vel-
ocities which can range from 10 to 100m s–1, depending on
their size. With flow heights from 5 to 100m and mean
densities in the range 5–50 kgm–3, the Reynolds number of a

powder-snow avalanche varies from 107 to 109, and the flow
is fully turbulent (Bozhinskiy and Losev, 1998). At such high
Reynolds numbers, basal drag is small (Hogg and Woods,
2001) and the dynamics are dominated by the interaction
between the particle suspension and the ambient air. Snow
particles, once airborne, are supported in suspension by
turbulence in the interstitial air, giving the suspension a
higher mean density than the surrounding air. This density
contrast provides the driving force for the avalanche. The
density difference is maintained by the continued entrain-
ment of snow particles from the snow cover along the

Journal of Glaciology, Vol. 53, No. 180, 2007

Fig. 1. Photograph of the Vallée de la Sionne test site showing the three possible release areas A–C and the 20m high measurement mast.
Photograph: F. Dufour.
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avalanche track, counteracting the dilution of the suspension
by the entrainment of ambient air. Entrainment is the
incorporation of one material into another, and the term is
used for both the incorporation of air at the top surface of the
avalanche and the incorporation of snow at the base of the
avalanche. There are some arguments that a powder-snow
avalanche is driven by a dense basal layer. However, at the
high Reynolds numbers found in fully developed powder-
snow avalanches (described above), the effects of viscosity
are negligible and basal shear cannot provide sufficient force
to dominate the flow. The effects of the basal layer are
nevertheless important in the entrainment of the ambient
snow cover.

There are many aspects of powder-snow avalanche
dynamics that are still poorly understood, for example
how they form from a dense granular flow of snow. Careful
and detailed measurements of avalanches are necessary to
understand more about their evolution and dynamics. For
this reason, several avalanche test sites have been developed
(Issler, 1999). Vallée de la Sionne is the avalanche test site of
the Swiss Federal Institute for Snow and Avalanche Research
(SLF) in the Swiss Alps. At this site, large powder-snow
avalanches can be artificially released with explosives to
flow past a mast carrying a variety of sensors (Dufour and
others, 2001). The three release areas where avalanches can
be triggered are marked A–C in Figure 1.

Data retrieved from these avalanches have often been
used to calibrate computer models predicting dense ava-
lanche run-out distances (Christen and others, 2002).
However, relatively little analysis has been undertaken
comparing data from several avalanches to better under-
stand the avalanche flows. McElwaine and Turnbull (2005)
used air-pressure measurements from five Vallée de la

Sionne avalanches to understand the airflow inside and
around powder-snow avalanches, using a similar technique
to Nishimura and Ito (1997) for real snow flows and
McElwaine and Nishimura (2001) for ping-pong ball ava-
lanches. In the present work, video data from Vallée de la
Sionne avalanches between 2003 and 2005 are analyzed.
The objective is to find general scaling laws for the
avalanche front velocity and to discover the form of the
volume evolution function. In the final section, we discuss
the lateral spreading of powder-snow avalanches.

2. FIELD EXPERIMENT SUMMARY
The map in Figure 2 shows the topography of the Vallée de
la Sionne test site. The avalanche release zones A–C lie in
the bowl marked Crêta Besse in the northwest region of the
map. Avalanches flow downslope in the direction of the
1491ma.s.l. spot height in the southeast corner of the map.
From the regular spacing of the contours it is clear that the
slope is, to a good approximation, flat with an average slope
angle of about 258. The small gully at about 1900ma.s.l.
channels the avalanches towards the measurement mast
below it, on which a variety of pressure and velocity sensors
are mounted. The analyzed avalanches are considerably
wider than the gully and it has little influence on the
dynamics. Note that from release area C, the northeastern
part of Crêta Besse, there are two slight channels leading
onto the open slope. Large avalanches released from this
area can separate into two branches. The avalanches that
have branched in this way are indicated in Table 1.

In addition to the sensors mounted on the measurement
mast, there are two main sources of data from the Vallée de
la Sionne test site. The surface area of the released slab and

Fig. 2. Map of the Vallée de la Sionne test site, courtesy of Swisstopo (product information, Swiss Federal Office of Topography, http://
www.swisstopo.ch). The gridlines are 1 km squares. The avalanche runs from the release areas A–C at Crêta Besse (northwest region of the
map) to the river valley in the southeast region of the map. The video recordings are made from Plan des Larzes and La Brune, marked X.
M is the location of the measurement mast.
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the mean depth of the fracture line are calculated by
comparing aerial photographs of the site taken before and
after each avalanche. Multiplying the slab area by the mean
fracture depth gives an estimate of the fracture volume, Vf,
(see Table 1). The mean net depth of snow cover entrained,

referred to as the entrainment depth, along the avalanche
path is also found from the aerial photographs. This is an
average depth of entrained snow cover based on the
difference between the estimated volume of deposited snow
and the estimated fracture volume. The difference in snow
volume is assumed to have been entrained evenly over the
powder-snow avalanche width along the track (Sovilla and
others, 2006), to give the depth of entrained snow cover
used in this work (given in Table 1 to the nearest 0.05m).
The actual mean entrained snow depth will be larger since
deposition occurs along the track, but we ignore this and
assume that the net snow entrainment will give the correct
scaling. A full description of the photogrammetry analysis
for each avalanche can be found in the SLF winter reports
(Dufour and others, 1999).

Video recordings of the avalanche, synchronized by an
audio signal, are made from at least two different known
locations (Plan des Larzes and La Brune, each marked X on
the map in Fig. 2). The front position is directly determined
as the point of the avalanche furthest down the track and
tracked in each video sequence (an example is shown in
Fig. 3 for avalanche No. 509) at 5 s time intervals. This front
position is differentiated over the time-step to find the
avalanche front velocity. Additional features on the ava-
lanche surface (e.g. a particular cleft) are also identified and
tracked in each video sequence. With two or more images,
the three-dimensional location of each feature can be
determined. The accuracy of this spatial measurement varies
as the avalanche moves down the slope; at a distance of
1500m from the cameras the position is accurate to 1m; at a
distance of 2500m the accuracy is reduced to 5m (Vallet
and others, 2004). The located features are linked to form a
triangular mesh from which the avalanche upper surface can
be reconstructed at each time-step. By projecting the feature
positions vertically downwards onto a digital terrain map of
the region, the avalanche volume at each time-step is
calculated by summing the grid of vertical triangular prisms.
The mean height of the avalanche is found by dividing this
avalanche volume by the area of the reconstructed ava-
lanche surface. This avalanche height, evaluated at the time
when the avalanche front reached the measurement mast, is
the avalanche flow height used in the scaling analysis and
given in Table 1. A full description of the videogrammetry
techniques employed to generate the data analyzed in this
work is given in Vallet and others (2004).

The analyzed avalanches are summarized in Table 1. This
table also shows the symbol for each avalanche used in the
plots throughout this work. Avalanches allocated two

Table 1. Summary of the 2003–05 Vallée de la Sionne powder-snow avalanches giving the date, fracture volume, release area, entrainment
depth and flow height at the measurement mast. The symbols are those used in the plots throughout this paper. Avalanches with two
symbols are those which split into two parts, giving two values of front velocity (see text)

Avalanche No. Date Fracture volume Release area Entrainment depth Flow height Symbol

dd/mm/yy m3 m m

506 31/01/03 60000 C 0.50 0.20 18 } �
509 07/02/03 55000 B 0.10 20 �
628 19/01/04 21000 B 0.10 22 +
629 19/01/04 130000 C 0.15 0.15 36 / .

726 17/02/05 61000 C (right side only) 0.10* 19 �
*Value estimated from comparison with similar avalanches.

Fig. 3. Avalanche No. 509 powder cloud front at 5 s intervals (Vallet
and others, 2004). The upper lines, at the tail of the avalanche, are
artefacts of the contour processing.
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symbols are those which have split into two distinct
branches with different fronts, each front with its own
symbol. For the video- and photogrammetric analyses to be
worthwhile and to ensure that the triggered avalanches
reach the measurement mast, it is necessary for there to have
been a high level of snowfall in the days preceding the
experiment, but for the experiment itself to be carried out in
clear, sunny conditions.

Vallée de la Sionne avalanches are usually mixed-snow
avalanches, i.e. avalanches with a dense granular flow of
snow beneath a powder cloud (Bozhinskiy and Losev, 1998).
In this paper, the analyzed measurements are of the powder
cloud only. The dense granular flow is important to the
powder cloud because it is the source of entrained snow,
without which the powder cloud will rapidly dilute by air
entrainment and come to rest. We assume that, because the
Reynolds number is so large, the direct stresses between
the two layers can be ignored and therefore the only
important momentum exchange is due to the transfer of
mass between the layers. Since the surface stresses are low
from the powder cloud, this also means that if the cloud
has separated from the dense layer, which can occur in
complicated topography, it will no longer be able to entrain
snow, unless the snowpack is exceptionally light and non-
cohesive. Thus, the existence of the dense layer is crucial to
the entrainment of snow, but provided that the dense layer
exists, its only effect is that of a lag in the entrained snow
that the powder cloud sees. Since we consider only a
constant entrainable snow depth, this can be ignored.

3. RESULTS
3.1. Avalanche front velocity
The front position of avalanche No. 509, measured by the
curvilinear coordinate, s, distance down the track, is plotted
in Figure 4, where t is the time elapsed since the explosion
triggering the avalanche. The gradient of this curve is the
avalanche front velocity, and the curvature is the acceler-
ation. Except for the first and last phases of the avalanche,
the data are well fitted by a straight line, corresponding to a
constant front velocity (�50m s–1) despite small variations in
slope angle. This constant front velocity extends for most of
the avalanche track and supports measurements made by
Britter and Linden (1980) of two-dimensional, continuous
gravity currents of saline solution flowing on an incline.
Measurements from chute flows of snow–air suspension

currents (Turnbull, 2006) also found the flow front reached a
steady velocity, the magnitude of which was independent of
slope angle.

A constant front velocity indicates a balance of the inertia
of the entrained snow and air with the driving buoyancy. At
the Reynolds numbers (Re � 108) expected for powder-
snow avalanches, the basal drag on an avalanche can be
assumed to be small compared with the drag due to the
airflow around the avalanche and the retarding effect of the
inertia of entrained snow and air masses. As the slope angle
becomes steeper, the increased component of gravity driving
the powder-snow avalanche is counteracted by an increase
in air entrainment. This can be seen more clearly if the
momentum equation is considered for a powder cloud of
volume V and velocity u, giving the cloud a total mass
M ¼ B þ ð1þ �Þ�aV , where B is the buoyancy, �a the
ambient air density and � the added mass coefficient
accounting for ambient air disturbed by the passing of the
avalanche. From Turnbull and others (in press), the rate of
change in momentum is the downslope component of the
driving buoyancy

d Muð Þ
dt

¼ Bg sin �,

on a slope inclined at an angle �. Thus the change in
velocity is

du
dt

¼ Bg sin �
M

� u
M

dM
dt

: ð1Þ

The righthand side of the equation shows a balance between
the driving buoyancy and a retarding term proportional to
the rate of change in mass of the avalanche. For a steady
velocity these terms must exactly balance.

The parts of the curve in Figure 4 that do not have a
roughly constant gradient are where particle entrainment
and deposition effects are most important. As an avalanche
starts to accelerate, it entrains more particles, thereby
increasing the driving buoyancy contrast and accelerating
the avalanche further (Bonnecaze and others, 1993). As the
avalanche slows down, the turbulent energy is reduced so
that particles can no longer be supported in suspension.
Particles are deposited, which reduces the driving buoyancy,
causing the avalanche to slow down.

3.1.1. Front velocity in plume models
Britter and Linden (1980) considered continuous, two-
dimensional gravity currents of saline solution flowing down

Fig. 4. Avalanche No. 509 front displacement, s, vs time after
explosion, t.

Fig. 5. An inclined gravity current fed with constant buoyancy flux,
g 0
0Q, moving with front velocity uf.
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an incline (Fig. 5). The saline solution was supplied through
a nozzle fixed at the top of the slope. They showed that the
front velocity was dependent only on the buoyancy flux,
g 0
0Q, of saline solution supplied to the current, where Q is
the volume flow rate of supply of buoyant fluid and g 0

0 is the
density-adjusted gravity. For a fluid of density � flowing into
an ambient fluid of density �a, Britter and Linden (1980)
define the density-adjusted gravity as

g 0
0 ¼ 2g �� �að Þ= �þ �að Þ: ð2Þ

Thus, for the Britter and Linden (1980) experiments,
dimensional analysis gives a non-dimensional front velocity

~uf ¼ uf

g 0
0Q

� �1
3

,

where ~ indicates the dimensionless quantity. The front
dynamics of the Britter and Linden (1980) currents are
therefore dominated by the driving buoyancy flux which we
now discuss in the context of an avalanche flow.

In a powder-snow avalanche, the fracture volume of snow
provides the initial buoyancy which is subsequently
supplemented by the snow entrained along the track. Thus,
as in the Britter and Linden (1980) experiments, buoyancy is
continuously supplied to the current. In contrast to the
Britter and Linden (1980) experiments, the entrained snow
feeds directly into the avalanche head and this buoyancy
source travels with the flow. In the rest frame of the
avalanche, the flow can be thought of as a plume source, of
strength Q ¼ heuf, subject to an oncoming flow of velocity
uf, shown schematically in Figure 6. This configuration is
similar to the constant-flux gravity currents travelling into the
oncoming flow of Hogg and others (2005), in that we
consider both buoyancy-induced motion and effects of the
oncoming stream. Hogg and others (2005) showed that the
front velocity depends on both the oncoming flow velocity
and the Britter and Linden (1980) ‘buoyancy velocity’

g 0
0Q

� �1=3. However, in both Britter and Linden (1980) and
Hogg and others (2005), buoyancy is fed from a source fixed
at the tail of the current and does not move with the current
as in the motion of an avalanche. This means that in an
avalanche the oncoming flow velocity is determined by the

avalanche front velocity, itself determined by the buoyancy
velocity, whereas in Hogg and others (2005) the oncoming
velocity is independent of the current dynamics. Further-
more, the Hogg and others (2005) flows are on a horizontal
plane where there is relatively little mixing. If the dynamics
of the Vallée de la Sionne avalanches are dominated by the
buoyancy of the plume source, as in both the Britter and
Linden (1980) and Hogg and others (2005) experiments, we
would expect the front velocity to scale with the buoyancy

velocity, g 0
0Q

� �1=3.
The main variables in an avalanche flow are shown in

Figure 6 in the rest frame of the avalanche. Note that there
are four significant lengths: s, the distance travelled (in the
steady case s � tuf ); the avalanche height, h; the depth of
entrained snow cover, he ; and from the initial conditions the

cube root of the fracture volume, V 1=3
f . Ellison and Turner

(1959) and Turner (1973) show that for an inclined plume,
the plume height, h, is proportional to the distance
travelled, s, (discussed further in section 3.2) due to the
entrainment of air. However, this is not the same height as
the height of the avalanche head, the plume height
corresponding more to the height of the turbulent wake as
we move back from the head. Since in a powder-snow
avalanche, by definition, the volume of air is very much
greater than the volume of snow, the lengths s and h
characterize the total volume of the avalanche. These two
variables are determined by the interaction of the powder
cloud with the ambient air and are dependent variables,
though we do not know what this dependence is. We do not
have a prescription for the height, h, so we retain it as an
independent length scale. The depth of entrained snow

cover, he, and the fracture length scale, V 1=3
f , are inde-

pendent variables determined by the avalanche track,
though they may be related by Vf � Afhe, where Af is the
fracture area. The strength of the buoyancy source is

characterized by he, as discussed above, and V 1=3
f char-

acterizes the initial conditions.
Three non-dimensional groups can be formed from the

variables in Figure 6. We have

ufffiffiffiffiffiffiffi
g 0
0L

p ,
tuf
L

and
�

�a
,

where L is one of the lengths h, he or V
1=3
f . Here we consider

only steady flows, so that the first two groups are related,
and we will look for a Froude number

Fr ¼ ufffiffiffiffiffiffiffi
g 0
0L

p , ð3Þ

where g 0
0 is the reduced gravity which incorporates the

density ratio (Equation (2)).
There are many different definitions of g 0

0 throughout the
literature, some of which may scale the data better than
others depending on the precise conditions. For example,
Gröbelbauer and others (1993) find two density relations for
high-density ratio intrusions, one for the light front and one
for the heavy front. For the heavy front in an infinite ambient,
the density relation is (� – �a)/2�a. This is inappropriate for
the density ratios found in avalanches because as �/�a
becomes very large the density relation (and thus the
density-adjusted gravity) tends to infinity. We will use the
Britter and Linden (1980) definition of density-adjusted
gravity, Equation (2), which remains finite at large ratios �/�a.

Fig. 6. Schematic diagram of an avalanche of height h entraining
particles to a depth he in the rest frame of the avalanche.
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The snow-cover density was measured as approximately
200 kgm–3 for all of the Vallée de la Sionne avalanche
fronts. Unfortunately there are no density measurements
from the powder-snow avalanches themselves and this value
must be estimated. For the purposes of this scaling study, we
shall assume a powder cloud density of 30 kgm–3 for all of
the avalanche fronts (Bozhinskiy and Losev, 1998).

3.1.2. Scaling
We will consider three possible Froude number scaling laws
for the avalanche flow, based on the three independent

length variables h, he and V 1=3
f . Firstly, if the avalanche

dynamics are determined by the initial conditions, i.e. the
volume of snow that releases and forms the avalanche, then
we expect the front velocity to scale with a length
determined by those initial conditions. In this case, the
length in the Froude number given in Equation (3) is

L ¼ V 1=3
f , where the fracture volume, Vf, is measured by

photogrammetry (see section 2). Secondly, we consider the
fully developed avalanche flow, characterized by the ava-
lanche flow height, i.e. L ¼ h. This scaling is dominated by
the interaction with the ambient air. For convenience, we
take the avalanche height at the mast measured from the
videogrammetry for each avalanche (see section 2) to be a
typical value. Lastly, if the dynamics are determined only by

the strength of the buoyancy source, as in the Britter and
Linden (1980) and Hogg and others (2005) experiments
described above, the front velocity should scale with the
characteristic depth of the entrained snow cover and L ¼ he
(determined from photogrammetry; see section 2).

Front-displacement vs time plots for all the 2003–05
avalanches (seven avalanche fronts) are shown in Figure 7a.
Figures 7b and 8 show the same data but scaled so that the
non-dimensional front displacement, s/L, is plotted against
the non-dimensional time, t

ffiffiffiffiffiffiffiffiffiffi
g 0
0=L

p
, for each avalanche front.

The density-adjusted gravity, g 0
0, is calculated from Equa-

tion (2), using the snow-cover density when using the
fracture or erosion properties for scaling, and the powder
cloud density when scaling with the avalanche height. The
mean gradient of each line is the avalanche non-dimensional
front velocity or Froude number, as defined in Equation (3)
and given in Table 2 for each avalanche front.

Note that t is the time elapsed since the triggering
explosion. The curves in Figures 7 and 8 have different
origins, because the time delay between the explosion and
actual avalanche release varies for each avalanche. Since
the avalanche can only be seen in the videos once it has
started to develop, from the video recordings it is not
possible to determine when release occurs. Variation in
initial conditions between the avalanches also results in
each avalanche having a different virtual origin. For clarity,

Fig. 7. Seven Vallée de la Sionne avalanche fronts between 2003
and 2005. (a) Avalanche front displacement, s, vs time, t. (b) Non-
dimensional front displacement, s/L, vs non-dimensional time,
t

ffiffiffiffiffiffiffiffiffiffi
g 0
0=L

p
, where the density-adjusted gravity, g 0

0, is defined in

Equation (2) and the length scale, L ¼ V 1=3
f , is the cube root of the

fracture volume. The best-fit line is calculated from the mean of the
gradients of the lines. Each line has been shifted so that its first point
lies on the best-fit line.

Fig. 8. Seven Vallée de la Sionne avalanche fronts between 2003
and 2005: non-dimensional avalanche front displacement, s/L, vs
non-dimensional time, t

ffiffiffiffiffiffiffiffiffiffi
g 0
0=L

p
, where the density-adjusted gravity,

g 0
0, is defined in Equation (2). (a) Length scale L ¼ h, the avalanche

height at the measurement mast; and (b) length scale L ¼ he, the
depth of entrained snow cover. The best-fit line is calculated from
the mean of the gradients of the lines. Each line has been shifted so
that its first point lies on the best-fit line.
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the curves have been shifted to place their first point on the
best-fit line, calculated from the mean Froude number given
in Table 2.

The mean and standard deviation of the avalanche Froude
numbers are shown in Table 2 for each length scale, L.
Roman numerals indicate different fronts of the same
avalanche, where the avalanche has split into distinct
branches. Unscaled, the standard deviation of the avalanche
velocities is 14% of the mean. Ideally, for this kind of
analysis we would need a larger range of initial data so we
could see the collapse with the scaling more clearly. The
scatter in the Froude numbers (the standard deviation as a
percentage of the mean) is significantly reduced only when
the avalanche height at the mast is the length scale. In this
case, the Froude number is 2.2�0.18, i.e. the standard
deviation is 8% of the mean, which is a convincing collapse
of the data. The fracture properties appear to have little effect
on the front velocities further down the track. This shows
that the entrainment of air and snow along the track
significantly affects the avalanche dynamics, and the initial
conditions are slowly forgotten. When scaled with the
height of entrainable snow cover, the scatter actually
increases. This increase in scatter will be partly a result of
the error in estimating the entrained snow depth (Dufour and
others, 1999), which can be considerable. There are very

few quality data on snow entrainment, and there are varying
methods of quantifying the entrained snow depth (Sovilla
and others, 2006). The data we have used are contaminated
by later deposition, and for this reason they may not give a
representative value of the buoyancy flux into the avalanche
head. In addition, more reliable density measurements of the
individual avalanches will be an important development.
These will give varying values of the density-adjusted
gravity, g 0

0, and may improve the scaling.

3.2. Avalanche volume
3.2.1. Measurement difficulties
The problem with measuring the volume of a powder-snow
avalanche is that it is not clearly defined. For comparison
with compact models such as the KSB (Kulikovskiy–
Sveshnikova–Beghin) model (Kulikovskiy and Sveshnikova,
1977; Ancey, 2006; Turnbull and others, in press) or the
model in Fukushima and Parker (1990), it is convenient to
consider the total volume to be just that of the head. But this
is impossible to repeatedly identify from videos. When
comparing with plume-type models, such as Ellison and
Turner (1959) and Turner (1973), the entire avalanche
volume, including the turbulent wake that extends back to
the starting zone, should be considered. The videogram-
metry analysis has been carried out by different people in
different years who have had different ideas of how to define
avalanche volume.

Volume data from the five Vallée de la Sionne avalanches
between 2003 and 2005 are shown in Figure 9. These data

Table 2. The non-dimensional front velocities (Froude numbers) of seven Vallée de la Sionne powder-snow avalanche fronts. The front
velocities have been scaled with

ffiffiffiffiffiffiffiffiffiffi
g 0
0=L

p
for three different length scales, L: the cube root of the fracture volume; the avalanche flow height

at the measurement mast; and the depth of entrained snow cover (erosion). SD is the standard deviation from the mean

Avalanche No. Unscaled Fracture, V
1
3
f Fr, L ¼ V

1
3
f Flow height, h Fr, L ¼ h Erosion, he Fr, L ¼ he

m s–1 m m m

506i 43.4 39 1.57 18 2.38 0.50 13.9
506ii 37.0 39 1.34 18 2.03 0.20 18.8
509 47.4 38 1.75 20 2.53 0.10 34.1
628 44.7 28 1.94 22 2.25 0.10 32.1
629i 54.3 51 1.74 36 2.14 0.15 31.9
629ii 51.9 51 1.66 36 2.04 0.15 30.5
726 39.4 39 1.43 19 2.13 0.10* 28.3
Mean 45 1.6 2.2 27
SD 6.3 0.20 0.18 7.7
SD/mean (%) 14 12 8.3 28

*Value estimated from comparison with similar avalanches.

Fig. 9. Volume variation with time for Vallée de la Sionne
avalanches, 2003–05.

Fig. 10. Sketch of an inclined plume travelling with a steady front
velocityU and a downslope coordinate s. The plume has height h at
time t and height 0 at time t0.
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show that the volumes of the 2004 avalanches (Nos. 628
and 629) are both nearly ten times smaller than the volumes
of the 2003 and 2005 avalanches. However, the large
fracture volume of avalanche No. 629 in particular (Table 1)
would lead one to expect a very large avalanche; and to the
observer, avalanche No. 629 did appear large. This dis-
crepancy illustrates a problem with videogrammetric analy-
sis: that avalanche data are not comparable unless they have
been systematically generated. For videogrammetric field
data to be compared between different avalanches and
different field sites, it is paramount that a system be devised
for the reliable and repeatable delineation of the avalanche
perimeter.

In the 2003 and 2005 avalanches, the perimeter was
found from the 1m avalanche height contour from the
reconstructed surface. This is the contour in Figure 3, where
the avalanche tail extends to close to the fracture line. In the
2004 analysis, a different approach was used and a
subjective, unrepeatable method for finding the rear extent
of the avalanche was adopted. This resulted in a much lower
reconstructed surface area for the 2004 avalanches than for
the other years, and thus the apparently much lower
avalanche volumes in Figure 9.

3.2.2. Comparison with plume theory
In the following we will use Ellison and Turner’s theory for
an inclined plume to analyze the Vallée de la Sionne volume
data. From Ellison and Turner (1959) and Turner (1973), the
mass continuity equation for an inclined plume such as that
shown in Figure 10 is

d Uhð Þ
ds

¼ �U, ð4Þ
where U is the mean velocity in the downslope direction, s,
and � is the air-entrainment coefficient. This theory does not
include the effect of entrained snow at the avalanche base,
but given the large density difference between snow and air
it is reasonable to assume that the volume of snow in the
avalanche is very small compared with the volume of air,
except near the starting zone. Thus, air entrainment will
dominate the volume growth. Variables are changed
from distance, s, to time, t, using d/dt ¼ Ud/ds. Now we
can integrate and, if the mean velocity is independent of t
(a reasonable assumption given the steady front velocities
observed and analyzed in section 3.1), we find the flow
height as a function of time

h ¼ �U t � t0ð Þ,

where t0 is a virtual origin chosen such that h(t0) ¼ 0. If the
flow is assumed to be axisymmetric the volume will be
proportional to the flow height cubed, thus the volume will
increase with time cubed. For example, if the avalanche is a
half-cone of cross-sectional area �h2/2 and length U(t – t0),
as shown in Figure 10, the volume is

V ¼ �

2
�2U3 t � t0ð Þ3: ð5Þ

The same argument can be applied if a different geometry is
assumed which will only change the factor ��2/2.

We look for an effective air-entrainment coefficient, E, so
that, for the geometry in Figure 10,

E ¼ ��2�2: ð6Þ
Vallée de la Sionne volume data from the five avalanches
between 2003 and 2005 have been fitted for EU3 and t0,
with the function

V ¼ EU3 t � t0ð Þ3, ð7Þ
shown in Figure 11. The variable t – t0 is the time since the
triggering explosion, t, corrected to the virtual origin. Values
of the fit parameters EU3 and t0 are given in Table 3 together
with the residuals. The residual, R, is the root-mean-squared
relative error between the fit predictions, pi, and the data
values, Pi ,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

1� pi
Pi

� �2
vuut , ð8Þ

for each series of n data points. The entrainment coef-
ficient, E, is given in Table 3, found from the fit parameter
EU3 and the mean unscaled front velocity for each
avalanche given in Table 2.

The fit results given in Table 3 show that the three
similarly analyzed avalanches (Nos. 506, 509 and 726) have
low residuals, that the cubic curve fits well and the volume
grows in agreement with Ellison and Turner (1959) and
Turner (1973). For these three avalanches the avalanche
surface area was chosen to extend from the avalanche front
to close to the fracture line of the avalanche for each time-
step (see Fig. 3). Most of the avalanche that can be seen is a
turbulent wake with only a small and visibly indistinguish-
able head (the head is distinguishable from the air-pressure
data in McElwaine and Turnbull (2005)). Although the head
determines the avalanche velocity (Britter and Linden,
1980), the turbulent wake dominates the volume growth.
The cubic growth suggests that this turbulent wake is well
modelled by an inclined plume (Ellison and Turner, 1959;
Turner, 1973).

Fig. 11. Vallée de la Sionne avalanches volume variation with cubic
fits (see Table 3).

Table 3. Values of the fit parameters EU3 and t0 with their residuals
and the non-dimensional entrainment coefficient E. The fit function
is given by Equation (7)

Avalanche No. EU3 t0 Residual E

m3 s–3 s

506 68.1764 2.0485 0.29 1.3�10–3

509 29.7456 –9.8914 0.51 5.0�10–4

628 2.4969 –3.3361 2.70 2.7�10–5

629 4.9864 –3.7362 2.11 4.1�10–5

726 43.9929 –0.6502 0.29 1.3�10–3
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For the 2004 avalanches (Nos. 628 and 629) where a
much smaller surface area was identified, the volume
measurements are not necessarily dominated by the wake.
Accordingly, in the case of the 2004 avalanches, the volume
measurements are not as well fitted by a cubic function as
the turbulent-wake-dominated avalanches. The head of the
avalanche is less well modelled by an inclined plume.

3.3. Observations on lateral spreading
A feature of the avalanches, apparent in Figure 3, is that they
spread laterally slowly compared with the front velocity.
There are several things that can influence the lateral
spreading. For example, surface topography affects the way
an avalanche spreads: a gully will channel the flow and
prevent lateral spread whereas a strongly convex hillside
will increase lateral spreading. Dade and others (1994)
invoked surface drag to explain reduced lateral spreading
compared with the predictions, but, as discussed in
section 1, for the Reynolds numbers found in powder-snow
avalanches surface drag is not significant. A further effect is
the pressure field from the external airflow. Webber and
others (1993) assumed this balance between the hydrostatic
and stagnation pressures applied all around the boundary
to find constant shape solutions. For a cloud of vertical
height h and density � on a slope of angle �, Webber and
others (1993) balanced the stagnation pressure ð1=2Þ�au2

n
with the excess hydrostatic pressure h(� – �a)g cos � along
the current boundary, where un is the velocity normal to the
avalanche boundary. Von Kármán (1940) used this condition
at the flow front to show that the Froude number

Fr ¼ unffiffiffiffiffiffiffi
g 0h

p ¼
ffiffiffi
2

p
,

where g’ is the reduced gravity

g 0 ¼ g
�� �að Þ
�a

cos �:

If we apply this condition, as in Webber and others (1993),

along the boundary of a powder-snow avalanche we find
the normal velocities are hugely overestimated. For exam-
ple, given typical values of slope angle (� ¼ 308), powder
cloud height (h ¼ 10–50m) and density (� ¼ 20–30 kgm–3)
(Bozhinskiy and Losev, 1998), the normal velocity given by
the Froude number condition above would be un �
30–120m s–1. This is far higher than the observations (see
Fig. 3).

Assuming that stagnation pressure at the boundary is an
overestimate of the pressure, as air accelerates around the
sides of the avalanche its pressure drops, so that for the flow
shown in Figure 12 the pressure decreases from the
stagnation point, X, up the slope towards Y. Thus further
up the slope from the head, the stagnation pressure
approximation becomes increasingly less valid as the
pressure counteracting the spreading decreases. From these
arguments, the normal velocity should increase with
distance downstream from the head. This Froude number
condition gives a lower bound for the normal velocity. The
decrease in pressure downstream from the stagnation point
therefore suggests that in the vicinity of the head the radius
of curvature will increase with time. Figure 3 shows that the
radius of curvature in fact varies with time by no more than a
factor of two. This is very little compared with the distance
the avalanche front has moved down the slope.

If, rather than balancing the internal and external
pressures to estimate the spreading velocities, we balance
the internal inertia, the problem is that of a dam break. In this
case, the spreading velocity still scales with

ffiffiffiffiffiffi
gh

p
multiplied

by some order one factor, the difference being g and not g’.
Whichever model we use, the predicted spreading velocities
will be much larger than the observations.

What, then, can explain the slow lateral growth? The
internal motion of the powder cloud can be significant, as
demonstrated by the air-pressure measurements of McEl-
waine and Turnbull (2005) and Russian measurements of the
‘avalanche air blast’ (Grigoryan and others, 1982). This
longitudinal internal motion (see Fig. 12) means that the
pressure inside the head is not hydrostatic. For the type of
internal flow we expect (McElwaine and Turnbull, 2005), the
pressure at the interface will be less than in the hydrostatic
case, and lateral spreading will be inhibited. Large internal
velocities must be present to explain the shape of the
avalanche head.

The powder cloud can be considered as having two
distinct regions: the avalanche head and a turbulent wake.
Much of the visible avalanche is no longer influenced by
the motion of the avalanche head, and is a turbulent wake.
Figure 3 shows that the avalanche width in the turbulent
wake, far back from the head, also changes little over the
course of the avalanche. The vertical growth rate of the
turbulent wake is significantly higher than the lateral
growth rate.

The Richardson number, Ri, is defined as the ratio of
potential to kinetic energy of an entraining interface. For low
Richardson numbers, the increase in potential energy
counteracting entrainment is small compared with the kin-
etic energy associated with the interface. Since, in the
absence of any cross-slope curvature, any mixing in the
cross-slope (lateral) direction is not counteracted by gravity,
the Richardson number in this direction is zero. Thus, if the
turbulence in the avalanche was homogeneous, it would be
expected that the cloud entrains ambient fluid at the highest
rate where the Richardson number is zero, i.e. in the lateral

Fig. 12. A plan view of the flow field inside and around the head of
an avalanche in the rest frame of the avalanche. Pressure decreases
from the stagnation point, X, to a point downstream, Y.
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direction. With homogeneous turbulence, mixing in the
lateral direction would be stronger than in the direction
perpendicular to the slope, where the Richardson number is
non-zero. In the previous paragraph it was observed that the
growth rate perpendicular to the slope is higher than the
lateral growth rate. This observation suggests that the tur-
bulence is very anisotropic. Large-scale eddies are formed
aligned with the axis of the avalanche due to the downslope
velocity and the counteracting drag over the surface of the
avalanche. Since these eddies are aligned with the axis of
the avalanche, they will entrain ambient air perpendicular to
the slope. This entrainment will be much stronger than the
lateral entrainment which will occur as the large-scale
turbulence decays to smaller scales and becomes isotropic.

4. CONCLUSIONS
We have analyzed front position and volume data from the
Vallée de la Sionne avalanches between 2003 and 2005 and
compared these data with theories for inclined plumes. The
front velocity reaches a constant value over most of the
track. When non-dimensionalized with

ffiffiffiffiffiffiffiffi
g0h

p
, where h is

the avalanche height at the measurement mast, then this
constant front velocity varies little for the analyzed ava-
lanche fronts. The non-dimensional front velocity, or Froude
number, is found to be

Fr ¼ uffiffiffiffiffiffiffiffi
g0h

p ¼ 2:2� 0:18

for the seven avalanche fronts analyzed. Though more
physically reasonable, the fracture and snow-cover variables
do not scale the avalanche data convincingly.

The total avalanche volume has been found to increase
cubically with time. For the analyses where the volume of
only the front part of the avalanche was measured, no such
cubic growth was found. The cubic growth of the total
avalanche volume is dominated by the turbulent wake. The
shape of the head and the lack of lateral spreading indicate
significant internal motion. In the turbulent wake, there is
little lateral spreading compared with the height growth of
the powder cloud. This effect is explained by anisotropy of
the turbulence generated by large-scale vortical motion in
the head.

We have shown that plume theories can accurately
describe the volume increase in the avalanche, and have no
difficulty with the avalanche tail extending back to the
starting zone. This success contrasts with the success of
compact models, such as the KSB model, which better
capture the front dynamics of the flow. A combination of the
two approaches would therefore be useful. There are two
ways of approaching this. One is to start from a compact
model but assume decaying profiles for density and velocity
as we move back from the head in the avalanche. These
must be chosen to decay fast enough that they can be
integrated over all space. These will then result in the KSB
equations but with different closures. This may work well for
constant entrainable snow depth and constant slope angles
but is non-physical if these vary, since the dynamics of the
avalanche are related along its length. Thus, this model may
be useful with laboratory experiments but will be less useful
for natural avalanches. The alternative approach is to model
the avalanche as a plume with time-varying buoyancy in the
head, according to the entrainable snow depth and front
speed. The head is then a singularity in the plume theory

which will need closure to specify a virtual origin correction
and the front velocity. With this approach it should be
relatively easy to account for lateral spreading by incorpor-
ating cross-slope air entrainment and buoyancy-driven
lateral forces.

With improvements in data quality and the availability of
more data (including density measurements) it will be
possible to draw stronger conclusions about the scaling
properties of avalanches. Repeatable laboratory experi-
ments, where an experiment can be carried out in the same
manner many times, will also be important sources of data
for investigating the validity of plume theories for modelling
flows such as powder-snow avalanches.
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