234 Abstracts 4 panelists (1 psychiatrist, 2 neurologists/MDSs, and 1 APP) who tested the questions in clinical practice for revision and refinement. The same group also worked with the sponsor to develop 2 additional sections that could be used to elicit more information from patients. The panel recognized the need for a tool that could facilitate telehealth screening for TD, including audio-only interactions. Therefore, practices from speech-language pathologists (eg, diadochokinetics) were used to refine the questionnaire. **Results.** Part 1 of the MIND-TD questionnaire includes a yes-orno question for each of the 4 following topics: presence of extra or unwanted movements (Movement); feelings of embarrassment or self-consciousness (Impact); if anyone else has noticed the movements (Notice); and if movements interfere with everyday routines (Daily Activities). Part 1 can be administered by any trained medical staff, either in person or via telehealth (with video or audio-only). Routine administration is suggested in all patients who meet any of the following criteria: current or prior use of any first- or second-generation antipsychotic; use of an anticholinergic medication in conjunction with a current or past antipsychotic; or current diagnosis of TD. Part 2 of the MIND-TD questionnaire has 2 sections. The first (Thorough Interview) includes 9 items related to physical/functional difficulties (eg, eating, speaking, walking, and gripping objects) and 3 simple instructions for speech difficulties. The second section (Differentiate) includes checklists of characteristic movements for TD and drug-induced parkinsonism, along with an item related to akathisia and suggestions for observing abnormal or involuntary movements. Part 2 should be administered by the treating HCP in patients who have abnormal movements that may be related to TD. Part 2 requires visual observation of the patient, whether inperson or via video. **Conclusions.** MIND-TD is a screening questionnaire that can facilitate a dialogue between HCPs and patients about the risks, symptoms, and impact of TD. The MIND questions can stand alone and be administered during in-person visits or telehealth visits (video or audio-only). The TD section can be used to gather more information about a patient's abnormal movements. Funding. Neurocrine Biosciences, Inc. ## Long-Term Effects of Once-Daily Valbenazine in Older and Younger Adults with Tardive Dyskinesia Martha Sajatovic, MD¹, Khody Farahmand, PharmD², Chirag Shah, PharmD² and Leslie Lundt, MD² ## Abstract **Introduction.** Older patients taking a dopamine receptor blocking agent (eg, first- or second-generation antipsychotic) have an increased risk for tardive dyskinesia (TD), a persistent and potentially disabling movement disorder. Valbenazine, a selective and potent vesicular monoamine transporter 2 inhibitor, is approved for once-daily treatment of TD with no dosing adjustments required for older patients. This analysis of valbenazine clinical trial data, which is the first to evaluate an approved TD medication in a population ≥65 years, was conducted to better understand treatment outcomes in older patients. Methods. Data from two 48-week long-term studies (KINECT 3-extension, KINECT 4) were pooled and analyzed in older (≥65 years) and younger (<65 years) participants. Analyses based on the Abnormal Involuntary Movement Scale (AIMS) total score included: mean change from baseline (BL); clinically meaningful response (≥30% improvement from BL [AIMS-30%]); and protocol-defined response (≥50% improvement from BL [AIMS-50%]). Additional analyses included response thresholds for Clinical Global Improvement-Tardive Dyskinesia and Patient Global Impression of Change as follows: rating of "minimally improved" or better (score ≤3) at week 48 (CGI-TD≤3, PGIC≤3); rating of "much improved" or "very much improved" (score ≤2) at week 48 (CGI-TD≤2, PGIC≤2). **Results.** AIMS outcomes in the older subgroup were generally comparable to (or better than) outcomes in the younger subgroup and overall study populations. In participants \geq 65 years, pooled AIMS results indicated substantial improvements in TD movements with valbenazine 40 mg (n = 8) and 80 mg (n = 20): mean change from BL (−6.4 and −9.8 [for 40 and 80 mg, respectively]); AIMS-30% (75% and 95%); AIMS-50% (75% and 85%). CGI-TD and PGIC response rates indicated that clinician- and patient-reported global improvements were also substantial in the older subgroup: CGI-TD = 3 (88% and 100% [for 40 and 80 mg, respectively]); CGI-TD = 2 (88% and 95%); PGIC = 3 (88% and 100%); PGIC = 2 (75% and 90%). **Conclusions.** These analyses, which are the first to evaluate long-term valbenazine effects in patients ≥65 years, indicate that older study participants had clinically meaningful and substantial improvements in TD that were comparable to (or better than) those in younger participants. Funding. Neurocrine Biosciences, Inc. ## Rhabdomyolysis in Young Adult Male Stabilized on Mirtazapine and with History of COVID-19 Infection Christine Philippe, MD, Douglas Misquitta, MD and Julie Niedermier, MD The Ohio State University, Columbus, OH, USA ## **Abstract** **Study Objective.** The purpose of this case study is to review the clinical presentation and medical workup of a young adult male presenting with rhabdomyolysis in the setting of suspected contributing factors, including treatment with mirtazapine and history of COVID-19 infection. **Method.** This case study involves a 19-year-old male in a residential setting with a psychiatric history of major depressive disorder and post-traumatic stress disorder who had been stabilized on mirtazapine for 9 months. Then, the patient exhibited fever, sore throat, cough, nausea, diarrhea, and malaise and was ¹Case Western Reserve University School of Medicine, Cleveland, OH, USA, and ²Neurocrine Biosciences, Inc., San Diego, CA, USA