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Abstract
We prove that if X is a complex projective K3 surface and 𝑔 > 0, then there exist infinitely many families of
curves of geometric genus g on X with maximal, i.e., g-dimensional, variation in moduli. In particular, every K3
surface contains a curve of geometric genus 1 which moves in a nonisotrivial family. This implies a conjecture of
Huybrechts on constant cycle curves and gives an algebro-geometric proof of a theorem of Kobayashi that a K3
surface has no global symmetric differential forms.
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1. Introduction

Building on the work of many people [MM83, Che99, BT00, BHT11, LL11], it was recently proved
in [CGL19] that, for any integer 𝑔 ≥ 0 and any complex projective K3 surface X, there is an infinite
sequence of integral curves 𝐶𝑛 ⊂ 𝑋 of geometric genus 𝑔 ≥ 0 such that for any ample divisor H

lim
𝑛→∞

𝐻𝐶𝑛 = ∞.

The aim of this paper is to strengthen and give a new proof of this result for curves of genus 𝑔 > 0,
assuming only the case 𝑔 = 0, and then to derive a number of applications to the geometry of K3
surfaces. In particular, we prove the following.

Theorem A. Let X be a K3 surface over an algebraically closed field of characteristic zero and 𝑔 > 0
an integer. There exists a sequence of integral curves 𝐶𝑛 ⊂ 𝑋 of geometric genus g such that

lim
𝑛→∞

𝐶2
𝑛 = ∞,

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.24 Published online by Cambridge University Press

doi:10.1017/fms.2022.24
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.24&domain=pdf
https://doi.org/10.1017/fms.2022.24


2 Xi Chen and Frank Gounelas

and the normalisation morphism of each 𝐶𝑛 deforms in a family of morphisms from smooth genus g
curves to X with maximal variation in moduli.

More precisely, for each such 𝐶𝑛 ⊂ 𝑋 there exists a diagram

C𝑛
𝑓𝑛

��

𝐹𝑛 �� 𝑋

𝑇𝑛
𝜙𝑛 �� ℳ𝑔,

where 𝑓𝑛 is a smooth family of curves over an irreducible variety 𝑇𝑛 so that there exists a point 𝑡 ∈ 𝑇𝑛
so that 𝐹𝑛,𝑡 : C𝑛,𝑡 → 𝑋 is the normalisation morphism of 𝐶𝑛 composed with the inclusion, and
dim𝑇𝑛 = dim 𝜙(𝑇𝑛) = 𝑔, where 𝜙𝑛 is the moduli map to the moduli space of curves.

We give first an idea of the proof of this theorem. As mentioned, its proof relies on the existence of
infinitely many rational curves on a K3 surface and not on the full statement of [CGL19, Theorem A]
so provides a new proof and a strengthening of the higher genus case of loc. cit., both in that 𝐶2

𝑛 → ∞

implies 𝐻𝐶𝑛 → ∞ by the Hodge index theorem but also that the curves produced vary in moduli.
The second key ingredient in proving the above theorem is the logarithmic Bogomolov–Miyaoka–

Yau inequality, which allows us, using local analysis of Orevkov–Zaidenberg, which we expand on
in Section 3, to control the singularities of rational curves in X as their self-intersection increases. In
particular, we show first in Proposition 3.4 that if

𝐶2 > 4690

for C is a rational curve on a K3 surface, then C must have a locally reducible singularity (i.e., one with
at least two branches). As it is not known whether such a rational curve always exists on a K3 surface,
we also show in Proposition 3.5 that if 𝐶1, 𝐶2 are two rational curves so that 𝐶1𝐶2 is large enough with
respect to 𝐶2

1 , 𝐶
2
2 , then they must meet in at least two distinct points (e.g., if 𝐶2 ≤ 4690 for all rational

curves in the K3, then 𝐶1𝐶2 > 1, 299, 546 suffices). As a consequence, a partial normalisation of such
a C or of such a union 𝐶1 ∪𝐶2 may now be deformed in ℳ1(𝑋, 𝛽) to produce a genus one curve which
necessarily deforms with maximal moduli. The argument then proceeds by induction on the genus.

By results of Mukai, the general curve of genus g is contained in a K3 surface if and only if 2 ≤ 𝑔 ≤ 9
or 𝑔 = 11. Our result above, however, says that, for any fixed K3 surface X and any 𝑔 ≥ 0, there exist g-
dimensional subvarieties of ℳ𝑔 whose general member parametrises a curve which admits a morphism
to X birational onto its image. In the opposite direction, it is worth noting that it is expected yet not
known that a very general K3 surface cannot be dominated by the product of two curves, which would
imply that curves of constant moduli should not exist on most K3 surfaces.

As far as applications are concerned, although the existence of rational curves is satisfying to know,
they do not provide much to work with. It turns out that the existence of one single genus 1 curve
produced by Theorem 1 has numerous applications, so we begin by stating it as a separate corollary.

Corollary. A K3 surface in characteristic zero contains a nonisotrivial family of integral curves of
geometric genus 1.

It is well-known that any K3 surface contains a family of genus 1 curves, so what is new in the above
is the variation in moduli. As an application, combined with a result of Voisin [Huy14, Theorem 11.1]
(where the existence of curves produced by the corollary is implicitly asked), the above immediately
implies a conjecture of Huybrechts [Huy14, Conjecture 2.3].

Corollary. There are infinitely many constant cycle curves of bounded order on every complex K3
surface X, and their union is dense in the strong topology.

In a different direction, even though H0 (𝑋,Ω1
𝑋 ) = 0 is easy to see for a complex K3 surface X

via Hodge theory, Kobayashi [Kob80, Corollary 8] also proved that a simply connected Calabi–Yau
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manifold has no symmetric differentials or, in other words, that

H0 (𝑋, Sym𝑛 Ω1
𝑋 ) = 0 for any 𝑛 > 0.

His proof is also analytic in nature and relies on the resolution of the Calabi conjecture by Yau. We give
an algebraic proof of this fact for K3 surfaces, using only the existence of one nonisotrivial family of
genus 1 curves, which follows from the corollary above.

Theorem B (Kobayashi). The cotangent bundle of a complex K3 surface is not Q-effective.

Based on his generalised Zariski decomposition, Nakayama in [Nak04] proved that this implies that
the divisor OP(Ω1

𝑋 ) (1) is not even pseudoeffective (see Theorem 5.6 for a proof).
Even though we do not provide a proof of Kobayashi’s theorem or Theorem A in positive charac-

teristic, we state as many results as possible in that direction, and in the final Section 5, we prove a
conditional vanishing of global 1-forms (known by theorems of Rudakov–Shafarevich or Nygaard) and
stability of the cotangent bundle (which holds if X is not uniruled but is known to fail otherwise).

Notation. Throughout this paper a K3 surface will always be a smooth projective simply connected
surface with trivial canonical divisor over an algebraically closed field.

2. Deformations and singular curves

Let A be an effective divisor on a complex K3 surface. We consider the moduli map

𝑉𝐴,𝑔 ℳ𝑔 ,

where ℳ𝑔 is the moduli space of stable curves of genus g and 𝑉𝐴,𝑔 is the Severi variety parametrising
integral curves in |𝐴| of geometric genus g. It is expected that this map is generically finite over its
image for ‘most’ divisors 𝐴 ∈ Pic (𝑋), and we call such variation in moduli maximal (see Definition 2.3
for a more rigorous definition). The problem of existence of curves moving with maximal moduli has
been studied by various authors for generic complex K3 surfaces (cf. [FKPS08, Kem15, CFGK17]).

Definition 2.1. Let k be an algebraically closed field and C an integral curve over k. We say that a point
𝑝 ∈ 𝐶 is a locally reducible singularity of C if the formal completion Ô𝐶,𝑝 of the stalk of C at p is not
an integral domain. Equivalently, 𝜈−1(𝑝) consists of at least two distinct points under the normalisation
𝜈 : 𝐶𝜈 → 𝐶 of C. Otherwise, we say that C is locally irreducible at p. The number of local branches of
C at p is the number of points in 𝜈−1(𝑝).

The following is standard and is the main reason we are interested in such singularities.

Lemma 2.2. Let 𝑝 ∈ 𝐶 be a locally reducible singularity of an integral curve. Then the normalisation
𝜈 : 𝐶𝜈 → 𝐶 factors through a curve 𝐶 ′ which has one node and is smooth otherwise.

Proof. Choose a sufficiently ample line bundle L on C. For 𝑞1 ≠ 𝑞2 ∈ 𝜈−1(𝑝), consider the subspace

𝑉 = 𝜈∗H0(𝐿) + H0 (𝜈∗𝐿 ⊗ O𝐶𝜈 (−𝑞1 − 𝑞2)) ⊂ H0 (𝜈∗𝐿).

Then 𝑠1(𝑞1) = 𝑠2(𝑞2) for all 𝑠1, 𝑠2 ∈ 𝑉 . Let 𝑓 : 𝐶𝜈 → 𝐺 ⊂ P𝑉∗ be the morphism given by the linear
series V. Clearly, 𝜈 factors through f. For L sufficiently ample, G has a node 𝑞 = 𝑓 (𝑞1) = 𝑓 (𝑞2) over p
as the only singularity. �

For 𝐶 ⊂ 𝑋 a curve on a K3 surface, we denote by

ℳ𝑔 (𝑋,O𝑋 (𝐶))
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the Kontsevich moduli space of stable maps of arithmetic genus g to X with image of class O(𝐶). For
𝑓 : 𝐷 → 𝑋 such a morphism, we denote by [ 𝑓 ] the induced point in moduli.

Definition 2.3. Let 𝑓 : 𝐶 → 𝑋 be a stable map of arithmetic genus g to a K3 surface over an algebraically
closed field. We say that f deforms

1. in the expected dimension if dim 𝑀 = 𝑔 for every irreducible component [ 𝑓 ] ∈ 𝑀 ⊂ ℳ𝑔 (𝑋,O(𝐶))
and

2. with maximal moduli if the induced moduli map 𝜙𝑀 : 𝑀 → ℳ𝑔 satisfies dim(im 𝜙𝑀 ) ≥ 𝑔 for at
least one irreducible component [ 𝑓 ] ∈ 𝑀 ⊂ ℳ𝑔 (𝑋,O(𝐶)).

We say that an integral curve 𝐶 ⊂ 𝑋 satisfies one of the above properties if its normalisation morphism
𝜈 : 𝐶𝜈 → 𝐶 ⊂ 𝑋 composed with the embedding into X does so.

Remark 2.4. From [CGL19, Theorem 2.11], for any 𝐶 ⊂ 𝑋 integral with normalisation morphism
contained in some irreducible component [𝜈 : 𝐶𝜈 → 𝑋] ∈ 𝑀 ⊂ ℳ𝑔 (𝑋,O(𝐶)), we have dim 𝑀 ≥ 𝑔.
Moreover, in characteristic zero any such C deforms in the expected dimension (from Proposition 2.5
below), but it is not necessarily the case that C deforms with maximal moduli, as seen, for example, by
the existence of isotrivial elliptic fibrations. In positive characteristic, the situation is more complicated,
as on a uniruled K3 there exist genus 0 curves which deform too much. Nodal rational curves on a K3
surface are always rigid though, and on a nonuniruled K3 surface, every curve of geometric genus 1
deforms in the expected dimension (see [CGL19, Proposition 2.9]). We do not know any examples of
curves that do not deform in the expected dimension on a nonuniruled K3 surface.

The following is basically the Arbarello–Cornalba lemma (see [AC81, Lemma 1.4] or [ACG11,
§XXI.9] for a more thorough reference) in the case of K3 surfaces.

Proposition 2.5. Let X be a K3 surface over an algebraically closed field of characteristic zero, and
𝐶 ⊂ 𝑋 an integral curve of geometric genus 𝑔 ≥ 1. Then if [𝜈] ∈ 𝑀 ⊂ ℳ𝑔 (𝑋,O(𝐶)) is an irreducible
component containing the normalisation 𝜈 : 𝐶𝜈 → 𝐶, we have:

1. A general element [ 𝑓 : 𝐷 → 𝑋] ∈ 𝑀 corresponds to an unramified morphism.
2. dim 𝑀 = 𝑔.
3. If 𝐷 ′ ⊂ 𝑋 an integral curve and [ 𝑓 : 𝐷 → 𝑋] ∈ 𝑀 general, then the support of 𝑓 ∗O𝑋 (𝐷

′) consists
of 𝐷 ′ 𝑓 (𝐷) distinct points.

Proof. The first claim is an application of the usual Arbarello–Cornalba lemma in the case of K3
surfaces (see, e.g., [DS17]), whereas the second and third follow essentially from the first (see [CGL19,
§2] and the proof of [CGL19, Lemma 6.3]). �

Remark 2.6. In positive characteristic, it is not the case that (1) in the above is true (e.g., in a quasi-
elliptic fibration the general fibre has ramified normalisation as it is a cusp), but we expect it to be true
in most cases (see Question 4.6). It is, however, true that (1) implies (2) and (3).

We recall the following argument, essentially due to Bogomolov–Mumford, cf. [Huy16, §13.2.1].

Proposition 2.7. Let X be a K3 surface over an algebraically closed field and 𝐶 ⊂ 𝑋 be an integral
curve of geometric genus g. Assume further that C

1. deforms in the expected dimension,
2. deforms with maximal moduli and
3. has a locally reducible singularity at a point p.

Then C deforms to an integral curve D of geometric genus 𝑔+1 which deforms in the expected dimension
and with maximal moduli.

Proof. As the singularity at p is locally reducible, from Lemma 2.2 we may take 𝑓 : 𝐶 → 𝑋 to be a
partial normalisation of C which has one node over the point p and is smooth otherwise. In particular,
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[ 𝑓 ] ∈ ℳ𝑔+1(𝑋,O(𝐶)). Let M be an irreducible component of ℳ𝑔+1(𝑋,O(𝐶)) containing [ 𝑓 ]. From
[CGL19, Theorem 2.11], dim 𝑀 ≥ 𝑔 + 1. Consider now the moduli map

𝜙 : ℳ𝑔+1(𝑋,O(𝐶)) ℳ𝑔+1.

Let 𝐷𝑀 be an irreducible component of 𝑀∩𝜙−1 (𝜕ℳ𝑔+1) containing [ 𝑓 ], where 𝜕ℳ𝑔+1 = ℳ𝑔+1−ℳ𝑔+1
is the boundary divisor of ℳ𝑔+1.

For a general point, [ℎ] ∈ 𝐷𝑀 , ℎ : Γ → 𝑋 is a stable map such that Γ is an integral curve of
geometric genus g with a node and ℎ(Γ) and C lie on the same component of 𝑉𝐶,𝑔. Since C deforms
in the expected dimension, dim 𝐷𝑀 ≤ 𝑔, and hence, 𝐷𝑀 � 𝑀 . On the other hand, since 𝜕ℳ𝑔+1 is a
Q-Cartier divisor, 𝐷𝑀 has codimension one in M. We must have

𝑔 + 1 ≤ dim 𝑀 = dim 𝐷𝑀 + 1 ≤ 𝑔 + 1,

and hence, dim 𝑀 = 𝑔 + 1. This proves that for a general point ℎ : Γ → 𝑋 of M, 𝐷 = ℎ(Γ) is an integral
curve of geometric genus 𝑔 + 1 that deforms in the expected dimension.

Since C deforms with maximal moduli, there exists an irreducible component D of 𝜙−1(𝜕ℳ𝑔+1)

containing [ 𝑓 ] such that dim 𝜙(𝐷) = 𝑔. Let 𝑀 ′ be an irreducible component of ℳ𝑔+1(𝑋,O(𝐶))

containing D. Since 𝜙(𝑀 ′) is not contained in 𝜕ℳ𝑔+1, we conclude

𝑔 + 1 = dim 𝑀 ′ ≥ dim 𝜙(𝑀 ′) ≥ dim 𝜙(𝐷) + 1 = 𝑔 + 1,

and hence, dim 𝜙(𝑀 ′) = 𝑔 + 1. Therefore, for a general point ℎ : Γ → 𝑋 of 𝑀 ′, 𝐷 = ℎ(Γ) is an integral
curve of geometric genus 𝑔 + 1 that deforms with maximal moduli. �

Although we will not be using it in this paper, we include the following immediate corollary, which
is well-known to experts, as an application.

Corollary 2.8. Let X be a K3 surface over an algebraically closed field and 𝑅 ⊂ 𝑋 be a nodal rational
curve of arithmetic genus 𝑔 ≥ 1. For any 1 ≤ 𝑑 ≤ 𝑔, R deforms to a nodal integral curve C of geometric
genus d which deforms in the expected dimension and with maximal moduli.

Proof. The result follows by induction, Proposition 2.7 and the fact that a general deformation of a
nodal curve will be nodal and as such has unramified normalisation morphism, hence deforms in the
expected dimension from [CGL19, Proposition 2.9]. �

One similarly obtains the following.

Proposition 2.9. Let X be a K3 surface over an algebraically closed field and𝐶1, 𝐶2 ⊂ 𝑋 be two integral
curves of geometric genus 𝑔1, 𝑔2, respectively. Assume further that

1. 𝐶𝑖 deforms in the expected dimension for 𝑖 = 1, 2,
2. 𝐶𝑖 deforms with maximal moduli for 𝑖 = 1, 2,
3. |𝐶1 ∩ 𝐶2 | contains at least two distinct points.

Then 𝐶1 ∪ 𝐶2 deforms to an integral curve D of geometric genus 𝑔1 + 𝑔2 + 1 which deforms in the
expected dimension and with maximal moduli.

3. Families of curves of maximal moduli

There are two main ingredients in the proof of Theorem A

◦ the existence of infinitely many rational curves on every complex K3 surface [CGL19],
◦ the logarithmic Bogomolov–Miyaoka–Yau (BMY) inequality [Miy84].
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Let us first review the basics of the latter. For the applications that we have in mind, we start with
a reduced but possibly reducible curve D on a smooth projective surface X over C. Take now a log
resolution

(𝑋, 𝐷) (𝑋, 𝐷),

i.e., a birational projective morphism 𝑓 : 𝑋 → 𝑋 such that the total transform 𝐷 = 𝑓 −1(𝐷) =
∑𝑛
𝑖=1 Γ𝑖 of

D has simple normal crossings, with irreducible components Γ𝑖 and 𝑋\𝐷 � 𝑋\𝐷. We usually choose
(𝑋, 𝐷) to be the minimal resolution of (𝑋, 𝐷).

Now, for such a pair (𝑋, 𝐷) of a smooth projective surface and a SNC divisor, the log BMY inequality
says that if 𝐾𝑋 + 𝐷 is Q-effective, then

(𝐾𝑋 + 𝐷)2 ≤ 3𝑐2 (Ω
1
𝑋
(log 𝐷)). (3.1)

We recall that Ω1
𝑋
(log 𝐷) is the locally free sheaf which sits in the following short exact sequence

0 Ω1
𝑋

Ω1
𝑋
(log 𝐷)

𝑛⊕
𝑖=1

OΓ𝑖 0,

and we refer, for example, to [EV92, §2] for further details.

Remark 3.1. Note that there is a version of the log BMY inequality over fields of positive characteristic,
proven recently by Langer [Lan16]. The conclusion is essentially the same inequality; however, one
requires that the pair (𝑋, 𝐷) lifts in a compatible way to 𝑊2 (𝑘).

Over the complex numbers, we have

𝑐2 (Ω
1
𝑋
(log 𝐷)) = 𝑒(𝑋\𝐷) = 𝑒(𝑋\𝐷) = 𝑒(𝑋) − 𝑒(𝐷), (3.2)

where 𝑒(•) is the topological Euler characteristic.
For the applications we have in mind, X will be a K3 surface, and hence, 𝐾𝑋 + 𝐷 will always be

effective.
Although 𝑐2 (Ω1

𝑋
(log 𝐷)) can be computed topologically by equation (3.2) over C, we want to give

a purely algebraic formula for it in terms of 𝑐2 (𝑋), 𝑝𝑎 (𝐷) and the invariants of the singularities of D
(we refer to [dJP00, §5] for the basics of curve singularities). As the proof of this works in arbitrary
characteristic, we state it in this generality.

Lemma 3.2. Let X be a smooth projective surface over an algebraically closed field and D be a reduced
curve on X. Let (𝑋, 𝐷) be the minimal log resolution of (𝑋, 𝐷). Then

𝑐2 (Ω
1
𝑋
(log 𝐷)) = 𝑐2 (𝑋) + (𝐾𝑋 + 𝐷)𝐷 −

∑
𝑝∈𝐷

(2𝛿𝑝 − 𝛾𝑝 + 1), (3.3)

where 𝛿𝑝 and 𝛾𝑝 are the 𝛿-invariant and the number of local branches of D at p, respectively.

Proof. Let 𝐷 =
∑𝑛
𝑖=1 Γ𝑖 , where Γ𝑖 are the irreducible components of 𝐷. From the exact sequences

0 Ω1
𝑋
(log

𝑚−1∑
𝑖=1

Γ𝑖) Ω1
𝑋
(log

𝑚∑
𝑖=1

Γ𝑖) OΓ𝑚 0
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for 𝑚 = 1, . . . , 𝑛, we obtain

ch(Ω1
𝑋
(log 𝐷)) = ch(Ω1

𝑋
) +

𝑛∑
𝑚=1

ch(OΓ𝑚 )

= ch(Ω1
𝑋
) +

𝑛∑
𝑚=1

(ch(O𝑋 ) − ch(O𝑋 (−Γ𝑚)))

= 𝐾𝑋 + 𝐷 +
1
2
(𝐾2
𝑋
− 2𝑐2 (𝑋) −

𝑛∑
𝑚=1

Γ2
𝑚),

where ch(•) is the Chern character. It follows that

𝑐2 (Ω
1
𝑋
(log 𝐷)) = 𝑐2 (𝑋) +

1
2
(𝐾𝑋 + 𝐷)2 −

1
2
𝐾2
𝑋
+

1
2

𝑛∑
𝑚=1

Γ2
𝑚

= 𝑐2 (𝑋) + (𝐾𝑋 + 𝐷)𝐷 −
∑

1≤𝑖< 𝑗≤𝑛
Γ𝑖Γ 𝑗 .

Note that further blowing up 𝑋 at a singularity of 𝐷 does not change 𝑐2 (Ω1
𝑋
(log 𝐷)). The minimal log

resolution of (𝑋, 𝐷) does not blow up all singularities of D in case that D is reducible: If D has an
ordinary double point at p where two components of D meet transversely, we do not need to blow up X at
p. On the other hand, we can choose to blow up X at such p since it does not change 𝑐2(Ω1

𝑋
(log 𝐷)). This

has the advantage of streamlining our argument. Hence, we choose a log resolution (𝑋, 𝐷) of (𝑋, 𝐷)

which is minimal with the properties that 𝐷 has simple normal crossings and the proper transforms of
the components of D are disjoint from each other.

Let us write

𝐷 =
𝑛∑
𝑖=1

Γ𝑖 = Δ +
∑
𝑝∈𝐷𝑠

𝐸𝑝 ,

where Δ is the proper transform of D under 𝜋 : 𝑋 → 𝑋 and 𝐸𝑝 = 𝜋−1(𝑝) for 𝑝 ∈ 𝐷𝑠 , where 𝐷𝑠 is the
set of singularities of D. Clearly, 𝐸𝑝 is a tree of smooth rational curves for all 𝑝 ∈ 𝐷𝑠 . Then the above
equality takes the form

𝑐2 (Ω
1
𝑋
(log 𝐷)) = 𝑐2 (𝑋) + (𝐾𝑋 + Δ)Δ +

∑
𝑝∈𝐷𝑠

(𝐾𝑋 + 𝐸𝑝)𝐸𝑝 +
∑
𝑝∈𝐷𝑠

Δ𝐸𝑝

−
∑
𝑝∈𝐷𝑠

∑
1≤𝑖< 𝑗≤𝑛
Γ𝑖∪Γ 𝑗 ⊂𝐸𝑝

Γ𝑖Γ 𝑗 .

Since Δ is the normalisation of D,

(𝐾𝑋 + Δ)Δ = 2𝑝𝑎 (Δ) − 2 = 2𝑝𝑎 (𝐷) − 2 − 2
∑
𝑝∈𝐷

𝛿𝑝

= (𝐾𝑋 + 𝐷)𝐷 − 2
∑
𝑝∈𝐷

𝛿𝑝 .

For every 𝑝 ∈ 𝐷𝑠 , 𝑝𝑎 (𝐸𝑝) = 0, and hence,∑
𝑝∈𝐷

(𝐾𝑋 + 𝐸𝑝)𝐸𝑝 = −2
∑
𝑝∈𝐷𝑠

1.
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It is also clear that Δ𝐸𝑝 equals the number of local branches of D at 𝑝 ∈ 𝐷𝑠 . Therefore,

∑
𝑝∈𝐷𝑠

Δ𝐸𝑝 =
∑
𝑝∈𝐷𝑠

𝛾𝑝 .

Since 𝐸𝑝 is a tree of smooth rational curves,

∑
1≤𝑖< 𝑗≤𝑛
Γ𝑖∪Γ 𝑗 ⊂𝐸𝑝

Γ𝑖Γ 𝑗 = |𝐸𝑝 | − 1

for 𝑝 ∈ 𝐷𝑠 , where |𝐸𝑝 | is the number of irreducible components of 𝐸𝑝 . Finally,

𝑐2 (𝑋) = 𝑐2 (𝑋) +
∑
𝑝∈𝐷𝑠

|𝐸𝑝 |.

Combining all the above, we obtain equation (3.3). �

For convenience, we write

𝜇𝑝 = 2𝛿𝑝 − 𝛾𝑝 + 1.

Over the complex numbers, 𝜇𝑝 agrees with the Milnor number of D at p (see [Mil68, Theorem 10.5]).
However, this can fail in positive characteristic, so we will call 𝜇𝑝 the pseudo-Milnor number of
D at p.

We now work towards constructing a lower bound for (𝐾𝑋 +𝐷)2 in terms of (𝐾𝑋 +𝐷)2 and the local
contribution of the singularities of D. The following lemma is basically due to Orevkov–Zaidenberg
[OZ95, §4], but we give here a simple proof that works in all characteristics.

Lemma 3.3. Let X be a smooth projective surface over an algebraically closed field and D be a reduced
curve on X. Let (𝑋, 𝐷) be the minimal log resolution of (𝑋, 𝐷). Then

(𝐾𝑋 + 𝐷)2 ≥ (𝐾𝑋 + 𝐷)2 −
∑
𝑝∈𝐷

(
1 −

1
𝑚𝑝

)
𝜇𝑝 , (3.4)

where 𝑚𝑝 and 𝜇𝑝 are the multiplicity and pseudo-Milnor number of D at p, respectively.

Proof. As in the proof of Lemma 3.2, further blowing up 𝑋 at a singularity of 𝐷 does not change
(𝐾𝑋 +𝐷)2. So we choose a log resolution (𝑋, 𝐷) of (𝑋, 𝐷) which is minimal with the properties that 𝐷
has simple normal crossings and the proper transforms of the components of D are disjoint from each
other.

The proof of Lemma 3.2 already gives

(𝐾𝑋 + 𝐷)𝐷 = (𝐾𝑋 + 𝐷)𝐷 −
∑
𝑝∈𝐷𝑠

𝜇𝑝 +
∑
𝑝∈𝐷𝑠

(𝛾𝑝 − 1). (3.5)
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From now on, we denote 𝐾𝑋/𝑋 = 𝐾𝑋 − 𝜋∗𝐾𝑋 . Then, equation (3.5) and the fact that 𝐾𝑋/𝑋 .𝜋
∗𝐹 = 0 for

any divisor F on X yield

(𝐾𝑋 + 𝐷)2 − (𝐾𝑋 + 𝐷)2 = −
∑
𝑝∈𝐷𝑠

𝜇𝑝 +
∑
𝑝∈𝐷𝑠

(𝛾𝑝 − 1) + (𝐾2
𝑋
− 𝐾2

𝑋 )

+
∑
𝑝∈𝐷𝑠

𝐾𝑋𝐸𝑝 + (𝐾𝑋Δ − 𝐾𝑋𝐷)

= −
∑
𝑝∈𝐷𝑠

𝜇𝑝 +
∑
𝑝∈𝐷𝑠

(𝛾𝑝 − 1) + 𝐾2
𝑋/𝑋

+
∑
𝑝∈𝐷𝑠

𝐾𝑋𝐸𝑝 + 𝐾𝑋 (Δ − 𝜋∗𝐷).

Thus, equation (3.4) holds as long as we can prove

(𝛾𝑝 − 1) + 𝐾𝑋𝐸𝑝 + (𝐾2
𝑋/𝑋

)𝑝 + (𝐾𝑋 (Δ − 𝜋∗𝐷))𝑝 ≥
𝜇𝑝

𝑚𝑝
(3.6)

for all 𝑝 ∈ 𝐷𝑠 . The problem is local, so we work in a formal neighbourhood of a point 𝑝 ∈ 𝐷𝑠 in X. For
simplicity, we drop the subscript p in all notation so that 𝑚 = 𝑚𝑝 , 𝜇 = 𝜇𝑝 , 𝛾 = 𝛾𝑝 and 𝐸 = 𝐸𝑝 .

We can factor 𝜋 : 𝑋 → 𝑋 into a sequence of blowups:

𝑋 = 𝑋𝑎 𝑋𝑎−1 . . . 𝑋1 𝑋0 = 𝑋,
𝜋𝑎,𝑎−1 𝜋𝑎−1,𝑎−2 𝜋1,0

where each 𝜋𝑖,𝑖−1 : 𝑋𝑖 → 𝑋𝑖−1 is the blowup of 𝑋𝑖−1 at one point for 𝑖 = 1, 2, . . . , 𝑎. Let 𝜋𝑖, 𝑗 =
𝜋 𝑗+1, 𝑗 ◦ 𝜋 𝑗+2, 𝑗+1 ◦ . . . ◦ 𝜋𝑖,𝑖−1 be the birational map 𝑋𝑖 → 𝑋 𝑗 for 0 ≤ 𝑗 < 𝑖 ≤ 𝑎, and let 𝐹𝑖 be the
exceptional divisor of 𝜋𝑖,𝑖−1 : 𝑋𝑖 → 𝑋𝑖−1 for 𝑖 = 1, 2, . . . , 𝑎. Then

𝐾𝑋/𝑋 = 𝜋∗𝑎,1𝐹1 + 𝜋∗𝑎,2𝐹2 + . . . + 𝜋∗𝑎,𝑎−1𝐹𝑎−1 + 𝐹𝑎

Δ = 𝜋∗𝐷 − 𝑚1𝜋
∗
𝑎,1𝐹1 − 𝑚2𝜋

∗
𝑎,2𝐹2 − . . . − 𝑚𝑎−1𝜋

∗
𝑎,𝑎−1𝐹𝑎−1 − 𝑚𝑎𝐹𝑎

for some 𝑚𝑖 ∈ Z+ satisfying that

𝑚 = 𝑚1 = max
1≤𝑖≤𝑎

𝑚𝑖 .

It follows (see, e.g., [dJP00, Theorem 5.4.13]) that

𝜇 + 𝛾 − 1 = 2𝛿 =
𝑎∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)

𝐾2
𝑋/𝑋

+ 𝐾𝑋 (Δ − 𝜋∗𝐷) =
𝑎∑
𝑖=1

(𝑚𝑖 − 1).

Therefore, equation (3.6) holds provided that we can prove

(𝛾 − 1) + 𝐾𝑋𝐸 ≥ 0. (3.7)

We recall that 𝐸 = 𝜋−1(𝑝) is a tree of smooth rational curves. Thus, from the adjunction formula,

𝐾𝑋𝐸 = (𝐾𝑋 + 𝐸)𝐸 − 𝐸2 = −2 − 𝐸2 ≥ −1,
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where 𝐸2 ≤ −1 because the components of E have negative definite intersection matrix. So we have
equation (3.7) if 𝛾 ≥ 2. Otherwise, 𝛾 = 1, i.e., D has a locally irreducible or unibranch singularity at p.
We claim that 𝐾𝑋𝐸 ≥ 0 in this case.

Let 𝐸𝑖 = 𝜋−1
𝑖,0 (𝑝) for 𝑖 = 1, 2, . . . , 𝑎. Then 𝐸1 = 𝐹1 and 𝐾𝑋1𝐸1 = −1. If 𝜋𝑖,𝑖−1 : 𝑋𝑖 → 𝑋𝑖−1 is the

blowup of 𝑋𝑖−1 at a smooth point of 𝐸𝑖−1, then

𝐸𝑖 = 𝜋∗𝑖,𝑖−1𝐸𝑖−1 and 𝐾𝑋𝑖𝐸𝑖 = 𝐾𝑋𝑖−1𝐸𝑖−1.

Otherwise, if 𝜋𝑖,𝑖−1 : 𝑋𝑖 → 𝑋𝑖−1 is the blowup of 𝑋𝑖−1 at a singular point of 𝐸𝑖−1, then

𝐸𝑖 = 𝜋∗𝑖,𝑖−1𝐸𝑖−1 − 𝐹𝑖 and 𝐾𝑋𝑖𝐸𝑖 = 𝐾𝑋𝑖−1𝐸𝑖−1 + 1.

In conclusion, we have

𝐾𝑋1𝐸1 = −1 and 𝐾𝑋𝑖𝐸𝑖 =

{
𝐾𝑋𝑖−1𝐸𝑖−1 if 𝜋𝑖,𝑖−1(𝐹𝑖) ∉ (𝐸𝑖−1)sing

𝐾𝑋𝑖−1𝐸𝑖−1 + 1 if 𝜋𝑖,𝑖−1(𝐹𝑖) ∈ (𝐸𝑖−1)sing

for 2 ≤ 𝑖 ≤ 𝑎. Therefore, 𝐾𝑋𝐸 = 𝐾𝑋𝑎𝐸𝑎 ≥ 0 as long as one of 𝜋𝑖,𝑖−1 is the blowup of 𝑋𝑖−1 at a singular
point of 𝐸𝑖−1. For a locally irreducible singularity 𝑝 ∈ 𝐷𝑠 , it is easy to see that 𝜋𝑎,𝑎−1 : 𝑋𝑎 → 𝑋𝑎−1
blows up 𝑋𝑎−1 at a singular point of 𝐸𝑎−1. Consequently, 𝐾𝑋𝐸 ≥ 0 when 𝛾 = 1. This proves equation
(3.7) and hence equation (3.6), giving equation (3.4). �

Combining equations (3.1), (3.3) and (3.4), we obtain

(𝐾𝑋 + 𝐷)2 −
∑
𝑝∈𝐷

(
1 −

1
𝑚𝑝

)
𝜇𝑝 ≤ 3

(
𝑐2 (𝑋) + (𝐾𝑋 + 𝐷)𝐷 −

∑
𝑝∈𝐷

𝜇𝑝

)
. (3.8)

We are now in a position to put all the above together for K3 surfaces in the characteristic zero case,
where the BMY inequality holds.

Proposition 3.4. Let 𝐷 ⊂ 𝑋 be an integral curve of geometric genus g in a K3 surface over an
algebraically closed field of characteristic zero. If

𝐷2 > 4690 + 550𝑔 + 16𝑔2,

then D has at least one locally reducible singularity.

Proof. Suppose that D only has locally irreducible singularities. Then

(𝐾𝑋 + 𝐷)𝐷 −
∑
𝑝∈𝐷

𝜇𝑝 = (𝐾𝑋 + 𝐷)𝐷 − 2
∑
𝑝∈𝐷

𝛿𝑝 = 2𝑔 − 2. (3.9)

By equation (3.8) and c2 (𝑋) = 24, we have

𝐷2 −
∑
𝑝∈𝐷

(
1 −

1
𝑚𝑝

)
𝜇𝑝 ≤ 66 + 6𝑔. (3.10)

Combining equations (3.9) and (3.10), we have∑
𝑝∈𝐷

𝜇𝑝

𝑚𝑝
≤ 68 + 4𝑔. (3.11)
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On the other hand,

𝜇𝑝 ≥ 𝑚𝑝 (𝑚𝑝 − 1) (3.12)

for all 𝑝 ∈ 𝐷. Putting equations 3.9–3.12 together gives

68 + 4𝑔 ≥
∑
𝑝∈𝐷

𝜇𝑝

𝑚𝑝
≥

∑
𝑝∈𝐷

(√
𝜇𝑝 +

1
4
−

1
2

)
≥

√
𝐷2 +

9
4
− 2𝑔 −

1
2
,

where we note that we have used that the function 𝑓 (𝑥) =
√
𝑥 + 1

4 −
1
2 vanishes at 0 and has everywhere

negative second derivative, hence is concave and
∑

𝑓 (𝑥𝑖) ≥ 𝑓 (
∑

𝑥𝑖) for positive real 𝑥𝑖 . It follows
that 𝐷2 ≤ 4690 + 550𝑔 + 16𝑔2. Therefore, D has at least one locally reducible singularity if 𝐷2 >
4690 + 550𝑔 + 16𝑔2. �

Proposition 3.5. Let 𝐷1, 𝐷2 ⊂ 𝑋 be two distinct integral curves in a K3 surface X over an algebraically
closed field of characteristic 0. If

2𝐷1𝐷2 >

(√
4𝐷2

1 + 9 +

√
4𝐷2

2 + 9 + 2
)
(37 + 𝐷2

1 + 𝐷2
2) + 1,

then 𝐷1 and 𝐷2 meet at (at least) two distinct points.

Proof. Suppose that 𝐷1 and 𝐷2 meet at a unique point q. Applying equation (3.8) to (𝑋, 𝐷 = 𝐷1 +𝐷2),
we have

𝐷2 −
∑
𝑝∈𝐷

(
1 −

1
𝑚𝐷,𝑝

)
𝜇𝐷,𝑝 ≤ 72 + 3(𝐷2 −

∑
𝑝∈𝐷

𝜇𝐷,𝑝), (3.13)

where we use 𝜇𝐶,𝑝 and 𝑚𝐶,𝑝 to denote the pseudo-Milnor number and multiplicity of a reduced curve
C at p, respectively.

Note the following simple facts for 𝑖 = 1, 2, 𝑝 ∈ 𝐷 and 𝐷1 ∩ 𝐷2 = {𝑞} as above

𝜇𝐷,𝑝 = 𝜇𝐷1 , 𝑝 + 𝜇𝐷2 , 𝑝 + 2(𝐷1.𝐷2)𝑝 − 1
= 𝜇𝐷1 , 𝑝 + 𝜇𝐷2 , 𝑝 − 1 if 𝑝 ≠ 𝑞

𝜇𝐷,𝑞 = 𝜇𝐷1 ,𝑞 + 𝜇𝐷2 ,𝑞 + 2𝐷1𝐷2 − 1

𝑚𝐷,𝑝 = 𝑚𝐷1 , 𝑝 + 𝑚𝐷2 , 𝑝 ≤ 𝑀 :=
√

𝐷2
1 +

9
4
+

√
𝐷2

2 +
9
4
+ 1.

(3.14)

Combining equations (3.13) and (3.14), we obtain

75 − 3
2∑
𝑖=1

∑
𝑝∈𝐷𝑖

𝜇𝐷𝑖 , 𝑝 = 72 + 3(𝐷2 −
∑
𝑝∈𝐷

𝜇𝑝) − 3(𝐷2
1 + 𝐷2

2)

≥ 𝐷2 −
∑
𝑝∈𝐷

(
1 −

1
𝑚𝐷,𝑝

)
𝜇𝐷,𝑝 − 3(𝐷2

1 + 𝐷2
2)

≥ 2(𝐷1𝐷2 − 𝐷2
1 − 𝐷2

2) −
∑
𝑝∈𝐷

(
1 −

1
𝑀

)
𝜇𝐷,𝑝

=
2
𝑀

𝐷1𝐷2 − 2(𝐷2
1 + 𝐷2

2) +
𝑀 − 1
𝑀

(
1 −

2∑
𝑖=1

∑
𝑝∈𝐷𝑖

𝜇𝐷𝑖 , 𝑝

)
.

https://doi.org/10.1017/fms.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.24


12 Xi Chen and Frank Gounelas

Hence,

75 ≥
2
𝑀

𝐷1𝐷2 +
𝑀 − 1
𝑀

− 2(𝐷2
1 + 𝐷2

2),

and the proposition follows. �

The lower bounds in the above propositions are almost certainly not optimal. Better results can be
achieved with improvement to equation (3.4) (cf. [Moe15]).

We are now ready to prove Theorem A.

Proof of Theorem A. Let us first prove it for 𝑔 = 1.
By [CGL19, Theorem A], there are infinitely many integral rational curves 𝐶𝑛 on X. Suppose that 𝐶2

𝑛

is unbounded. Then 𝐶𝑛 has a locally reducible singularity by Proposition 3.4 for 𝐶2
𝑛 sufficiently large.

Such 𝐶𝑛 can be deformed to a nonisotrivial family of curves of geometric genus 1 by Proposition 2.7.
Suppose that 𝐶2

𝑛 ≤ 𝑐 for all n. We claim that

lim
min(𝑚,𝑛)→∞

𝐶𝑚𝐶𝑛 = ∞. (3.15)

Fixing 𝑁 ∈ Z+, since rankZ Pic (𝑋) ≤ 20, 𝐶𝑁 , 𝐶𝑁+1, . . . , 𝐶𝑁+20 are linearly dependent in Pic (𝑋)Q.
Suppose that

𝑎0𝐶𝑁 + 𝑎1𝐶𝑁+1 + . . . + 𝑎20𝐶𝑁+20 = 0 (3.16)

in Pic (𝑋) for some integers 𝑎𝑖 , not all zero. Since 𝐶𝑖 are effective, 𝑎𝑖 cannot be all positive or negative.
Let us rewrite equation (3.16) as

𝐹 =
∑
𝑎𝑖>0

𝑎𝑖𝐶𝑁+𝑖 = −
∑
𝑎 𝑗<0

𝑎 𝑗𝐶𝑁+ 𝑗 .

Since 𝐶𝑁 , 𝐶𝑁+1, . . . , 𝐶𝑁+20 are distinct integral curves, it is easy to see that F is nef. This implies that
there are only finitely many integral rational curves R such that 𝐹𝑅 = 0, since if 𝐹2 = 0, then F can
only be zero on the (up to 24) singular fibres of the elliptic fibration induced by F, and if 𝐹2 > 0, then
from the Hodge index theorem the orthogonal space 𝐹⊥ in the effective cone is negative definite and
spanned by finitely many −2-curves. Hence, there exists 𝑚 ≥ 𝑁 such that 𝐹𝐶𝑚 ≥ 1. Then 𝐶𝑚 + 2𝐹 is
nef and big, and hence,

lim
𝑛→∞

(𝐶𝑚 + 2𝐹)𝐶𝑛 = ∞.

Thus, there exists 𝐶 ∈ {𝐶𝑁 , 𝐶𝑁+1, . . . , 𝐶𝑁+20, 𝐶𝑚} such that 𝐶𝐶𝑛 is unbounded. This proves equation
(3.15).

By Proposition 3.5, 𝐶𝑚 and 𝐶𝑛 meet at (at least) two distinct points for 𝐶𝑚𝐶𝑛 sufficiently large since
𝐶2
𝑚 ≤ 𝑐 and 𝐶2

𝑛 ≤ 𝑐. There are infinitely many such pairs 𝐶𝑚 and 𝐶𝑛 by equation (3.15), and

lim
min(𝑚,𝑛)→∞

(𝐶𝑚 + 𝐶𝑛)
2 = ∞.

Such 𝐶𝑚 ∪𝐶𝑛 can be deformed to a nonisotrivial family of curves of geometric genus 1 by Proposition
2.9, which as pointed out above will have unbounded self-intersection. This proves the theorem for
𝑔 = 1. The remaining cases follow from Propositions 2.7 and 3.4 by induction. �
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4. An algebraic proof of Kobayashi’s theorem

We say that a vector bundle E on a quasi-projective variety X is Q-effective if

H0 (𝑋, Sym𝑚 𝐸) ≠ 0

for some positive integer m, where Sym𝑚 𝐸 is the m-th symmetric product of E. We call E pseudoeffective
if, for every 𝑛 ∈ Z+, there exists 𝑚 ∈ Z+ such that

H0 (𝑋, Sym𝑚𝑛 𝐸 ⊗ O𝑋 (𝑚𝐴)) ≠ 0,

where A is a fixed ample divisor on X. Alternatively, let

𝑌 = P(𝐸∨) = Proj (Sym• 𝐸) = Proj
⊕
𝑚≥0

Sym𝑚 𝐸

be the projectivisation of 𝐸∨, and let O𝑌 (1) be the tautological bundle of Y over X. By the Leray spectral
sequence, the Q-effectivity (resp. pseudoeffectivity) of E coincides with that of O𝑌 (1).

Let now X be a K3 surface, and let 𝑌 = Proj (𝑆•Ω1
𝑋 ) with 𝐿 = O𝑌 (1) being the tautological bundle

of 𝜋 : 𝑌 → 𝑋 . The following follows easily from Hodge theory over the complex numbers, whereas in
positive characteristic is a theorem of Rudakov–Shafarevich [RS76] (see also Nygaard [Nyg79]).

Theorem 4.1. Let X be a K3 surface over an algebraically closed field. Then H0 (𝑋,Ω1
𝑋 ) = 0.

See Proposition 5.1 for a simple, conditional algebraic proof of the above. In what follows, we will
give an algebraic proof of Kobayashi’s theorem (i.e., Theorem B of the introduction) by reducing it to
the above. The proof in fact works in arbitrary characteristic under the following, minimal assumption.

Hypothesis 4.2. There exists an unramified morphism 𝑓 : 𝐸 → 𝑋 from a smooth genus 1 curve which
deforms in the expected dimension and with maximal moduli.

In characteristic zero, Theorem A (in combination with Proposition 2.5) produces infinitely many
such curves, whereas in positive characteristic we are not able to produce such a curve, although in
remarks after the proof we will give various cases in which such a curve does exist.

Theorem 4.3. Let X be a K3 surface over an algebraically closed field. If we assume Hypothesis (4.2),
then

H0(𝑋, Sym𝑚Ω1
𝑋 ) = 0 for 𝑚 ≥ 1.

Proof. We maintain the notation for𝑌, 𝐿 from the beginning of this section. Suppose for a contradiction
that L is Q-effective. Let m be the smallest positive integer such that 𝑚𝐿 is effective, and let 𝐺 ∈ |𝑚𝐿 |.
We write

𝐺 =
∑

𝑏𝑖𝐷𝑖 ,

where 𝐷𝑖 ∈ |𝑎𝑖𝐿 + 𝜋∗𝐹𝑖 | are the irreducible components of G for some 𝑎𝑖 ∈ N and some divisors
𝐹𝑖 ∈ Pic (𝑋), and 𝑏𝑖 ∈ Z+ is the multiplicity of 𝐷𝑖 in G. Since 𝑚𝐿 =

∑
𝑎𝑖𝑏𝑖𝐿 +

∑
𝑏𝑖𝜋

∗𝐹𝑖 , we obtain
that ∑

𝑏𝑖𝐹𝑖 = 0 in Pic (𝑋). (4.1)

Let𝐶 ⊂ 𝑋 be an integral curve of geometric genus 1 as given by Hypothesis 4.2. From the assumption,
there exists an irreducible curve 𝐵 ⊂ |𝐶 | with C as member and such that every curve Γ ∈ 𝐵 is of
geometric genus 1.
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When 𝑎𝑖 = 0, 𝐹𝑖 is necessarily effective and 𝐶𝐹𝑖 ≥ 0. Note also that there exists at least one i such
that 𝐶𝐹𝑖 ≤ 0 and 𝑎𝑖 > 0 since otherwise, 𝐶𝐹𝑖 > 0 for all 𝑎𝑖 > 0 and so

∑
𝐶𝐹𝑖 > 0, contradicting

equation (4.1).
From now on, we denote by 𝑎 = 𝑎𝑖 , 𝐷 = 𝐷𝑖 and 𝐹 = 𝐹𝑖 so that 𝑎𝑖 > 0 and 𝐶𝐹𝑖 ≤ 0.
From the assumption, the general deformation of the normalisation of C is an immersion. We

henceforth replace C by a general member of B and let 𝜈 : 𝐸 = 𝐶𝜈 → 𝑋 be its normalisation, i.e., we
have that 𝜈∗Ω1

𝑋 → Ω1
𝐸 is a surjection. As the kernel is torsion-free on a smooth curve, it is a line bundle,

and by taking determinants we see that it must be isomorphic to (Ω1
𝐸 )

∨ � O𝐸 . This leads to the exact
sequence

0 𝒩∨
𝜈 𝜈∗Ω1

𝑋 Ω1
𝐸 0,

O𝐸 O𝐸

(4.2)

where 𝒩𝜈 is the normal bundle of 𝜈. From our assumption and the following lemma, the above sequence
does not split.

Lemma 4.4. Sequence (4.2) splits if and only if B parametrises an isotrivial family of elliptic curves.

Proof. If 𝑓 : C → 𝐵 the family with B a smooth projective curve and E the generic fibre of f, then a
section Ω1

𝐸 → 𝜈∗Ω1
𝑋 also induces a splitting of

0 𝑓 ∗Ω1
𝐵 |𝑈 Ω1

C |𝑈 Ω1
𝑓 |𝑈 0

on some open subset 𝑈 ⊂ 𝐵. Dualising this sequence and pushing forward to U, we get a split sequence
whose first coboundary map in cohomology is the Kodaira–Spencer map. Hence, this map is necessarily
zero so the family over U is isotrivial. �

Since 𝑎𝐿 + 𝐹 is effective, H0 (𝑆𝑎Ω1
𝑋 ⊗ O𝑋 (𝐹)) ≠ 0 and as C is a general member of a covering

family of curves on X, we see that

H0 (𝐸, 𝑆𝑎𝜈∗Ω1
𝑋 ⊗ O𝐸 (𝜈

∗𝐹)) ≠ 0

as otherwise a global section of 𝑆𝑎Ω1
𝑋 ⊗O𝑋 (𝐹) would vanish everywhere. By equation (4.2), 𝑆𝑎𝜈∗Ω1

𝑋 ⊗

O𝐸 (𝜈
∗𝐹) has a filtration

0 � 𝐸1 � 𝐸2 � · · · � 𝐸𝑎+1 := 𝑆𝑎𝜈∗Ω1
𝑋 ⊗ O𝐸 (𝜈

∗𝐹)

with graded pieces all isomorphic to O𝐸 (𝜈
∗𝐹). If the global section O𝐸 → 𝐸𝑎+1 from above vanishes

when mapped to 𝐸𝑎+1/𝐸𝑎 = O𝐸 (𝜈
∗𝐹), then it must induce a nonzero global section of 𝐸𝑎. By induction,

one of the quotients 𝐸𝑖/𝐸𝑖−1 must have a nonzero global section, and hence, H0 (O𝐸 (𝜈
∗𝐹)) ≠ 0. On the

other hand, 𝐶𝐹 ≤ 0 and deg 𝜈∗𝐹 ≤ 0. So we necessarily have O𝐸 (𝜈
∗𝐹) = O𝐸 .

This proves that for all i satisfying 𝑎𝑖 > 0 and 𝐶𝐹𝑖 ≤ 0 we have O𝐸 (𝜈
∗𝐹𝑖) = O𝐸 , and hence,

𝐶𝐹𝑖 = 0. For the remaining i, we clearly have 𝐶𝐹𝑖 ≥ 0. Therefore, we conclude that 𝐶𝐹𝑖 = 0 for all i
from equation (4.1). In summary, we have

◦ if 𝑎𝑖 > 0, O𝐸 (𝜈
∗𝐹𝑖) = O𝐸 ,

◦ if 𝑎𝑖 = 0, 𝐹𝑖 is effective and 𝐶𝐹𝑖 = 0.

As exact sequence (4.2) does not split,

ℎ0 (𝐸, 𝑆𝑛𝜈∗Ω1
𝑋 ) = 1 (4.3)

for all 𝑛 ∈ Z+.
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Work now again with a fixed i so that 𝑎𝑖 > 0 as above, keeping the notation 𝐷, 𝐹, 𝑎. Since D is
reduced, 𝑌𝑝 = 𝜋−1 (𝑝) meets D transversely for 𝑝 ∈ 𝑋 general, and as C is a general member of a
covering family of curves on X, also 𝑌𝑝 = 𝜋−1(𝑝) meets D transversely for 𝑝 ∈ 𝐶 general. Let now
𝑅 = 𝐸 ×𝑋 𝑌 � Proj (𝑆•(𝜈∗Ω1

𝑋 )) with diagram

𝑅 𝑌

𝐸 𝑋.

𝜌

𝜋

𝜈

Since 𝑌𝑝 and D meet transversely for 𝑝 ∈ 𝐶 general, 𝑅𝑞 and 𝜌∗𝐷 meet transversely for 𝑞 ∈ 𝐸 general,
where 𝑅𝑞 is the fibre of R over q.

Note that 𝜌∗𝐷 is a section of 𝑎𝜌∗𝐿. From equation (4.3), ℎ0 (𝑅, 𝑛𝜌∗𝐿) = 1 for all 𝑛 ≥ 0, and so we
must have 𝜌∗𝐷 = 𝑎Γ, where Γ is the unique section of 𝜌∗𝐿. Then we must have 𝑎 = 1 because 𝑅𝑞 and
𝜌∗𝐷 meet transversely for 𝑞 ∈ 𝐸 general.

Hence, we have concluded that 𝑎𝑖 = 0 or 1 for all i. If there are two distinct components 𝐷𝑖 and 𝐷 𝑗

of G such that 𝑎𝑖 = 𝑎 𝑗 = 1, then 𝜌∗𝐷𝑖 = 𝜌∗𝐷 𝑗 = Γ. Therefore,

𝐷𝑖 ∩ 𝜋−1 (𝐶) = 𝐷 𝑗 ∩ 𝜋−1 (𝐶)

for 𝐶 ∈ 𝐵 general, and hence, 𝐷𝑖 = 𝐷 𝑗 . Consequently, G has only one component 𝐷𝑖 with 𝑎𝑖 = 1,
and so we have H0 (Ω1

𝑋 ⊗ O𝑋 (𝐹)) ≠ 0 for some 𝐹 ∈ Pic (𝑋) such that −𝐹 =
∑

𝐹𝑖 is effective. As
H0 (Ω1

𝑋 ⊗O𝑋 (𝐹)) ⊂ H0 (Ω1
𝑋 ), we obtain a contradiction from the case 𝑚 = 1, namely Theorem 4.1. �

In conclusion, we have proved that Ω1
𝑋 is not Q-effective if Hypothesis (4.2) holds. This of course is a

consequence of Theorem A in characteristic zero, but in the following remark, we outline various cases
where this is true in characteristic zero under far weaker assumptions than the existence of infinitely
many rational curves on X.

Remark 4.5.

1. Recall that from Propositions 2.7 and 2.9, the existence of either one rational curve 𝐶 ⊂ 𝑋 with a
locally reducible singularity or two distinct rational curves meeting in at least two distinct points
guarantee the existence of a nonisotrivial family of genus 1 curves in X.

2. More generally, we can produce a nonisotrivial family of genus 1 curves on X if there are distinct
rational curves 𝐶1, . . . , 𝐶𝑛 ⊂ 𝑋 and points 𝑝𝑖 ≠ 𝑞𝑖 ∈ 𝐶𝜈𝑖 on their normalisations such that for all
1 ≤ 𝑖 < 𝑛

𝜈(𝑝𝑖) = 𝜈(𝑞𝑖+1) and 𝜈(𝑝𝑛) = 𝜈(𝑞1),

where 𝜈 : �𝐶𝜈𝑖 → 𝑋 is the normalisation of ∪𝐶𝑖 . In this case, we can find a stable map 𝑓 : Γ → 𝑋
such that Γ = ∪Γ𝑖 , Γ𝑖 � 𝐶𝜈𝑖 , 𝑓 (Γ𝑖) = 𝐶𝑖 ,

|Γ1 ∩ Γ2 | = . . . = |Γ𝑛 ∩ Γ1 | = 1 and Γ𝑖 ∩ Γ 𝑗 = ∅ otherwise.

In positive characteristic, even though there exist rational curves which deform too much and without
unramified deformations (e.g., a quasi-elliptic fibration on a supersingular K3 surface), a version of the
Arbarello–Cornalba lemma (Proposition 2.5) eludes us for the time being. One could ask the following.

Question 4.6. Let 𝑓 : 𝐶 → 𝑋 be a morphism from a smooth projective curve of genus 𝑔 ≥ 1 to
a K3 surface over an algebraically closed field. If f deforms in the expected dimension, is a general
deformation of f unramified?
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Assuming the above and that all rational curves in Remark 4.5 are rigid, Propositions 2.7 and 2.9
imply that the cases listed in Remark 4.5 also provide a genus 1 curve satisfying the properties of
Hypothesis 4.2, and hence, Kobayashi’s theorem holds.

5. Global 1-forms and stability

As mentioned in the introduction and in the previous section (see Theorem 4.1), the proof that a K3
surface does not have any global 1-forms uses analytic techniques in characteristic zero (Hodge theory)
and is rather nontrivial in positive characteristic. In this section, we gather some auxiliary results and
questions, giving simple, conditional algebraic proofs of the fact that for a K3 surface X we have that
H0 (𝑋,Ω1

𝑋 ) = 0 and that Ω1
𝑋 is slope-stable (with respect to any ample divisor), using only the existence

of special curves in X.
Proposition 5.1. Let X be a smooth projective variety of dimension n over an algebraically closed field
and 𝑓 : 𝐶 → 𝑋 an unramified morphism from a smooth curve of genus 𝑔 > 1 so that f deforms in a
family which dominates X and varies with maximal moduli. Then H0 (𝑋,𝑇𝑋 ) = 0.

Proof. Taking cohomology of the sequence

0 𝑇𝐶 𝑓 ∗𝑇𝑋 𝑁 𝑓 0,

the Kodaira–Spencer map H0(𝐶, 𝑁 𝑓 ) → H1 (𝐶,𝑇𝐶 ) must be injective, as it is the induced differential
to the moduli map and C deforms with maximal moduli. This implies that H0(𝐶, 𝑓 ∗𝑇𝑋 ) = 0, but as C
deforms to cover X, we obtain the result. �

In the case of K3 surfaces, the existence of such curves in characteristic zero is guaranteed by
Theorem A, but the current proof relies on the existence of infinitely many rational curves, whose
proof in fact uses the vanishing of 1-forms in a number of ways. The assumptions of the above do hold
unconditionally for K3 surfaces in the cases listed in Remark 4.5.

We move now to the question of stability of the (co)tangent bundle. We recall that for an ample
divisor 𝐴 ∈ Pic (𝑋) on a projective variety X we say that a vector bundle E on X is 𝜇𝐴-(semi)stable
(often just 𝜇) if

𝜇𝐴(𝐹) :=
det(𝐹)𝐴dim𝑋−1

rk(𝐹)
<

(≤)

det(𝐸)𝐴dim𝑋−1

rk(E)

for all torsion-free subsheaves 𝐹 � 𝐸 . In fact, if F does not satisfy the above inequality, then we say
that F destabilises E, and we may assume that F is a subvector bundle with torsion-free quotient. In
particular, if, for a K3 surface X, 𝐸 = Ω1

𝑋 is not semistable, then there exists a destabilising line bundle
𝐿 ⊂ Ω1

𝑋 , i.e., 𝐿𝐴 ≥ 0.
The assumption we will be making to give a quick proof of stability of the tangent bundle will be the

following.
Question 5.2. Let X be a K3 surface over an algebraically closed field. Is it true that for any ample divisor
𝐷 ∈ Pic (𝑋)Q there exist integral curves 𝐸1, . . . , 𝐸𝑛 ⊂ 𝑋 of geometric genus 1 so that 𝐷 =

∑𝑛
𝑖=1 𝑎𝑖𝐸𝑖

for 𝑎𝑖 ∈ Q≥0?
Remark 5.3. We note that the above is known to be true in the following cases
1. The Picard rank of X is ≤ 2 [CGL19, Corollary 7.3, Theorem 8.4].
2. X contains no smooth rational curves: In many such cases, the effective cone is generated by

smooth genus 1 curves even (see [Kov94]). For the rest (in particular the case where the cone is
not polyhedral), one can use the fact that every nef divisor can be written as a sum of minimal nef
divisors and that each such divisor is linearly equivalent to an integral curve of geometric genus 1
(see [CGL19, §3] for the definition and for this result).
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We claim that the stability of Ω1
𝑋 follows from a positive answer to Question 5.2 for K3 surfaces X.

In fact, we can prove a more general statement. For that purpose, let us recall some basic facts about
Harder–Narasimhan filtrations and the cone of curves.

Let E be a vector bundle on a smooth projective variety X. We use the notation 𝜇𝐴,max(𝐸) to denote
that the maximum of the slopes 𝜇𝐴(𝐹) for all subsheaves 𝐹 ⊂ 𝐸 and some ample A, which we from
now on suppress in the notation. This number is given by the Harder–Narasimhan filtration

𝐸 = 𝐸0 � 𝐸1 � . . . � 𝐸𝑚 � 𝐸𝑚+1 = 0

of E, where 𝐹𝑖 = 𝐸𝑖/𝐸𝑖+1 are torsion-free and semistable sheaves satisfying

𝜇(𝐹0) < 𝜇(𝐹1) < . . . < 𝜇(𝐹𝑚)

and 𝜇max(𝐸) is given by 𝜇(𝐹𝑚) = 𝜇(𝐸𝑚). Using Harder–Narasimhan filtrations, we have

𝑟𝜇max(𝐸) ≥ 𝜇max(∧
𝑟𝐸)

for all 1 ≤ 𝑟 ≤ rank(𝐸).
For a smooth projective variety X, we let 𝑁1 (𝑋) denote the group of 1-cycles modulo numerical

equivalence and let 𝑁1 (𝑋)Q and 𝑁1 (𝑋)R denote 𝑁1 (𝑋) ⊗ Q and 𝑁1 (𝑋) ⊗ R, respectively. For X over
C, we have

𝑁1 (𝑋)Q � 𝐻𝑛−1,𝑛−1 (𝑋,Q) = 𝐻𝑛−1,𝑛−1 (𝑋) ∩ 𝐻2𝑛−2 (𝑋,Q).

For lack of a better term, we call the classes 𝐴1𝐴2 . . . 𝐴𝑛−1 ∈ 𝑁1 (𝑋) for ample 𝐴1, 𝐴2, . . . , 𝐴𝑛−1 ∈

Pic (𝑋) ample complete intersection classes. We call the cone Amp1(𝑋)R ⊂ 𝑁1 (𝑋)R generated by
these classes the cone of ample complete intersection curves.

Theorem 5.4. Let X be a smoooth projective variety of dimension n over an algebraically closed field
of characteristic 0, and let 𝐺 ⊂ 𝑁1 (𝑋)R be the set consisting of numerical classes 𝜉 with the following
property: There exists a sequence 𝑓𝑚 : 𝐶𝑚 → 𝑋 of morphisms from smooth projective curves 𝐶𝑚 to X
such that

◦ 𝑓𝑚(𝐶𝑚) passes through a general point of X, i.e., the deformation of 𝑓𝑚 dominates X for each m,
◦ the numerical classes [( 𝑓𝑚)∗𝐶𝑚] of ( 𝑓𝑚)∗𝐶𝑚 satisfy

lim
𝑚→∞

[( 𝑓𝑚)∗𝐶𝑚]

deg( 𝑓𝑚)∗𝐶𝑚
= 𝜉

◦ and the conormal bundles

𝑀 𝑓𝑚 = ker( 𝑓 ∗𝑚Ω1
𝑋 −→ Ω1

𝐶𝑚
)

of 𝑓𝑚 satisfy

lim
𝑚→∞

𝑛 max(𝜇max (𝑀 𝑓𝑚 ), deg 𝐾𝐶𝑚) − deg 𝑓 ∗𝑚𝐾𝑋

𝑛 deg( 𝑓𝑚)∗𝐶𝑚
≤ 0,

where deg( 𝑓𝑚)∗𝐶𝑚 is the degree of ( 𝑓𝑚)∗𝐶𝑚 with respect to a fixed ample line bundle on X.
If Amp1(𝑋)R is asymptotically generated by G, i.e., Amp1(𝑋)R is contained in the closure of the cone

generated by G, then Ω1
𝑋 is 𝜇-semistable for all ample divisors A on X. More precisely, if Ω1

𝑋 contains
a locally free subsheaf E of rank r such that 𝜇(𝐸) ≥ 𝜇(Ω1

𝑋 ), then 𝑛𝑐1 (𝐸) − 𝑟𝐾𝑋 is numerically trivial.
In particular, if X is a complex K3 surface, A is an ample divisor on X and there is a positive answer

to Question 5.2, then Ω1
𝑋 is 𝜇𝐴-stable.
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Proof. Suppose that there exists a locally free subsheaf 𝐸 ⊂ Ω1
𝑋 of rank r such that 𝜇(𝐸) ≥ 𝜇(Ω1

𝑋 ).
Then 𝐿 = ∧𝑟𝐸 is a subsheaf of Ω𝑟𝑋 , and hence, 𝐻0(Ω𝑟𝑋 (−𝐿)) ≠ 0.

Let 𝜉 ∈ 𝐺 and 𝑓𝑚 : 𝐶𝑚 → 𝑋 be the sequence of morphisms associated to 𝜉. Since 𝑓𝑚(𝐶𝑚) passes
through a general point of X, we see that

𝐻0(𝐶𝑚, 𝑓
∗
𝑚Ω

𝑟
𝑋 (−𝐿)) ≠ 0.

Then we have

ℎ0 (𝑀𝑟
𝑓𝑚
(− 𝑓 ∗𝑚𝐿)) + ℎ0 (𝑀𝑟−1

𝑓𝑚
(− 𝑓 ∗𝑚𝐿) ⊗ 𝐾𝐶𝑚) ≥ ℎ0( 𝑓 ∗𝑚Ω

𝑟
𝑋 (−𝐿)) > 0

by the left exact sequence

0 𝑀𝑟
𝑓𝑚

𝑓 ∗𝑚Ω
𝑟
𝑋 𝑀𝑟−1

𝑓𝑚
⊗ 𝐾𝐶𝑚 ,

where 𝑀𝑎
𝑓𝑚

= ∧𝑎𝑀 𝑓𝑚 . On the other hand, we know that

𝐻0 (𝑉 (−𝐵)) = 0 if deg 𝐵 > 𝜇𝑚𝑎𝑥 (𝑉)

for a vector bundle V and a divisor B on a smooth projective curve. It follows that

𝐿.( 𝑓𝑚)∗𝐶𝑚 = deg 𝑓 ∗𝑚𝐿 ≤ max
(
𝜇𝑚𝑎𝑥 (𝑀

𝑟
𝑓𝑚
), 𝜇max(𝑀

𝑟−1
𝑓𝑚

) + deg 𝐾𝐶𝑚

)
≤ max

(
𝑟𝜇max(𝑀 𝑓𝑚 ), (𝑟 − 1)𝜇max(𝑀 𝑓𝑚 ) + deg 𝐾𝐶𝑚

)
≤ 𝑟 max(𝜇max(𝑀 𝑓𝑚 ), deg 𝐾𝐶𝑚).

Therefore, (
𝐿

𝑟
−

𝐾𝑋
𝑛

)
( 𝑓𝑚)∗𝐶𝑚

deg( 𝑓𝑚)∗𝐶𝑚
≤

𝑛 max(𝜇max(𝑀 𝑓𝑚 ), deg 𝐾𝐶𝑚 ) − deg 𝑓 ∗𝑚𝐾𝑋

𝑛 deg( 𝑓𝑚)∗𝐶𝑚
.

By our definition of G, we conclude that (
𝐿

𝑟
−

𝐾𝑋
𝑛

)
𝜉 ≤ 0

for all 𝜉 ∈ 𝐺. On the other hand, since 𝜇(𝐸) ≥ 𝜇(Ω1
𝑋 ),(

𝐿

𝑟
−

𝐾𝑋
𝑛

)
𝐴𝑛−1 ≥ 0.

Fixing 𝜉 ∈ 𝐺, since Amp1 (𝑋)R is open in 𝑁1 (𝑋)R,

𝐴𝑛−1 − 𝑡𝜉 ∈ Amp1(𝑋)R

for some 𝑡 > 0 sufficiently small. Since Amp1(𝑋)R is asymptotically generated by G,

𝐴𝑛−1 − 𝑡𝜉 =
∞∑
𝑚=1

𝑡𝑚𝜉𝑚

for some 𝑡𝑚 > 0 and 𝜉𝑚 ∈ 𝐺. Finally, from

(𝑛𝐿 − 𝑟𝐾𝑋 )𝐴
𝑛−1 ≥ 0, (𝑛𝐿 − 𝑟𝐾𝑋 )𝜉 ≤ 0 and (𝑛𝐿 − 𝑟𝐾𝑋 )𝜉𝑚 ≤ 0,
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we conclude that (𝑛𝐿 − 𝑟𝐾𝑋 )𝜉 = 0. Therefore,

(𝑛𝐿 − 𝑟𝐾𝑋 )𝜉 = 0

for all 𝜉 ∈ 𝐺. This implies that 𝑛𝐿 − 𝑟𝐾𝑋 is numerically trivial since G also generates 𝑁1 (𝑋)R.
For a complex K3 surface X, it is easy to see that 𝐸/deg 𝐸 ∈ 𝐺 for every elliptic curve E on X. Since

by hypothesis the elliptic curves generate the ample cone Amp(𝑋) of X, Amp(𝑋) is generated by G. If
Ω1
𝑋 is destabilised by a line bundle L, then L is numerically trivial. For K3 surfaces, this implies that

𝐿 = O𝑋 so that 𝐻0(Ω1
𝑋 (−𝐿)) = 𝐻0 (Ω1

𝑋 ) ≠ 0 which is a contradiction. �

Remark 5.5. In positive characteristic, Langer [Lan15, §4] proves that K3 surfaces not dominated by
P2 have strongly semistable cotangent bundle and that K3 surfaces admitting a quasi-elliptic fibration
(e.g., unirational K3 surfaces in characteristic 2) do not have semistable cotangent bundle. If semistable,
then Ω1

𝑋 must also be stable as H0 (𝑋,Ω1
𝑋 ) = 0 is known for an arbitrary K3. We expect Question 5.2

to still have a positive answer here though. In fact if one could furthermore assume that all the genus 1
curves generating the nef cone admit normalisations which deform to unramified morphisms (something
which does not occur for fibres of a quasi-elliptic fibrations), the above proof goes through.

We conclude this section by giving the proof of Nakayama’s theorem in arbitrary characteristic. This
proof is essentially the same as in [BDPP13, Theorem 7.8] (which draws from Nakayama’s original
proof from [Nak04]) with the necessary adjustments for positive characteristic in place.

Theorem 5.6 (Nakayama in characteristic 𝑝 ≥ 0). Let X be a K3 surface over an algebraically closed
field k. Assume further that Ω1

𝑋 is 𝜇-stable and that

H0 (𝑋, Sym𝑛 Ω1
𝑋 ) = 0 for all 𝑛 > 0.

Then Ω1
𝑋 is not pseudoeffective.

Proof. Since stability persists if we pass to a larger algebraically closed field, we may assume k is
uncountable. Let 𝑌 = P(Ω1

𝑋 ), and suppose for a contradiction that 𝐿 = O𝑌 (1) is pseudoeffective. Then
there is a Nakayama–Zariski decomposition of 𝐿 = 𝐸 + 𝑁 , where E is an effective R-divisor and N is
nef in codimension 1 (due to [Nak04] in characteristic 0 and [Mus13, FL17] otherwise).

From [Lan10, Theorem 4.1] (or Flenner or Mehta–Ramanathan’s theorem in characteristic zero), we
may pick a very ample smooth curve C on X so that Ω1

𝑋 |𝐶 is strongly semistable (or just semistable in
characteristic zero). Then on the ruled surface 𝑅 = P(Ω1

𝑋 |𝐶 ) every pseudoeffective line bundle is nef (in
fact for the projectivisation of a degree zero strongly semistable bundle on a curve, these cones agree).
On the other hand, 𝐿 |𝑅 is not ample, since 𝐿2 |𝑅 = 𝑐1 (Ω1

𝑋 ) · 𝐶 = 0. Hence, 𝐿 |𝑅 is on the boundary of
the nef cone of R. Write 𝐸 = 𝑎𝐿 + 𝜋∗𝐸 ′. As the Picard number of R is two and 𝐸 |𝑅 is also R-effective,
it must be that 𝐸 ′.𝐶 ≥ 0. If 𝐸 ′.𝐶 > 0, then 𝐸 ′ is effective on X (as C can vary), so in particular, 𝐸 |𝑅
is big and hence ample. This contradicts 𝐿 |𝑅 = 𝐸 |𝑅 + 𝑁 |𝑅 being boundary on the nef cone though. In
other words, 𝐶𝐸 ′ = 0 and as C can vary, 𝐸 ′ = 0, forcing 𝐸 = 𝑎𝐿. Then 𝑎 = 0 since from the assumption
L has no effective multiple. It follows that 𝐸 = 0 and L is nef in codimension 1. In particular, it fails to
be nef on at most countably many curves 𝐶𝑖 . Taking a hyperplane section H of Y, we see then that 𝐿 |𝐻
is nef. In particular, 𝐿2 · 𝐻 ≥ 0. In terms of Chern classes, this means that

−𝑐2 (𝑇𝑋 ) ≥ 0,

which contradicts 𝑐2 (𝑇𝑋 ) = 24. �

Acknowledgements. The idea to use rational curves to prove Nakayama’s theorem had been suggested to the second author by
Claire Voisin during a talk on the subject, and we would like to thank her for this insight. We would like to thank Adrian Langer
for pointing out and filling in some missing steps in the proof of Theorem 5.6. The first named author is partially supported by
the NSERC Discovery Grant 262265, whereas the second is supported by the ERC Consolidator Grant 681838 “K3CRYSTAL”.

https://doi.org/10.1017/fms.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.24


20 Xi Chen and Frank Gounelas

Funding statement. This research was supported by grants from the NSERC Discovery Grant (262265); ERC Consolidator
Grant (681838). We acknowledge support by the Open Access Publication Funds of the Göttingen University.

Conflicts of Interest. None.

References

[AC81] E. Arbarello and M. Cornalba,‘Footnotes to a paper of Beniamino Segre: “On the modules of polygonal curves and
on a complement to the Riemann existence theorem”’ (Italian) [Math. Ann. 100 (1928), 537–551; Jbuch 54, 685],
Math. Ann. 256(3) (1981), 341–362.

[ACG11] E. Arbarello, M. Cornalba and P.A. Griffiths, Geometry of Algebraic Curves, Vol. II, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 268 (Springer, Heidelberg, 2011). With a
contribution by Joseph Daniel Harris.

[BHT11] F. Bogomolov, B. Hassett and Y. Tschinkel, ‘Constructing rational curves on K3 surfaces’, Duke Mathematical Journal
157(3) (2011), 535–550.

[BT00] F. Bogomolov and Y. Tschinkel, ‘Density of rational points on elliptic K3 surfaces’, Asian Journal of Mathematics
4(2) (2000), 351–368.

[BDPP13] S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell, ‘The pseudo-effective cone of a compact Kähler manifold and
varieties of negative Kodaira dimension’, J. Algebraic Geom. 22(2) (2013), 201–248.

[Che99] X. Chen, ‘Rational curves on 𝐾3 surfaces’, J. Algebraic Geom. 8(2) (1999), 245–278.
[CGL19] X. Chen, F. Gounelas and C. Liedtke, ‘Curves on K3 surfaces’, Duke Math. Journal, Preprint, 2022, arXiv:1907.01207.

[CFGK17] C. Ciliberto, F. Flamini, C. Galati and A. L. Knutsen, ‘Moduli of nodal curves on K3 surfaces’, Adv. Math. 309
(2017), 624–654.

[dJP00] T. de Jong and G. Pfister, Local Analytic Geometry, Basic Theory and Applications, Advanced Lectures in Mathematics
(Friedr. Vieweg & Sohn, Braunschweig, 2000).

[DS17] T. Dedieu and E. Sernesi, ‘Equigeneric and equisingular families of curves on surfaces’, Publ. Mat. 61(1) (2017),
175–212.

[EV92] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, Vol. 20 (Birkhäuser Verlag, Basel, 1992).
[FKPS08] F. Flamini, A. L. Knutsen, G. Pacienza and E. Sernesi, ‘Nodal curves with general moduli on 𝐾3surfaces’, Comm.

Algebra 36(11) (2008), 3955–3971.
[FL17] M. Fulger and B. Lehmann, ‘Zariski decompositions of numerical cycle classes’, J. Algebraic Geom. 26(1) (2017),

43–106.
[Huy14] D. Huybrechts, ‘Curves and cycles on K3 surfaces’, Algebr. Geom. 1(1) (2014), 69–106. With an appendix by C.

Voisin.
[Huy16] D. Huybrechts, Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, Vol. 158 (Cambridge Uni-

versity Press, Cambridge, 2016).
[Kem15] M. Kemeny, ‘The moduli of singular curves on K3 surfaces’, J. Math. Pures Appl. (9) 104(5) (2015), 882–920.
[Kob80] S. Kobayashi, ‘The first chern class and holomorphic symmetric tensor fields’, J. Math. Soc. Japan 32(2) 1980),

325–329.
[Kov94] S. J. Kovács, ‘The cone of curves of a 𝐾3 surface’, Math. Ann. 300(4) (1994), 681–691.
[Lan10] A. Langer, ‘A note on restriction theorems for semistable sheaves’, Math. Res. Lett. 17(5) (2010), 823–832.
[Lan15] A. Langer, ‘Generic positivity and foliations in positive characteristic’, Advances in Mathematics 277(C) (2015),

1–23.
[Lan16] A. Langer, ‘The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic’, Duke Math.

J. 165(14) (2016) 2737–2769.
[LL11] J. Li and C. Liedtke, ‘Rational curves on K3 surfaces’, Inventiones Mathematicae 188(3) (2011), 713–727.
[Mil68] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, No. 61 (Princeton University

Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968).
[Miy84] Y. Miyaoka, ‘The maximal number of quotient singularities on surfaces with given numerical invariants’, Math. Ann.

268(2) (1984), 159–171.
[MM83] S. Mori and S. Mukai, ‘The uniruledness of the moduli space of curves of genus 11’, In Algebraic Geometry

(Tokyo/Kyoto, 1982), Lecture Notes in Math., Vol. 1016 (Springer, Berlin, 1983), 334–353.
[Moe15] T. K. Moe, ‘On the number of cusps on cuspidal curves on Hirzebruch surfaces’, Math. Nachr. 288(1) (2015)

76–88.
[Mus13] M. Mustaţă, ‘The non-nef locus in positive characteristic,’ In A Celebration of Algebraic Geometry, Clay Math. Proc.,

Vol. 18 (Amer. Math. Soc., Providence, RI, 2013), 535–551.
[Nak04] N. Nakayama, ‘Zariski-and abundance’, In MSJ Memoirs, Vol. 14 (Mathematical Society of Japan, Tokyo, 2004).
[Nyg79] N. O. Nygaard, ‘A 𝑝-adic proof of the nonexistence of vector fields on 𝐾3surfaces’, Ann. of Math. (2) 110(3) (1979),

515–528.

https://doi.org/10.1017/fms.2022.24 Published online by Cambridge University Press

https://arxiv.org/abs/1907.01207
https://doi.org/10.1017/fms.2022.24


Forum of Mathematics, Sigma 21

[OZ95] S. Orevkov and M. Zaidenberg, ‘On the number of singular points of plane curves,’ unpublished, URL:
https://arxiv.org/abs/alg-geom/9507005.

[RS76] A. N. Rudakov and I. R. Šafarevič, ‘Inseparable morphism(s of algebraic surfaces’, Izv. Akad. Nauk SSSR Ser. Mat.
40(6) (1976), 1269–1307, 1439.

https://doi.org/10.1017/fms.2022.24 Published online by Cambridge University Press

https://arxiv.org/abs/alg-geom/9507005
https://doi.org/10.1017/fms.2022.24

	1 Introduction
	2 Deformations and singular curves
	3 Families of curves of maximal moduli
	4 An algebraic proof of Kobayashi's theorem
	5 Global 1-forms and stability

