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SOME CONTINUED FRACTIONS OF RAMANUJAN AND 
MEIXNER-POLLACZEK POLYNOMIALS 

BY 

DAVID R. MASSON 

ABSTRACT. We examine the convergence and analytic properties of 
a continued fraction of Ramanujan and its connection to the orthogonal 
polynomials of Meixner-Pollaczek. 

1. Introduction. B. Berndt et al. [3] have analysed the entries in Ch. 12 of 
Ramanujan's second notebook. The majority of entries deal with continued fractions 
(43 of 49 entries). Of these 43 entries, over half (22/43) are connected with continued 
fractions of the form 

(1) CF(z) = z + K . 
n=\ \ z — an ) 

That is, continued fractions whose «th partial numerators and denominators are poly­
nomials in n of degree ^ 2 and 1 respectively. 

For this class of continued fractions the associated difference equation 

(2) Xn+X - (z - dn)Xn + {an2 + bn + c)Xn^x = 0 

can be solved exactly in terms of the hypergeometric function 2^1 and its limits 
I F I , ^ , D A and QF\ [7]. Also for a certain range of the parameters, (1) and (2) are 
related to the orthogonal polynomials of Meixner-Pollaczek [2], [7]. 

These facts coupled with Pincherle's Theorem [9] allow one to reanalyse many of 
Ramanujan's continued fractions in greater detail by stating: 

1. the precise domain of convergence in the parameter space, 
2. the rate of convergence, 
3. analytic properties including analytic continuation. 
In Sec. 2 we give some background theorems which we apply in Sec. 3 to Ramanu-

jan's Entry 25 ([10], p. 147). See also [3], p. 268 for references to Euler, Stieltjes and 
Perron. 
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2. Background. Since Pincherle's Theorem is such a key ingredient linking a 
continued fraction and its associated difference equation, we repeat a version of it 
here. 

THEOREM (Pincherle [9]): Let an^§,nlL 1. Then 

K (^ 

converges with approximants 

(3) K ( g ) = -xj*7x$" + Oixtil/xtflo 

iff there exists linearly independent solutions X^\X^ (subdominant and dominant 
respectively) to the difference equation 

Xn+[ — bnXn ~ ^nXn-\ = 0 

with the property 
/(5) /Y(d) 

n-—>oo 
lim Xf/Xf = 0. 

Thus the existence of a subdominant solution yields a necessary and sufficient 
condition for the convergence of the association continued fraction, an estimate on 
its rate of convergence and its value in terms of a ratio of subdominant terms. For 
accessible proofs of the above see [5], [6]. 

Although a subdominant solution is numerically elusive and explicit examples are 
rare, one does have the exact analytic result given below [7]. 

THEOREM 1. Let a, d2 — 4aj£ 0. Then 

Xn+i — (z — dn)Xn + (an2 + bn + c)Xn^x = 0 

has: (a) linearly independent solutions 

(4) Xn-\\ \ = ± - ™ —^-2F\(n + a,n + fcn + l±;è±) 

where 

(5) \i = Vd2 - 4a, -TT/2 < arg/i ^ TT/2 

i(l±d//x) 

( ^ ) s i ± ; / . 

8±=1-(l±d/fi) 

7 ± 

#(w + a)(w + /?) = tfft2 + Z?rc + c, 
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(b) a subdominant solution iff 

|Re(d//x)| + 

given by 

Re 
a+b\ d z 

2a J [i fi 
*o 

xi s ) 
X* ' /Re( j j ) < 0 or if Re(fj = 0 and Re(7+ - 7 ~ ) > 0 

I X- ifRe(fj >0or ifRe(£) = 0 and Re(7+ - 7 " ) < 0 

(6) W / y M j \x?/xï const. ('XOD'XO)' 
2-1/1/2 

x n 
-|Re(7+-7~ 

U-Mi) I) •MO) 

; -e) ) -
For a proof of Theorem 1 and the special case d = 0 see [7], [8]. 

3. Application. As an example of the use of the above, we examine Ramanujan's 
Entry 25 ([10], p. 147) which may be precisely stated as: 

ENTRY 25. One has 

r ( ^ ) r ( ^ ) _ 4 k2-i2 k2-32 

r ( ^ ± 3 ) r ( ^ p ) x- 2x 

iffRex>0ork2 = 12,32,---. 

2x -

Although Ramanujan provides no proof and states no conditions on the parameters 
x,k the Entry 25 above follows from the more detailed statement below concerning 
the related /-fraction 

(7) l/CF(z)=i ( l 2"*2 )/4 (32-*2)/4 

1 — 1 — Z • 

THEOREM 2. If ±Im z > 0 then the Nth approximant of (7) is 

(8) 

wAere 

1 (l2 - k2)/4 ((2N - l)2 - k2)/4 _ 
=/ ± (z) + o(yv-i'mzi) 

(9) /±(z) = 2 z±4/ 
r(^p)r(^) 
r(^)r(^) 
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Furthermore if k2 < 1 then this Nth approximant is a ratio of Meixner-Pollaczek 
polynomials with the denominator polynomials orthogonal with respect to the real 
line positive measure dw(x) with 

(10) ^ ^ = - ^ (f+(x) -f-{x)\x e (-oo, oo). 
dx Z7T 

PROOF. By comparing (7) and (1) one has a = l,b = — l ,c = (1 — k2)/4 and 

d = 0. From (5) this yields /i = 2i,6± = ^ , 7 ± = ± z / 2 / > = ~\ + \ and/3 = - ^ - f . 
From Theorem 1 and Pincherle's Theorem one then obtains (8) and (9) after expressing 

r, ( 1 k 1 k , z 1 \ t / l ifc 1 it , z 1 \ 
2 F l V - 2 + 2 ' " 2 - 2 ; ± , 2 : 2 j and 2 F l V2 + 2 ' 2 " 2 ; 1 ± i 2 ; 2 j 

in terms of F functions using [4], 2.8 (31), (32), (51). The connection between the 
approximants of (7) and the orthogonal polynomials of Meixner-Pollaczek is detailed 
in [7] (see also [2]) and follows from the general theory of/-fractions and matrices in 
[1], [11]. The essential feature is that, for k2 < 1, (7) is a real /-fraction with Cauchy 
representation 

( ID i/aw=r**> 
J—oo z •*• 

in terms of a positive measure dw(x). One then has 

\_ (l2-k2)/4 ((2N - l)2 - k2)/4 = Pjfr(z/2, C + 1) 
z - z - " " ' - z P£+1(z/2,C)(C + l) 

where F^(JC,C) is a Pollaczek polynomial with C = (— 1 +^)/2, A = (l—k)/2 satisfy­
ing (yV+C+l) JP^+ 1(jc,C)-2^(x,C)+(^+C+2A-l)^_1(x,C) - 0 , P ^ = 0,/>0

A = 1 
and JPÙ(x/2,C)PÙ(x/2,C)dw(x) = 0,N ^ M. Eq. (10) now follows from (8), (9) 
and (11). • 

One can always express (1) in terms of T functions provided that d = 0 and 
b/a — 0, ± 1 , ±2, • • •. Entry 25 is a particular case with b/a = —1. It yields an 
interesting example of associated Pollaczek polynomial measures which may be simply 
expressed in terms of F functions. 

Note that for this example k2 can be negative with k then pure imaginary and C, À 
complex. The fact that the Pollaczek parameters can be complex seems to have been 
neglected in the literature (see [2]). Entry 25 provides a simple example of this type. 

Note also that/±(z) are each meromorphic functions for z G C. Thus the analytic 
continuation of (7) from one half plane to the other, yields two related meromorphic 
functions. 
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