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Abstract  We extend the group theoretic notions of transfer and stable elements to graded centres of
triangulated categories. When applied to the centre Z*(DP(B)) of the derived bounded category of a
block algebra B we show that the block cohomology H*(B) is isomorphic to a quotient of a certain
subalgebra of stable elements of Z*(DP(B)) by some nilpotent ideal, and that a quotient of Z*(DP(B))
by some nilpotent ideal is Noetherian over H*(B).
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1. Introduction

The graded centre of a triangulated category C with shift functor X' consists of all natural
transformations Ide — X" which commute modulo the sign (—1)™ with X', where n runs
over the integers. For B a source algebra or a block algebra of a p-block of a finite group,
there are canonical graded maps from the block cohomology H*(B) and its Tate analogue
H*(B) to the centres Z*(D(B)) and Z*(mod(B)) of the bounded derived and stable
module categories which factor through Hochschild cohomology HH*(B) and its Tate
analogue HH *(B), respectively. Analogously to questions raised in [11], it is natural
to ask when the canonical maps H*(B) — Z*(D"(B)) or H*(B) — Z*(mod(B)) are
isomorphisms modulo nilpotent ideals. As in [11], the relevance of this type of question
lies in the fact that H*(B) is an invariant of the local structure of the block, while
Z*(DP(B)) and Z*(mod(B)) are invariants of the bounded derived and stable module
category, respectively, and it is not known to what extent these categories determine the
local structure. The following weaker version of this question has an affirmative answer:
the image of the canonical map H*(B) — Z*(D®(B)) lies in a certain subalgebra of
stable elements, defined in §5, and the induced map is then indeed an isomorphism
modulo nilpotent ideals; more precisely, we have the following theorem.

Theorem 1.1. Let k be an algebraically closed field of prime characteristic p. Let G
be a finite group and let B be a source algebra of a block of kG with a defect group P.
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Denote by G : D*(B) — DP(kP) the restriction functor. The canonical map H*(B) —
Z*(D"(B)) sends H*(B) to the subalgebra of G-stable elements Z(D®(B)) and there is
a nilpotent ideal N in Z}(D(B)) such that this map induces an isomorphism H*(B) &
Zg(D"(B))/N.

This is proved in § 8. For completeness, we include several straightforward observations,
with proofs at the end of §2.

Proposition 1.2. Let k be an algebraically closed field of prime characteristic p, let
G be a finite group and let B be a block algebra of kG. There is a nilpotent ideal N
in Z*(D(B)) such that Z*(D®(B))/N is Noetherian as a H*(B)-module. In particular,
the graded algebra Z*(DP(B))/N is finitely generated.

Proposition 1.3. Let k be a field of characteristic p and let P be a finite p-group.
Let N be the kernel of the evaluation map Z*(D®(kP)) — H*(P,k). The ideal N
is nilpotent and the canonical map H*(P, k) — Z*(DP(kP)) induces an isomorphism
H*(P k) — Z*(D"(kP))/N.

This implies in particular that if B is a nilpotent block then the canonical map
H*(B) — Z*(DP(B)) is an isomorphism modulo nilpotent ideals. Graded centres of
stable module categories seem to be more elusive; the questions of whether the degree
zero component Z°(mod(B)) is finite dimensional and even what the kernel of the canon-
ical map Z(B) — Z°(mod(B)) is are not clear. For B a Brauer tree algebra, Z*(mod(B))
is calculated in [6]. Rickard noted that almost vanishing morphisms in the sense of Hap-
pel [5] can be used to construct elements in Z°(C) for C any triangulated category.
Auslander—Reiten sequences for modules over a symmetric algebra A give rise to almost
vanishing homomorphisms in mod(A) of degree —1, and as a consequence we get that
Z~1(mod(A)) is not finite dimensional, in general.

Proposition 1.4. Let A be a finite-dimensional symmetric algebra over an alge-
braically closed field k and let U be a finitely generated indecomposable non-projective
A-module. Suppose that U does not have odd (2-period, or that char(k) = 2. There is
an element ( € Z~'(mod(A)) such that ((U) : U — 2(U) represents an almost split
sequence ending in U and such that {(V) = 0 for any finitely generated indecompos-
able non-projective A-module V' which is not isomorphic to 2"(U), for any integer n.
In particular, if A has infinitely many (2-orbits of isomorphism classes of finitely gener-
ated non-projective modules whose §2-period is not odd, then Z~!(mod(A)) is not finite
dimensional.

1.1. Notation

Throughout this paper, R is a commutative ring with unit element. Let C, D, £ be
categories, let F,F' : C — D and G,G’ : D — &£ be covariant functors. For any natural
transformation ¢ : G — G’ we denote by ¥ F : GF — G'F the natural transformation
given by (YF)(X) = (F(X)) : G(F(X)) = G'(F(X)) for any object X in C. Similarly,
for any natural transformation ¢ : F — F’ we denote by Gy : GF — GF' the natural
transformation given by (G¢)(X) = G(¢(X)) : G(F(X)) — G(F'(X)) for any object X
in C.
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2. Graded centres of graded categories

Graded centres are being considered by a growing number of authors (see, for example,
[2,4]). We review the terminology and basic properties.

Definition 2.1. Let C be an R-linear category and let X : C — C be an R-linear
equivalence. We define a graded R-module Z*(C) as follows. For any integer n we denote
by Z™(C,X) the R-module of natural transformations ¢ : Ide — X™ satisfying Yo =
(—1)"pX. We call Z*(C, X)) the graded centre of the graded category (C,X). If X is clear
from the context, we write Z*(C) instead of Z*(C, X).

Remark 2.2. In particular, Z°(C, ) consists of all natural transformations ¢ : C — C
satisfying Yo = pX. This condition is void if X = Id¢. In that case, Z°(C,1d¢) = Z(C)
consists of all natural transformations ¢ : Ide — Id¢, traditionally called the centre of
the category C. It is easy to see that Z(C) is commutative. If C = mod(A), where A
is any ring, we have a canonical isomorphism Z(A) = Z(C) mapping z € Z(A) to the
natural transformation consisting, for any A-module U, of the endomorphism given by
multiplication with z on U. We ignore set theoretic issues in this paper, since the results
stated in § 1 involve only finitely generated module categories and their derived and stable
categories.

Remark 2.3. The equality Yy = (—1)"¢X in Definition 2.1 is an equality of natural
transformations from ¥ to ™1, The sign is motivated by the ‘turning triangles’ axiom:
if (C, X)) is a triangulated category and if U Lvswh X(U) is an exact triangle in
C, then the triangle
(=1)"Z"(f)

(=D"X"(9) (=1)"2"(h)

() (V) (W) ()

is exact. Hence, if ¢ : Ide — X" is any natural transformation, we have a commutative
diagram

U 1% W 2(U)
w(U)l <1>"¢<v>i l«:(vv) l(l)%ww»

M) =i 2 V) e 2 W)

o o ——eas 2 O)
(D" () (-1)" =" (g) (-)" =" (h)

Thus, this diagram defines a morphism of triangles provided that (—1)"p(X(U)) =
Z(p(U)).

The graded R-module Z*(C) becomes an associative graded R-algebra via the R-
bilinear product mapping a pair (¢,¢) € Z™(C) x Z™(C) to the composition (X)) o
© € Z™T(C) for any two integers m, n. Strictly speaking, for this to make sense in
negative degrees, we have to choose an inverse equivalence X ~! and natural isomorphisms
YoX 1 =Ide = X! o X, so that we can identify the functors X" o X™ = Xn+m for
any two integers n, m, positive or negative. In practice, this may not be an issue because
X is frequently not only an equivalence, but an automorphism; that is, X o X! =
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Ide = X~ ' o X. This is, for instance, the case if X is a shift functor in some category of
complexes. The sign convention has the following immediate consequence.

Proposition 2.4. Let C be an R-linear category and let ) : C — C be an R-linear
equivalence. The R-algebra Z*(C) is graded commutative.

Proof. Let m, n be two integers, let p € Z™(C) and ¢ € Z"(C). Since p X = (—1)"Xp
we have pX™ = (—=1)™" X" p. Using the fact that ¢ is a natural transformation from Id¢
to X we get a commutative diagram

Ide —>—> xm

‘| =

m F ymtn

Together we get i = (E™4) 0 p = (pX") 0t = (~1)"(Z"p) o) = (~1)™pgp. O

Definition 2.5. Let C be an R-linear category and let X : C — C be an R-linear
equivalence. For any two objects U, V in C we define a graded R-module Ext?C’ ) (U, V)
by setting Ext(¢ vy (U,V) = Home (U, X"(V)) for any integer n. As before, if ¥ is clear
from the context, we write Exte (U, V) instead of Exti¢ vy (U, V).

Remark 2.6. If U, V, W are three objects in an R-linear category C endowed
with an R-linear equivalence X' : C — C, there is a graded composition Extz(V, W) x
Ext;(U, V) — Extg(U, W) mapping a pair (¢, ) € Extg(V,W) x Extg'(U,V) to the
composition X™ (1)) o ¢ € Exty' ™" (U, W). This defines an associative graded R-algebra
structure on Ext; (U, U), and Ext; (U, V) becomes an Ext;(V, V)-Extg (U, U)-bimodule
in this way. Moreover, for any object U in C there is a canonical graded algebra homo-
morphism Z*(C) — Extj(U,U) mapping a natural transformation ¢ : Ide — X™ to the

morphism ¢(U) : U — X"(U), where n is any integer.

Example 2.7. Let A be an R-algebra. The derived bounded category of finitely gen-
erated A-modules DP(A) together with the shift functor is triangulated, and for any
bounded complexes of A-modules U, V' we have Extpu(4)(U, V) = Ext}y (U, V). If, more-
over, A is finitely generated projective as an R-module, then

HH*(A) = ExtA%Aop (A, A);
thus, an element in HH"(A) can be represented by a morphism
¢:A— Aln
in the bounded derived category of A—A-bimodules

pP (A ® AOP).
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For any bounded complex U of A-modules, the functor — élé U applied to ¢ yields a
morphism ¢(U) : U — U[n] in DP(A). This family of morphisms defines clearly a nat-
ural transformation from the identity functor on DP(A) to [n]. By chasing signs, one
verifies that this is in fact an element ¢ € Z*(DP(A)). Thus, the map ¢ + ¢ defines
a homomorphism of graded algebras HH*(A) — Z*(DP(A)). This is not surjective, in
general, not even in degree zero (see [7] for an example). For any bounded complex of
A-modules U, evaluation at U defines a canonical graded algebra homomorphism (see
Remark 2.6) Z*(DP(A)) — Ext’(U,U), and the composition of the two graded algebra
homomorphisms
HH*(A) — Z*(D®(A)) — Ext’(U,U)

L
is the canonical map induced by the functor — © U from DP(A ® A°P) to DP(A).

Example 2.8. Let A be an R-algebra which is finitely generated projective as R-
module and suppose that A is relatively R-injective as a left A-module; this is the case,
for instance, if A is symmetric and hence in particular if A = RG for some finite group
G. Let mod(A) be the R-stable category of the category mod(A) of finitely generated
A-modules. That is, mod(A) is the R-linear quotient category of mod(A) obtained from
identifying to zero all relatively R-projective A-modules. Taking cokernels of relatively R-
injective envelopes defines an equivalence ¥ on mod(A). Together with triangles induced
by R-split exact sequences, mod(A) endowed with X becomes a triangulated category
(see, for example, [5]). Applied to (C,X) = (mod(A), X)) and A-modules, we get Tate
cohomology,

Ext5(U, V) = Bxt 4 (U, V).

As in Example 2.7, for any A-module U we get graded algebra homomorphisms
HH (A) — Z*(mod(A)) — Bxt 4(U,U)

whose composition is induced by the functor — ® U. This map is neither surjective nor
injective, in general (see [6] for an example). A

If R = k is an algebraically closed field and C is a triangulated category such that Z*(C)
is finitely generated as k-algebra, one can associate with any object U in C a variety
Ve(U) in the spirit of Carlson’s cohomology varieties for modules over group algebras, by
taking for V¢ (U) the maximal ideal spectrum of the quotient of Z*(C) by the kernel of
the algebra homomorphism Z*(C) — Ext; (U, U). In fact, for this to make sense it would
suffice if the quotient of Z*(C) by some nilpotent ideal is finitely generated as k-algebra.
This motivates the next proposition, which requires the following concept from [12]. Let
(C, X)) be a triangulated category and let M be an object in C. We denote by (M), the
full additive subcategory of C consisting of all objects isomorphic to finite direct sums of
summands of the objects X™(M), with n € Z. For i > 2 we define inductively (X); as the
full additive subcategory of C consisting of all objects isomorphic to direct summands
of objects Z for which there exists an exact triangle X — Y — Z — X(X) with X in
(M);—1 and Y in (M);. Following [12, 3.6], the dimension of C, denoted dim(C), is the
smallest positive integer d for which there exists an object M in C such that (M)441 = C.
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Proposition 2.9. Let (C, X)) be a triangulated category and let M be an object in C
for which there exists a positive integer d satisfying (M )41 = C. Let N be the kernel of
the canonical graded algebra homomorphism Z*(C) — Exts(M, M). We have N2 = {0}.

Proof. Let m, n be integers and let ¢ € Z™(C) and ¢ € Z"(C). If » € N, then
@(M) =0 and hence p(X) =0 for all X in (M);. What we show is that if p(X) =0 =
(X)) for all objects in X in (M), then (¢¢)(Z) = 0 for all objects in (M);41; the result
follows then by induction. This is a standard argument: consider an exact commutative
diagram in C of the form

X Y > 7 2(X)

.
A/

SM(X) e (Y ) = 57(Z) —— SmHL(X)

oi OJ« P(E™(2)) -7 J{o
A/

Zm-i-n (X) R Em—i—n(y) R 2m+n<Z) R EernJrl (X)

with X in (M); and Y in (M);. Since ¢(Z) composed with the morphism X" (Z) —
Ym+1(X) is zero, ¢(Z) factors through X™(Y). For similar reasons, 1(X™(Z)) factors
through X™*1(X). But then ¥(X™(Z)) o p(Z) factors through two consecutive mor-
phisms in an exact triangle, and hence is zero. (Il

Proof of Proposition 1.2. Let B be a block algebra over an algebraically closed
field k of prime characteristic p. We refer the reader to [8, §5] for the definition of
block cohomology. By [8, 5.6 (iii)] there is a canonical graded algebra homomorphism
H*(B) - HH*(B). Thus, for any B-module U, we have a sequence of canonical algebra
homomorphisms

H*(B) — HH*(B) — Z*(D"(B)) — Ext (U, U).

By Proposition 2.9 there exists a finitely generated B-module U such that ' =
ker(Z*(DP(B)) — Ext* (U, U)) is a nilpotent ideal (for instance, U = B/.J(B) would have
this property because then (U)g1; = DP(B) for some integer d bounded by the Loewy
length of B by [12, 3.7]). Since Ext;(U,U) is Noetherian over H*(G, k) (cf. [1, 4.2.4]),
it follows from the commutative diagram in [9, 4.2 (iii)] that Ext’ (U, U) is Noetherian
as module over H*(B). Thus, its submodule isomorphic to Z*(D"(B))/N is Noetherian
over H*(B). O

Proof of Proposition 1.3. Set AP = {(u,u) | u € P} C P x P. The ‘diagonal’
induction functor Ind% %" sends the trivial kA P-module k to kP viewed as a k(P x P)-
module via (u,v) -y = uyv~! for u,v,y € P. This functor hence induces a graded
homomorphism ép : H*(P, k) — HH*(kP) (this is well known: see, for example, [8, §4]
for more details). When composed with the canonical homomorphisms

HH*(kP) — Z*(D®(kP)) — Ext}p(k, k) = H*(P, k),
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this yields the identity on H*(P,k); in particular, the canonical map Z*(DP(kP)) —
H*(P, k) is surjective. Since k is the unique simple kP-module, up to isomorphism, we
have DP(kP) = (k)4,1 for some positive integer d, and hence the kernel N of this map
is nilpotent by Proposition 2.9. The result follows. O

Proof of Proposition 1.4. Let ((U) € Homy4 (U, 2(U)) such that ¢(U) represents
an Auslander-Reiten sequence ending in U. Then ((U) is almost vanishing in the sense
of Happel [5, 1.4.1]; that is, for any morphism 3 : W — U in mod(A) which is not a
split epimorphism, we have ((U) o 8 = 0, and, for any morphism ~ : 2(U) — W in
mod(A) which is not a split monomorphism, we have v o ((U) = 0. For any integer n, set
C(2™(U)) = (=1)"2™(¢(U)); this is possible even if U has an odd period thanks to the
assumption char(k) = 2 in that case. For any indecomposable non-projective A-module
V not isomorphic to 27(U) for any integer n, set ((V) = 0 in Hom4(V, 2(V)). Note
that 2™(¢(U)) represents an Auslander—Reiten sequence ending in £2™(U). In order to
show that this family of morphisms defines an element in the graded centre, it suffices
to show that for any two indecomposable non-projective A-modules X, Y and any a €
Hom4 (X,Y), the diagram in mod(A)

(X
x—% o)
ai ()
(010%
Y ¢(y) ¥)

is commutative. It suffices in fact to do this for X and Y running over a set of represen-
tatives of the isomorphism classes of indecomposable non-projective modules. If neither
X or Y is isomorphic to £2™(U) for some integer n, this holds trivially as then both {(X)
and ¢(Y") are zero. Thus, we may assume that one of X or Y is equal to £27(U) for some
integer n. By applying 27" to such a diagram, we may in fact assume that one of X
or Y is equal to U. Suppose that both X =Y = U. Since k is algebraically closed and
since U is indecomposable non-projective, the algebra End 4 (U) is split local; that is, we
can write @ = Mdy + p for some A € k and some p € J(Enda(U)). If p = 0, then a
is a multiple of the identity on U; hence, £2(«) is the same multiple of the identity on
N2(U), and the commutativity of the above diagram is clear. If A = 0, we have a = p, and
hence neither o nor £2(«) is a split epimorphism or split monomorphism in mod(A) and
thus ((U) ca = 0 = 2(a) o ((U) in that case. For general a € Enda(U), the required
commutativity follows from adding the two previous cases.

If X =U but Y 2 U, then 2(X) 2 2(Y), and hence 2(a) o ((X) = 0. We need to
show that then also ((Y)oa = 0. If Y % 2"(U) for any integer n, then ((Y) = 0, so
this is clear. Suppose that Y = 2"(U) for some integer n. Since Y % X, the morphism
« is not a split epimorphism and therefore ((Y) o @« = 0 because ((Y) represents an
Auslander—Reiten sequence ending in Y. Similarly, if Y = U but X 2 U, then « is
not a split epimorphism; hence, {(Y) o & = 0. To see that also 2(a) o {(X) = 0 we
distinguish two cases, as before: if X 2 2"(U) for any integer n, then {(X) = 0, so
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the commutativity is clear. If X = 2"(U) for some integer n, then ((X) represents an
Auslander—Reiten sequence ending in Y and £2(«) is not a split monomorphism because
2(X) % 2(Y). Hence, 2(a) o ((X) = 0 as required. O

3. Compatible adjunctions for functors between graded categories

Definition 3.1. Let C, D be R-linear categories, endowed with R-linear equivalences
Y:C—-Cand A:D —-D.Let F:C— Dand G: D — C be R-linear functors such
that G is left adjoint to F, and let f : Idp — FG be the unit and g : GF — Id¢ be the
counit of an adjunction. Suppose that there are isomorphisms of functors a : AF = FY¥
and b: GA = )G.

We say that the left adjunction given by f and g is compatible with X and A with
respect to a and b if the following diagrams of natural transformations are commutative:

A2 AFg GAF s 5GF
A

If G is also right adjoint to F and f’ : Ide — GF the unit, ¢’ : G — Idp the counit of
a right adjunction, we say that the adjunction of F and G given by the units and counits
f, g, ', g is compatible with X and A with respect to a and b, if the left adjunction of
G to F is compatible with X and A with respect to a, b, and if the left adjunction of F
to G is compatible with ¥ and A with respect to a~!, b1, in other words, if, in addition
to the two previous diagrams, the two following diagrams are also commutative:

» s 56F Fug % AFg
lf’z blfl l]—‘bl Ag’l
GFY —>GAF FGA ——> A
Ga gA

Remark 3.2. Especially when dealing with derived categories, the natural transfor-
mations a and b will typically be equalities AF = FX and GA = ¥Y'G, in which case the
four compatibility diagrams reduce to equalities of natural transformations Af = fA,
Yg=gX X =Y Ag =g A. Verdier [13] defined an exact functor of triangulated
categories (C,X) — (D, A) to be an additive functor F : C — D satisfying FX = AF
and mapping exact triangles to exact triangles. Other authors allow more flexibility, in
that they require only a natural isomorphism FX' = AF and Definition 3.1 is intended to
accommodate this extra degree of generality; the price to pay in this context is that the
notion of an adjoint pair of functors between triangulated categories as in Definition 3.1
becomes more formally involved.

The above definition is redundant in various ways; the following lemmas describe this
in detail. The next lemma says that the commutativity of the first two diagrams in
Definition 3.1 is equivalent.
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Lemma 3.3. With the notation of Definition 3.1, if one of the following two diagrams
is commutative, so is the other:

A AFG GAF —— Y GF
J/fA agi iga Egl

Proof. If the first diagram is commutative, there is a commutative diagram

GAfF

GAF 227 oargF 2T gar
GfGAF GaGF i lga

GFGAF I grygr S gy
gQA.'Fl gEg]:i igz

GAF — > $GF —— %

The upper left square in this diagram is obtained by composing the first diagram in
Definition 3.1 with G on the left and F on the right. The other squares are commutative
because f and g are natural transformations. Moreover, the first row and the first column
of this diagram are the identity transformation. Thus, by considering the four outer
corners of the above 3 x 3 diagram, it follows that the second diagram in Lemma 3.3 is
commutative. A dual argument shows that the commutativity of the second diagram in
Lemma 3.3 implies the commutativity of the first one. O

By the same argument, the commutativity of the third and fourth diagrams in Defini-
tion 3.1 is equivalent. When specialized to the case where a and b are equalities, this says
that the equality Af = fA holds if and only if Xg = g%, and similarly X f’ = f'X if
and only if Ag’ = ¢’A. If the first diagram in Definition 3.1 commutes, then the natural
isomorphisms a and b determine each other, as follows.

Lemma 3.4. With the notation of Definition 3.1, suppose that the following diagram
is commutative:

Af
A——=AFG

- -

Then a = (FXg) o (FbF) o (fAF) and b= (gXG) o (GaG) o (GAS).
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Proof. In order to prove the formula for a we observe that there is a commutative
diagram

A A
AF 2T AFGFE 2T AR

lf” lagf i

Indeed, the left square is obtained by composing the first diagram in Definition 3.1 (which
is commutative by the assumptions) with F on the right. The second square uses the
fact that g is a natural transformation from GF to Id¢. Moreover, the first row is the
identity transformation on AF by the general properties of adjunctions. The formula for
a follows. The formula for b is obtained by composing the first diagram in Definition 3.1
with G on the left and then using g again, obtaining a commutative diagram of the form

gn 220, gaFg

lng Qagl

GFGA 2% gFxg

lyQA gZQJ(

GA ———2G

Observing again that the left column is the identity transformation on GA yields the
formula for b. O

If all four diagrams in Definition 3.1 are commutative, then the left and right adjunc-
tions are related, as follows.

Lemma 3.5. With the notation of Definition 3.1, assume that all four diagrams in
Definition 3.1 are commutative. Then

(Ag') o (Af) =(g'D) o (fA),
(Xg) o (Zf) = (9X) o (f'X).

Proof. To see the first equality (of natural transformations on A) combine the first
diagram in Definition 3.1 with the fourth diagram in Definition 3.1 rotated by 90° coun-
terclockwise, and for the second equality (of natural transformations on ') combine the
second diagram in Definition 3.1 with the third diagram rotated by 90° clockwise. [

Compatible adjunctions can be ‘added’, as follows.

Proposition 3.6. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences X, A, respectively. Let F,F' : C — D and G,G’ : D — C be R-linear functors.
Suppose that F, G and F', G’ are two pairs of adjoint functors which are both compatible
with X, A with respect to natural isomorphisms of functorsa : AoF =2 FoX b:GoA =
YoGanda Ao F =2F oXbV :GoAXYo(.

https://doi.org/10.1017/50013091507001137 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091507001137

On graded centres and block cohomology 499

Then the direct sum of the adjunction isomorphisms of the adjoint pairs of functors F,
G and F', G' is an adjunction between the functors F ®F' and G® G’ which is compatible
with X, A with respect toa ®a’, b V.

Proof. Let U be an object in C and let V' be an object in D. The sum of the
adjunction isomorphisms Home(U,G(V)) = Homp(F(U),V) and Home(U,G'(V)) =
Homyp (F'(U), V) obviously yields a natural isomorphism

Home (U, G(V) @ G'(V)) = Homp (F(U) & F'(U),V)

showing that F&F' is left adjoint to GHG’. Similarly one shows that F@F' is right adjoint
to G&G’. We determine the unit Ide — (GHG')(FHF') of this adjunction in terms of the
units f : Ide = GF and f' : Id¢ — G'F’, as follows. The morphism f(U) : U — GF(U)
is the image of Id(;y under the appropriate adjunction isomorphism; the situation is
similar for f/(U). Chasing Id zygz (v through the isomorphism

Homp (F(U) @ F'(U), F(U) @ F(U))
=~ Home (U, (G @ G')(F(U) @ F'(U)))
= Home (U, GF(U) ® GF (U) & G'F(U) & G'F'(U))

shows that the counit Ide — (G ® G')(F @ F') is in fact simply obtained by taking the
‘sum’ of f, f’ evaluated at the object U, that is,

<f (U)> LU = GF(U) & G'F(U)

followed by the canonical inclusion
GFU)aGFU)—= (Gagd) (FoF)U)=G¢FU)aGF (U)aGFU)a G F (U).

A similar statement holds for the counits. Since units and counits for F & F', G & G’
are essentially obtained by adding those for the two pairs of adjoint functors, the result
follows. O

Compatible adjunctions can be composed as follows.

Proposition 3.7. Let C, D, £ be R-linear categories endowed with R-linear self-
equivalences X', A, I', respectively.

Let F : C — D, G : D — C be adjoint R-linear functors, compatible with X, A with
respect to isomorphisms a : FX = AF, b: GA =2 XG.

Let ' : D — &, G : £ — D be adjoint R-linear functors, compatible with A, I" with
respect to isomorphisms a’' : FFAXTF bV :G'T =2 AG.

The composition of adjunction isomorphisms of the adjoint pairs of functors F,G and
F',G" is an adjunction between the compositions of functors F' o F, G o G’ which is
compatible with X, I with respect to the isomorphisms (a'F) o (F'a) : FFFXY 2 I'F'F
and (bG") o (GV') : GG'T" = XGG'.

Proof. Straightforward verification. |
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4. Adjunction and transfer

In the context of group cohomology and Hochschild cohomology of symmetric algebras,
transfer appears to be the translation of the adjunction principle to cohomology rings
arising from triangulated categories. The following definition extends the pattern of var-
ious sources, such as [3,8,10].

Definition 4.1. Let C, D be R-linear categories endowed with R-linear equivalences
Y:C—=Cand A:D—D.Let F:C— Dand G :D — C be R-linear functors which are
adjoint to each other, compatible with X~ and A with respect to natural transformations
a:AoF2FoXandb:GoA =X Y oG. Denote by f:Idp = FG, g : GF — Id¢ and
f :1de — GF, ¢ : FG — Idp, the units and counits of adjunctions which are compatible
with X and A, with respect to a, b.

For any integer n and any natural transformation ¢ : Id¢ — X™ we define the nat-
ural transformation trz(¢) : Idp — A™ to be the natural transformation equal to the
composition

1dp & 7 = Flde ¢ 229 Fyng = AnFg 24, Am,

where the isomorphism FX"G =2 A™F@ is given by applying repeatedly a. Similarly, for
any two objects U, V in D, we define the relative transfer map

trr(U, V) : Exts(G(U), G(V)) — Extiy (U, V)

to be the graded R-linear map sending a morphism a € Home(G(U), X™(G(V))) to the
morphism 8 € Homp (U, A™(V)), which is equal to the composition

I, Fgwy 29 Frngvy = arFgvy 21490 an(yy,

U
where the isomorphism FX"G(V) = A"FG(V) is again given by evaluating the natural
transformation a.

Remarks 4.2. (i) The definition of trz makes use of the unit f and the counit ¢';
using the unit f’ and counit ¢ instead, one analogously obtains trg. The transfer map
trr defined above depends on the choices of the adjunction isomorphisms as well as on
the choices of the natural transformations a, b. Whenever we do not specify these choices
in a statement, this means that we implicitly assert that either the statement does not
depend on this choice or the context determines such a choice canonically. It can in fact
be useful to play two different choices off against each other. In practice, the natural
isomorphisms a, b are frequently given canonically by the context; they may sometimes
just be equalities of functors.

(ii) Examples of pairs of biadjoint functors include induction/restriction between alge-
bras of finite groups, Harish-Chandra induction/restriction, and more generally, functors
between module categories of symmetric algebras induced by bimodules which are finitely
generated projective on both sides (see § 7 for details).
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(iii) With the notation of Definition 4.1, the degree zero component trz sends a natural
transformation ¢ : Id¢ — Id¢ to the natural transformation

tre(p) : dp L5 FG = F1de G Z2% Flde G = FG L5 1dp .

Similarly, for any two objects U, V in D, the degree zero component of the relative
transfer map trz(U, V) is the map ¢ (U, V) : Home(G(U),G(V')) — Homp (U, V) sending
a morphism « : G(U) — G(V) to the morphism 8 = ¢'(V) o F(a)o f(U) : U = V.

Theorem 4.3. Let C, D be R-linear categories endowed with R-linear equivalences
Y:C—-CandA:D—D.Let F:C— Dand G : D — C be R-linear functors which are
adjoint to each other, compatible with X and A with respect to natural transformations
a:AoF2FoXandb: GoA = Y oG. The map sending a natural transformation
¢ :Ide — X™ to tre(p) for any integer n induces a graded R-linear map trx : Z*(C) —
Z*(D) such that, for any object V in D, the diagram

Z*(C) — Exte(G(V),6(V))

tr]:l

Z*(D) —— Ext(V, V)

ltrF(V,V)

is commutative, where the horizontal maps are the canonical graded algebra homomor-
phisms. More explicitly, for any integer n, any natural transformation ¢ : Ide — X" and
any object V' in D we have trz(p)(V) = trz(V,V)(p(G(V))).

Proof. Let n be an integer and let ¢ € Z™(C); that is, ¢ : Id¢ — X™ is a natural trans-
formation satisfying pX = (—1)"Xp. We need to show that trr(p)A = (—1)"Atrr(p).
To see this, we consider the following diagram of functors and natural transformations:

A arg— AFldc g PG AFEng = AHLEG _atte ARt
‘“dcgi iaz"g lA"ag
FLlde G 2% Fryng — = AnFsG
=" (=" (=)™
Flde 2GR pynyg = AnFNG
F1de bT T}'Z‘"b TA"]—‘b
AT}‘QA:}“MC gAm}‘gngA?An}—gA A ARt

The first row is Atrz(p) and the last row is trz(@)A. The left and right rectangle of the
diagram commute by the compatibility assumption. The commutativity of the remaining
squares is easily checked by using either the naturality, the compatibility condition or the
assumption pX = (—1)"Xp. The unmarked isomorphisms are obtained from iterating a.
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We need to check the commutativity of the diagram in the statement of the theorem. The
left side of that diagram is trx(y) evaluated at V', and hence equal to the composition

F(v) FeG(V)

v LY, wgv) FErg(v) = AnFGV) 2LV Ay,

This is clearly equal to the map trz(V, V) evaluated at ¢(G(V)). O

Corollary 4.4. With the notation of Theorem 4.3, setting nz = trz(Idia,.), we have
0
TF € Z (D)

Proof. The identity transformation Idiq, commutes obviously with X'; hence, it be-
longs to Z°(C) and thus its image m7 = trz(Idiq,. ) belongs to Z°(D) by Theorem 4.3. [

Definition 4.5. With the notation above, we call 7z = trz(Idig,) the relatively F-
projective element in Z°(D).

The transfer map trz depends additively on F, as follows.

Proposition 4.6. Let C, D be R-linear categories endowed with R-linear self-
equivalences X, A, respectively. Let F,F' : C — D and G,G' : D — C be R-linear
functors. Suppose that F, G and F', G’ are two pairs of adjoint functors which are both
compatible with X, A with respect to natural isomorphisms of functorsa : AoF = Fol,
b:GoA=2YoGandd :AoF 2XF oXb:GoAX=2Xo(G.

(l) We have tI']:@]:/ = tI‘]: =+ tI‘].‘/.

(ii) For any two objects V, W in D, any a € Home(G(V),G(W)) and any o' €
Home(G'(V),G'(W)) we have

trrer (V,W)(a® ) = tre(V,W)(a) + trz (V,W)(a).

Proof. Straightforward verification using Proposition 3.6. ]

Transfer maps compose as expected.

Proposition 4.7. Let C, D, £ be R-linear categories endowed with R-linear self-
equivalences X, A, I', respectively. Let F : C — D, G : D — C be adjoint R-linear
functors, compatible with X, A with respect to isomorphisms a : FX =2 AF, b: GA =
YG. Let 7' : D — &,G : £ = D be adjoint R-linear functors, compatible with A, I’
with respect to isomorphisms a’ : FFA = TF b :G' T = AG'.

(1) We have trror = trg otre.
(ii) For any two objects V., W in £ we have

tr]—"o]—'(‘/v W) = tI‘]:/(‘/, W) o tI‘]:(g(V), g(W))

Proof. Straightforward verification, using Proposition 3.7. ([l
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The class of morphisms which are in the image of a transfer map form an ‘ideal’, as
follows.

Proposition 4.8. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences X, A, respectively. Let F : C — D and G : D — C be R-linear functors which
are adjoint to each other, compatible with X, A with respect to natural isomorphisms of
functorsa : Ao F =2 FoX andb: Go A= X oG. Let U, V, W be objects in D, and let
a € Exts(G(V),G(W)).

(i) For any 8 € Exty (U, V) we have trz(V,W)(a)8 = trz(U, W) (aG(5)).
(ii) For any v € Extp,(W,U) we have ytrz(V,W)(a) = tr=(V,U)(G(7)a).

Proof. We prove (i); the proof of (ii) is analogous. We may assume that « and (3 are
homogeneous of degree m and n, respectively. That is,

a:G(V)— X"mGg(W)

is a morphism in C and
B:U— A™(V)

is a morphism in D. The product aG(f3) is the composition of morphisms
g n ~ Y X" (o n+m
) 29, gan(vy = srgvy 219, srtmg .

With the notation of Theorem 4.3, applying trz(U, W) to aG () yields the composition
of morphisms

v L9 rowy 29 Foan(vy = Frrg(v)
n( nt+m 7
L()> f2n+mg(W) o An-l—m]:g(W) A g (W) An—i—m(W)

We need to compare this to the product trz(V, W)(«)3, which is equal to the composition

U anvy 20 Angg vy

AT

a n+m 1
2, AnFEmGW) = AT FG(W) S

Ly At ().
The right ends of these two morphisms coincide because FX"(a) and A™F () are equal
modulo the identifications induced by a and b. We need to show that the two left mor-
phisms compose to the same morphism modulo identifications; that is, we need to show
that the diagram

f FG(B
v L9 mon) 22 Foan vy
ﬁ

UL arn) 2D An pg (v
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commutes. Now we have a commutative diagram

U
v—9 . row)
5l lfG(B)
A"(V) ——= FGA™(V
V& V)

because f is a natural transformation, and we have a commutative diagram

A" A"
Va9 | )

because of the compatibility conditions in Definition 4.1. Together they yield the required
statement. O

5. Stable elements

Definition 5.1. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences X, A, respectively. Let F : C — D be an R-linear functor such that there is
a natural isomorphism a : FX = AF. Given an integer n, a natural transformation
@ :Ide — X™ is called F-stable, if there is a natural transformation v : Idp — A" such
that the diagram

Fe
F—FX"

5

f?An]:

commutes, where the isomorphism FX™ = A™F is induced by a. An element ¢ € Z*(C)
is called F-stable if there is ¢p € Z*(D) such that the previous diagram is commutative
for the components of ¢ and 1 in any degree n; in that case we write abusively Fp = . F.
We denote by Z3(C) the set of F-stable elements in Z*(C).

The notion of F-stability depends on the choice of the natural isomorphism a : FX &
AF.

Proposition 5.2. Let C, D be R-linear categories endowed with R-linear self-
equivalences X, A, respectively. Let F : C — D be an R-linear functor such that there is
a natural isomorphism a : FX = AF. Then the F-stable elements Z(C) form a graded
subalgebra of Z*(C).

Proof. This follows from adding and composing commutative diagrams as in Defini-
tion 5.1. 0
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The image of a transfer map is a bimodule for the subalgebra of stable elements. This is
a ‘general abstract nonsense version’ of well-known Frobenius reciprocity-type statements
in cohomology such as [8, 3.4] in Hochschild cohomology.

Theorem 5.3. Let C, D be R-linear categories endowed with R-linear self-equivalences
X, A, respectively. Let F : C — D and G : D — C be R-linear adjoint functors compatible
with X, A. Let ¢ € Z5(C) and ¢ € Z*(D) such that Fo = ¢F.

(i) We have ¢G = G1; in particular, 1) € Z;(D).
(ii) For any 7 € Z*(C) we have trz(p71) = ¥ trz(7) and trz(1¢) = trze(7)1.
(iii) We have trz(p) = wx1).

In particular, S(trx) is a sub-Z§(D)-Z5(D)-bimodule of Z*(D) and trz(Z3(C)) =
75 Z5(D).

Proof. We may assume that ¢, 1) are homogeneous of degree n and that 7 is homo-
geneous of degree m. In order to prove (i) we will show that there is a commutative
diagram of the following form:

G »g

e
6FG 2 gryng

o

GFG m GA"FG

g —(—0A"

gy

Indeed, the upper square is obtained from the square of adjunction units

Idc 4A‘G> n

oy

GF —=GgFX"
composed with G on the right. The lower square is obtained from the square of adjunction
counits

.71 g W) A f: g

Idp A"
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composed with G on the left. For the square in the middle, we use the hypothesis on ¢,
1 according to which we have a commutative diagram

Fo
F——=FX"

|

fﬁAn}-

which we then compose with G on both sides. Since the composition of adjunction units
and counits G — GFG — G is the identity transformation, this proves (i). For the first
equality in (ii) we will show that there is a commutative diagram of the form

Fo1g =~
Idp FG " FrntmG — > AMTmEG ——> Antm
Idp FG ANFEMG — = AT EG s Antm
A"FrG o

A" A"FG ANFIMG —— AMFMFEG ——> Antm

obtained as follows. The first row is trz(p7), where one notes that o7 = XY™ (p) o7 :
Ide — XY™™, The second row is obtained from the first by making use of the hypothesis
P JF = Fp. The last row uses the fact that ¢ is a natural transformation. The last row is
easily seen to be equal to A™(trz(7)) and, hence, upon composition with ¢ (the left lower
vertical arrow in the diagram), is equal to ¢ trz(7) as claimed. A similar argument proves
the second equality in (ii). One can also show this using Theorem 4.3 and Proposition 4.8.
Statement (iii) follows from (ii) applied to 7 = Idjq,. The last two statements follow from
(ii) and (iii), respectively. O

Corollary 5.4. Let C and D be R-linear categories endowed with R-linear self-equiv-
alences X and A, respectively. Let F : C — D and G : D — C be R-linear adjoint functors
compatible with X, A. We have Z3(C) C Z5 £ (C).

Proof. Let ¢ € Z"(C) and ¢ € Z™(D) such that Fp = ¢F, where n is an integer. By
Theorem 5.3 we get Gip = ¢G, and hence (GF)p = GyF = ¢(GF), which shows that ¢
is GF-stable. d

6. Normalized transfer

We extend some of the machinery in [8, § 3] to the present context. The following is [8,
3.1(ii)] in the case of Hochschild cohomology.

Definition 6.1. Let C, D be R-linear categories endowed with R-linear equivalences
Y:C—-Cand A :D - D.Let F:C — Dand G: D — C be R-linear functors
which are adjoint to each other, compatible with 3 and A. Suppose that the relatively
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projective element 7w = trz(Idq. ) is invertible in Z°(D). The normalized transfer map
Trr : Z*(C) — Z*(D) is the graded R-linear map defined by Trz(¢) = (7x)  tre(p)
for all ¢ € Z*(C).

This makes sense as Z*(D) is a module over Z°(D). Unlike trz, the normalized transfer
Trx restricted to appropriate subalgebras of stable elements no longer depends on the
choices of a compatible adjunction (but still depends on the choice of the transformations
a, b), provided that the relatively projective elements are invertible; this generalizes [8,
3.6], as follows.

Theorem 6.2. Let C, D be R-linear categories endowed with R-linear equivalences
Y:C—-Cand A :D —>D.Let F:C — Dand G : D — C be R-linear functors
which are adjoint to each other, compatible with X and A with respect to isomorphisms
a:FXY 2 AF andb: GX =2 AF. Suppose that the relatively projective element g =
tr£(Idya, ) is invertible in Z°(D). The normalized transfer map Trz induces a surjective
homomorphism of graded R-algebras

Ry : Z3(C) — Z5(D)

which is independent of the choice of a compatible adjunction with respect to a, b for
which the relatively projective element wx is invertible. In addition, if both mx and g
are invertible in Z°(D) and Z°(C), respectively, then Rr and Rg are graded R-algebra
isomorphisms

Z¥(C) = Zg(D),
which are inverse to each other.

Proof. Let ¢ € Z™(C) and ¢ € Z™(D) such that Fp = F, with the notation as in
Definition 5.1. By Theorem 5.3 (iii) we have

Trre(p) = .

This proves that Ry is a surjective algebra homomorphism and that Rg is inverse to
Rr if g is invertible as well. Since the equality Fy = ¥F does not involve the adjunc-
tion isomorphism (but involves the transformation a) the independence statement in
Theorem 6.2 also follows. |

The next theorem generalizes the cancellation property from [8, 3.8] to this context.

Theorem 6.3. Let C, D, £ be R-linear categories endowed with R-linear self-equiv-
alences X, A, I', respectively. Let F : C — D, G : D — C be adjoint functors compatible
with X, A, and let F' : D — &, G' : £ — D be adjoint functors compatible with A, T
Suppose that the relatively projective element mg: in Z°(D) is invertible.

Let n be a non-negative integer, let ¢ € Z™(C) and let 7 € Z™(E) such that F'F( =
7F'F. Then

fC = TI‘g/(T)]:.

In particular, we have Z%, z(C) C Z3(C) and Trg:(Z54,(€)) € Z5(D).
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Proof. We will show that there is a commutative diagram of the following form:

F¢ ~
F \ Fxn AnF
g/f/f g/]_—/J_-C g/f/fzn/
E\L TGl Idan 7
GFF s g F S ANG

F trg (7)F AF

The unmarked arrows are induced by the adjunction unit Idp — G'F’ and adjunction
counit G’F’ — Idp. The composition of these two is the relatively projective element g/,
which is invertible by the assumptions. This accounts for the commutativity of the right
triangle in the diagram. The smaller square in the middle of the diagram is commutative,
because this is the equality F'F¢ = 7F'F composed with G’ on the left. The lower part
of the diagram is commutative, because this is the definition of trg/(7) composed with F
on the right. The pentagon in the upper right area of the diagram is commutative by the
compatibility assumptions. Consider now the outer square of this diagram and invert the
right vertical arrow (which is possible as 7g is invertible). The resulting square expresses
the equality F¢ = Trg/(7)F as stated. Thus, in particular, ¢ € Z%(C), which yields the
inclusion Z% £(C) € Z%(C), and by Theorem 5.3 (i), we also have Trg/(7) € Z&(D),
which proves the rest. O

Corollary 6.4. Let C, D be R-linear categories endowed with R-linear self-equiva-
lences X, A, respectively. Let F : C — D, G : D — C be adjoint functors compatible with
X, A. Suppose that the relatively projective element 7z in H°(D) is invertible. Then
Z3(C) = Z5(0).

Proof. By Theorem 6.3 we have Z;-(C) € Z3(C). The other inclusion follows from
Corollary 5.4. O

Remark 6.5. When applied to the degree zero component and the case where X, A
are the identity functors on R-linear categories C, D, the notion of stability (with the
notation of Definition 5.1) reads as follows: an element ¢ € Z(C) is called F-stable if
there is ¢ € Z(D) such that Fo = ¢F; that is, such that F(p(U)) = (F(U)) for any
object U in C. The set Zz(C) of F-stable elements in Z(C) is a subalgebra of Z(C), and
Theorem 6.2 can be specialized to the following statements.

Corollary 6.6. Let C, D be R-linear categories and let 7 : C — D and G : D — C
be R-linear functors which are adjoint to each other. Suppose there is an adjunction
isomorphism such that the relative projective elements wr and wg are invertible in Z (D)
and Z(C), respectively. Then, for any ¢ € Z(C) and any ¢ € Z(D), we have Fo = pF if
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and only if Gy = ¢G, and the correspondence mapping @ to 1 satisfying these equalities
is an algebra isomorphism Zz(C) = Zg(D).

7. Symmetric algebras

7.1. Let k be a field. A k-algebra A is called symmetric if A is isomorphic to its
k-dual A* = Homg(A, k) as A-A-bimodule. In particular, A is self-injective; that is,
A is both projective and injective as a left and as a right A-module. Any choice of a
bimodule isomorphism @ : A & A* determines a symmetrising form s : A — k by
s = @(1). Since A is generated as left and right A-module by 1, A* is generated as left
and right A-module by s; that is, for any a € A we have &(a) = a-s = s - a, where
(a-s)(b) = s(ba) and (s-a)(b) = s(ab) for any b € A. Thus, in particular, s(ab) = s(ba)
for all a,b € A, and @ is determined by s. For any A-module U we have a natural
isomorphism Hom4 (U, A) = Hom(U, k) = U* sending ¢ € Hom 4 (U, A) to s o . Indeed,
this map is functorial in U and an isomorphism for U = A; as both sides are exact in U
it follows that this is an isomorphism for all U. Given two symmetric k-algebras A, B
and a B-A-bimodule M which is finitely generated projective as left B-module and as
right A-module, the two functors

M ® —:mod(A) - mod(B) and M*® —: mod(B) — mod(A)
A B

are left and right adjoint to each other (all this is well known: see, for example, [8,
Appendix] for a very brief review with some proofs). The algebra A ® A° is symmetric
as well, and if we take k

— (7o 0
€ %) = (mod(A%A ) Sasao),
we get the Tate analogue of Hochschild cohomology
Ext}(A, A) = HH (A).

Applying the transfer formalism to D?(A), mod(A), and related Ext-rings yields the well-
known transfer maps in group cohomology, Tate cohomology and the standard reciprocity
statements.

7.2. For
€2 =(p"(a04),0)

and U = V = A, the notation in Remark 2.6 yields Hochschild cohomology; that is,
Extp(A, A) &2 HH*(A). Specializing the definition of transfer maps in §7.1 to this sit-
uation yields the transfer maps in Hochschild cohomology introduced in [8]. In order
to describe this more precisely, let A and B be two symmetric k-algebras. Let X be
a bounded complex of B—A-bimodules which are finitely generated projective as left
B-modules and as right A-modules. The k-dual X* = Homy (X, k) is then a bounded
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complex of A—B-bimodules which are finitely generated projective as left A-modules and
as right B-modules; this uses the symmetry of A and B. The functors

F=Xo-: D(A) - D*(B) and G=X* @ DP(B) — DP(A)

are left and right adjoint to each other; more precisely, any choice of bimodule isomor-
phisms A =2 A* and B & B* determines adjunction isomorphisms which commute with
the shift functors. The transfer map try : HH*(A) — HH*(B) in [8, 2.9] coincides with
the transfer map

‘tI']:(147 A) : EXt*Db(A(X)AO)(A7 A) — EXtDb(B(X)BO)(B? B)
k k

with the notation from §7.1. It is an immediate consequence of the formal proper-
ties of the definition of transfer maps and stable elements that the canonical map
HH*(A) — Z*(D"(A)) restricts to an algebra homomorphism on stable elements
HHY%.(A) — Z3(D"(A)) and we have a commutative diagram

HH*(A) — Z*(D"(A))

tr X * \L \Ltr}' (7.1)

HH*(B) —— 7Z*(D®(B))
The image of the relative projective element 7x« € Z(A) = HHY(A) in Z°(D"(A))
is the relatively G-projective element 7g; in particular, if mx+ is invertible, so is 7g.

Similarly, 7 is the image of wx. Therefore, if both 7x and wx~ are invertible, we get a
commutative diagram of graded algebras

HH.(A) —> Z3(D"(A))

Rxl lR}' (7.2)
HHY(B) —= Z5(D"(B))

where the vertical arrows are isomorphisms by [8, 3.6] and Theorem 6.2, respectively.

7.3. With the notation in §7.2, let X’ be a direct summand of the complex of B—A-
bimodules X. The functors

F X' @ = DP(A) - D*(B) and G :(X')* 9= DP(B) — DP(A)

are again left and right adjoint to each other.

Lemma 7.1. With the notation above, let n be an integer, let ( € Z"(DP(A)) be
F-stable and let T € Z"(D®(B)) such that F( = 7.F. Then F'¢ = 7.F'. In particular, we
have Z3(DP(A)) C Z%, (DP(A)).
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Proof. The assumption F¢ = 7F means that for any bounded complex of A-modules
U the diagram

XeU_14xU) X o Uln
A A

X® > X ®Uln|
A T(X§>U) A

is commutative. Choose chain maps of B-A-modules ¢ : X’ — X and 7 : X — X' such
that mor = Idx/. Using the fact that 7 is a natural transformation, we get a commutative
diagram

bl % U ldxred)  xv % U[TL]

®Idy (®Idy [n]

XeU_14x%WU) X oUln
A A

XU > X ®Uln|
A T(X§U) A

W®Idui iﬂ@ldu[n]

X'® > X' ®@Uln|
A T(X’(%U) A

This shows that F'¢ = 7F’ and hence that ¢ is also F'-stable. O

8. Proof of Theorem 1.1

Let £ be an algebraically closed field of prime characteristic p, let G be a finite group
and let B be a source algebra of a block b of kG with P as defect group; that is,
B = ikGi for some primitive idempotent i in (kGb)T satisfying Brp(i) # 0, where
Brp : (kG)P — kCg(P) is the Brauer homomorphism. The canonical symmetrising form
on kG (sending 1g to 1 and z € G — {1g} to 0) restricts to a symmetrising form
s: B — k. Set X = B, viewed as a B-kP-bimodule. Then X* = B, as kP—B-bimodule
because B is symmetric. In other words, if we consider as in § 7.2 the functors

F=X® —:D°(kP)— D*(B) and G=X*"®—:D"B)— D"(kP),
kP B

then G is the restriction functor. By [8, 5.6 (iii)], the canonical map from block cohom-
ology H*(B) to Hochschild cohomology HH*(B) sends H*(B) to HH%(B). By §7.2,
the canonical map from HH*(B) to the graded centre H*(D®(B)) sends HH% (B) to
H§(D"(B)).
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Lemma 8.1. With the notation above, the relative projective elements mx € Z(B),
nx+ € Z(kP), mx € Z°(D"(B)), ng € Z°(DP(kP)) are all invertible.

Proof. For mx and mx« this is proved in [8, 5.6 (i)]. Since 7 and 7g are their images
in Z°(DP(B)) and Z°(D®(kP)), respectively (see §7.2), the result follows. O

Denote by v : H*(B) — HH%.(B) the canonical algebra homomorphism from [8,
5.6 (iii)]; this is obtained by composing the inclusion H*(B) C H*(P, k) with the canon-
ical ‘diagonal induction’ map ép : H*(P,k) — HH*(kP) followed by the normalized
transfer map Tx : HH*(kP) — HH*(B). Furthermore, denote by ¢ : Z*(D’(kP)) —
H*(P, k) the canonical graded algebra homomorphism obtained from evaluating natu-
ral transformations at the trivial kP-module k, as in Example 2.8. By Proposition 1.2
the kernel of ¢ is a nilpotent ideal in Z*(D"(kP)). Define 1 : Z(D"(B)) — H*(P,k)
as the unique algebra homomorphism obtained from restricting ¢ to Zi(D"(kP)) and
precomposing it with the normalized transfer Tg : Z5(D"(B)) = Z3(D"(kP)) (this is
an isomorphism by Lemma 8.1 and Theorem 6.2). Using the last commutative diagram
in §7.2 we ultimately obtain a commutative diagram of graded algebra homomorphisms

H*(B) ——= HH%(B) Z&(DP(B)) ——= H*(P, k)

ul lu

HH%.(kP) — Z%(DP(kP)) (8.1)

| |

H*(P,k) — HH*(kP) —> Z*(D"(kP)) —> H*(P,k)

The unmarked vertical arrows in (8.1) are inclusions. Composing the three maps in
the last row of this diagram yields the identity on H*(P, k). In order to show a similar
statement for the first row of this diagram, we need to show the following statement.

Lemma 8.2. With the notation above, the homomorphism 1 maps Z§(D"(B)) onto
H*(B).

Proof. The relative projective elements determined by F, G are invertible by
Lemma 8.1. Thus, by Theorem 6.2, we have Z&(D"(B)) = Z3(D"(kP)). By Corollary 6.4,
we have Z3(DP(kP)) = Z} (D" (kP)). Thus, it suffices to show that the canonical map
¢ in the above diagram sends Zj,(D"(kP)) to H*(B). Let n be an integer and let
¢ € Z"(DP(kP)) such that there exists 7 € Z"(DP(kP)) satisfying GF¢ = 7GF. Since
the functor GF is isomorphic to the functor B ® — on DP(kP), this is equivalent to the
commutativity of the diagrams wP

BoU Id ®¢(U) B ® U[?’L]
kP kP

T(BRU)
BeU » . B® Uln|
kP kP
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for any bounded complex of kP-modules U, where B is regarded as kP—kP-bimodule.
Any indecomposable direct summand of B is isomorphic to kP ® ok P for some subgroup
Q of P and some morphism

p:Q—P

belonging to the fusion system of the source algebra B of b. By Lemma 7.1 the diagram

kP® kP®U 1d®¢(U) k:P@ kP®U[]

(kP ® ,kP®U)
kP @ kP @ U 7 kP kP ® ,kP ® Uln]
kQ kP kQ kP

is then still commutative. By the standard adjunction we get a commutative diagram in
DP(kQ) of the form

U U]

U a(xU) U
where we abusively denote again by ((U) its restriction via ¢ and where o(,U) is the map
induced by 7. Now apply this to U = k, the trivial kP-module. Then Resg(U) =,U=k,
the trivial kQ-module. So in that case

(k:P@ kp)@k:(kp®kp)®k—kp®k
kQ kP kQ kP

hence
T((kpl%¢kp) g)k) - T((kP]%kP) S;k) - T(k:P]%k)

and so o(,k) does not depend on the choice of the homomorphism ¢ from @ to P in
the fusion system of ¢Bi. But that means precisely that ResS(C(k:)) = Res,(¢(k)) for all
morphisms ¢ in the fusion system of iBi, and thus ¢ € H™(B). This shows that n maps
Z5(DP(B)) to H*(B). This map is onto because the last row in the diagram (8.1) is the
identity. O

The proof of Theorem 1.1 now concludes as follows. Set N/ = ker(n). Then H*(B) &
Z5(DP(B))/N by Lemma 8.2 and A is nilpotent as a consequence of the commutative
diagram (8.1) in conjunction with the fact that ker(e) is nilpotent by Proposition 1.3.
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