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Abstract We extend the group theoretic notions of transfer and stable elements to graded centres of
triangulated categories. When applied to the centre Z∗(Db(B)) of the derived bounded category of a
block algebra B we show that the block cohomology H∗(B) is isomorphic to a quotient of a certain
subalgebra of stable elements of Z∗(Db(B)) by some nilpotent ideal, and that a quotient of Z∗(Db(B))
by some nilpotent ideal is Noetherian over H∗(B).
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1. Introduction

The graded centre of a triangulated category C with shift functor Σ consists of all natural
transformations IdC → Σn which commute modulo the sign (−1)n with Σ, where n runs
over the integers. For B a source algebra or a block algebra of a p-block of a finite group,
there are canonical graded maps from the block cohomology H∗(B) and its Tate analogue
Ĥ∗(B) to the centres Z∗(Db(B)) and Z∗(mod(B)) of the bounded derived and stable
module categories which factor through Hochschild cohomology HH∗(B) and its Tate
analogue ĤH

∗
(B), respectively. Analogously to questions raised in [11], it is natural

to ask when the canonical maps H∗(B) → Z∗(Db(B)) or H∗(B) → Z∗(mod(B)) are
isomorphisms modulo nilpotent ideals. As in [11], the relevance of this type of question
lies in the fact that H∗(B) is an invariant of the local structure of the block, while
Z∗(Db(B)) and Z∗(mod(B)) are invariants of the bounded derived and stable module
category, respectively, and it is not known to what extent these categories determine the
local structure. The following weaker version of this question has an affirmative answer:
the image of the canonical map H∗(B) → Z∗(Db(B)) lies in a certain subalgebra of
stable elements, defined in § 5, and the induced map is then indeed an isomorphism
modulo nilpotent ideals; more precisely, we have the following theorem.

Theorem 1.1. Let k be an algebraically closed field of prime characteristic p. Let G

be a finite group and let B be a source algebra of a block of kG with a defect group P .
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Denote by G : Db(B) → Db(kP ) the restriction functor. The canonical map H∗(B) →
Z∗(Db(B)) sends H∗(B) to the subalgebra of G-stable elements Z∗

G(Db(B)) and there is
a nilpotent ideal N in Z∗

G(Db(B)) such that this map induces an isomorphism H∗(B) ∼=
Z∗

G(Db(B))/N .

This is proved in § 8. For completeness, we include several straightforward observations,
with proofs at the end of § 2.

Proposition 1.2. Let k be an algebraically closed field of prime characteristic p, let
G be a finite group and let B be a block algebra of kG. There is a nilpotent ideal N
in Z∗(Db(B)) such that Z∗(Db(B))/N is Noetherian as a H∗(B)-module. In particular,
the graded algebra Z∗(Db(B))/N is finitely generated.

Proposition 1.3. Let k be a field of characteristic p and let P be a finite p-group.
Let N be the kernel of the evaluation map Z∗(Db(kP )) → H∗(P, k). The ideal N
is nilpotent and the canonical map H∗(P, k) → Z∗(Db(kP )) induces an isomorphism
H∗(P, k) → Z∗(Db(kP ))/N .

This implies in particular that if B is a nilpotent block then the canonical map
H∗(B) → Z∗(Db(B)) is an isomorphism modulo nilpotent ideals. Graded centres of
stable module categories seem to be more elusive; the questions of whether the degree
zero component Z0(mod(B)) is finite dimensional and even what the kernel of the canon-
ical map Z(B) → Z0(mod(B)) is are not clear. For B a Brauer tree algebra, Z∗(mod(B))
is calculated in [6]. Rickard noted that almost vanishing morphisms in the sense of Hap-
pel [5] can be used to construct elements in Z0(C) for C any triangulated category.
Auslander–Reiten sequences for modules over a symmetric algebra A give rise to almost
vanishing homomorphisms in mod(A) of degree −1, and as a consequence we get that
Z−1(mod(A)) is not finite dimensional, in general.

Proposition 1.4. Let A be a finite-dimensional symmetric algebra over an alge-
braically closed field k and let U be a finitely generated indecomposable non-projective
A-module. Suppose that U does not have odd Ω-period, or that char(k) = 2. There is
an element ζ ∈ Z−1(mod(A)) such that ζ(U) : U → Ω(U) represents an almost split
sequence ending in U and such that ζ(V ) = 0 for any finitely generated indecompos-
able non-projective A-module V which is not isomorphic to Ωn(U), for any integer n.
In particular, if A has infinitely many Ω-orbits of isomorphism classes of finitely gener-
ated non-projective modules whose Ω-period is not odd, then Z−1(mod(A)) is not finite
dimensional.

1.1. Notation

Throughout this paper, R is a commutative ring with unit element. Let C, D, E be
categories, let F ,F ′ : C → D and G,G′ : D → E be covariant functors. For any natural
transformation ψ : G → G′ we denote by ψF : GF → G′F the natural transformation
given by (ψF)(X) = ψ(F(X)) : G(F(X)) → G′(F(X)) for any object X in C. Similarly,
for any natural transformation ϕ : F → F ′ we denote by Gϕ : GF → GF ′ the natural
transformation given by (Gϕ)(X) = G(ϕ(X)) : G(F(X)) → G(F ′(X)) for any object X

in C.
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2. Graded centres of graded categories

Graded centres are being considered by a growing number of authors (see, for example,
[2,4]). We review the terminology and basic properties.

Definition 2.1. Let C be an R-linear category and let Σ : C → C be an R-linear
equivalence. We define a graded R-module Z∗(C) as follows. For any integer n we denote
by Zn(C, Σ) the R-module of natural transformations ϕ : IdC → Σn satisfying Σϕ =
(−1)nϕΣ. We call Z∗(C, Σ) the graded centre of the graded category (C, Σ). If Σ is clear
from the context, we write Z∗(C) instead of Z∗(C, Σ).

Remark 2.2. In particular, Z0(C, Σ) consists of all natural transformations ϕ : C → C
satisfying Σϕ = ϕΣ. This condition is void if Σ = IdC . In that case, Z0(C, IdC) = Z(C)
consists of all natural transformations ϕ : IdC → IdC , traditionally called the centre of
the category C. It is easy to see that Z(C) is commutative. If C = mod(A), where A

is any ring, we have a canonical isomorphism Z(A) ∼= Z(C) mapping z ∈ Z(A) to the
natural transformation consisting, for any A-module U , of the endomorphism given by
multiplication with z on U . We ignore set theoretic issues in this paper, since the results
stated in § 1 involve only finitely generated module categories and their derived and stable
categories.

Remark 2.3. The equality Σϕ = (−1)nϕΣ in Definition 2.1 is an equality of natural
transformations from Σ to Σn+1. The sign is motivated by the ‘turning triangles’ axiom:
if (C, Σ) is a triangulated category and if U

f−→ V
g−→ W

h−→ Σ(U) is an exact triangle in
C, then the triangle

Σn(U)
(−1)nΣn(f) �� Σn(V )

(−1)nΣn(g) �� Σn(W )
(−1)nΣn(h) �� Σn+1(U)

is exact. Hence, if ϕ : IdC → Σn is any natural transformation, we have a commutative
diagram

U
f ��

ϕ(U)
��

V
g ��

(−1)nϕ(V )
��

W
h ��

ϕ(W )
��

Σ(U)

(−1)nϕ(Σ(U))
��

Σn(U)
(−1)nΣn(f)

�� Σn(V )
(−1)nΣn(g)

�� Σn(W )
(−1)nΣn(h)

�� Σn+1(U)

Thus, this diagram defines a morphism of triangles provided that (−1)nϕ(Σ(U)) =
Σ(ϕ(U)).

The graded R-module Z∗(C) becomes an associative graded R-algebra via the R-
bilinear product mapping a pair (ψ, ϕ) ∈ Zn(C) × Zm(C) to the composition (Σmψ) ◦
ϕ ∈ Zm+n(C) for any two integers m, n. Strictly speaking, for this to make sense in
negative degrees, we have to choose an inverse equivalence Σ−1 and natural isomorphisms
Σ ◦ Σ−1 ∼= IdC ∼= Σ−1 ◦ Σ, so that we can identify the functors Σn ◦ Σm ∼= Σn+m for
any two integers n, m, positive or negative. In practice, this may not be an issue because
Σ is frequently not only an equivalence, but an automorphism; that is, Σ ◦ Σ−1 =
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IdC = Σ−1 ◦ Σ. This is, for instance, the case if Σ is a shift functor in some category of
complexes. The sign convention has the following immediate consequence.

Proposition 2.4. Let C be an R-linear category and let Σ : C → C be an R-linear
equivalence. The R-algebra Z∗(C) is graded commutative.

Proof. Let m, n be two integers, let ϕ ∈ Zm(C) and ψ ∈ Zn(C). Since ϕΣ = (−1)mΣϕ

we have ϕΣn = (−1)mnΣnϕ. Using the fact that ϕ is a natural transformation from IdC
to Σm we get a commutative diagram

IdC
ϕ ��

ψ

��

Σm

Σmψ

��
Σn

ϕΣn
�� Σm+n

Together we get ψϕ = (Σmψ) ◦ ϕ = (ϕΣn) ◦ ψ = (−1)mn(Σnϕ) ◦ ψ = (−1)mnϕψ. �

Definition 2.5. Let C be an R-linear category and let Σ : C → C be an R-linear
equivalence. For any two objects U , V in C we define a graded R-module Ext∗

(C,Σ)(U, V )
by setting Extn

(C,Σ)(U, V ) = HomC(U, Σn(V )) for any integer n. As before, if Σ is clear
from the context, we write Extn

C(U, V ) instead of Extn
(C,Σ)(U, V ).

Remark 2.6. If U , V , W are three objects in an R-linear category C endowed
with an R-linear equivalence Σ : C → C, there is a graded composition Ext∗

C(V, W ) ×
Ext∗

C(U, V ) → Ext∗
C(U, W ) mapping a pair (ψ, ϕ) ∈ Extn

C(V, W ) × Extm
C (U, V ) to the

composition Σm(ψ) ◦ ϕ ∈ Extm+n
C (U, W ). This defines an associative graded R-algebra

structure on Ext∗
C(U, U), and Ext∗

C(U, V ) becomes an Ext∗
C(V, V )–Ext∗

C(U, U)-bimodule
in this way. Moreover, for any object U in C there is a canonical graded algebra homo-
morphism Z∗(C) → Ext∗

C(U, U) mapping a natural transformation ϕ : IdC → Σn to the
morphism ϕ(U) : U → Σn(U), where n is any integer.

Example 2.7. Let A be an R-algebra. The derived bounded category of finitely gen-
erated A-modules Db(A) together with the shift functor is triangulated, and for any
bounded complexes of A-modules U , V we have Ext∗

Db(A)(U, V ) = Ext∗
A(U, V ). If, more-

over, A is finitely generated projective as an R-module, then

HH∗(A) = ExtA⊗
R

Aop(A, A);

thus, an element in HHn(A) can be represented by a morphism

ζ : A → A[n]

in the bounded derived category of A–A-bimodules

Db
(
A ⊗

R
Aop

)
.
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For any bounded complex U of A-modules, the functor −
L

⊗ U applied to ζ yields a
morphism ϕ(U) : U → U [n] in Db(A). This family of morphisms defines clearly a nat-
ural transformation from the identity functor on Db(A) to [n]. By chasing signs, one
verifies that this is in fact an element ϕ ∈ Z∗(Db(A)). Thus, the map ζ �→ ϕ defines
a homomorphism of graded algebras HH∗(A) → Z∗(Db(A)). This is not surjective, in
general, not even in degree zero (see [7] for an example). For any bounded complex of
A-modules U , evaluation at U defines a canonical graded algebra homomorphism (see
Remark 2.6) Z∗(Db(A)) → Ext∗

A(U, U), and the composition of the two graded algebra
homomorphisms

HH∗(A) → Z∗(Db(A)) → Ext∗
A(U, U)

is the canonical map induced by the functor −
L

⊗
A

U from Db(A ⊗
R

Aop) to Db(A).

Example 2.8. Let A be an R-algebra which is finitely generated projective as R-
module and suppose that A is relatively R-injective as a left A-module; this is the case,
for instance, if A is symmetric and hence in particular if A = RG for some finite group
G. Let mod(A) be the R-stable category of the category mod(A) of finitely generated
A-modules. That is, mod(A) is the R-linear quotient category of mod(A) obtained from
identifying to zero all relatively R-projective A-modules. Taking cokernels of relatively R-
injective envelopes defines an equivalence Σ on mod(A). Together with triangles induced
by R-split exact sequences, mod(A) endowed with Σ becomes a triangulated category
(see, for example, [5]). Applied to (C, Σ) = (mod(A), Σ) and A-modules, we get Tate
cohomology,

Ext∗
C(U, V ) = Êxt

∗
A(U, V ).

As in Example 2.7, for any A-module U we get graded algebra homomorphisms

ĤH
∗
(A) → Z∗(mod(A)) → Êxt

∗
A(U, U)

whose composition is induced by the functor − ⊗
A

U . This map is neither surjective nor
injective, in general (see [6] for an example).

If R = k is an algebraically closed field and C is a triangulated category such that Z∗(C)
is finitely generated as k-algebra, one can associate with any object U in C a variety
VC(U) in the spirit of Carlson’s cohomology varieties for modules over group algebras, by
taking for VC(U) the maximal ideal spectrum of the quotient of Z∗(C) by the kernel of
the algebra homomorphism Z∗(C) → Ext∗

C(U, U). In fact, for this to make sense it would
suffice if the quotient of Z∗(C) by some nilpotent ideal is finitely generated as k-algebra.
This motivates the next proposition, which requires the following concept from [12]. Let
(C, Σ) be a triangulated category and let M be an object in C. We denote by 〈M〉1 the
full additive subcategory of C consisting of all objects isomorphic to finite direct sums of
summands of the objects Σn(M), with n ∈ Z. For i � 2 we define inductively 〈X〉i as the
full additive subcategory of C consisting of all objects isomorphic to direct summands
of objects Z for which there exists an exact triangle X → Y → Z → Σ(X) with X in
〈M〉i−1 and Y in 〈M〉1. Following [12, 3.6], the dimension of C, denoted dim(C), is the
smallest positive integer d for which there exists an object M in C such that 〈M〉d+1 = C.
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Proposition 2.9. Let (C, Σ) be a triangulated category and let M be an object in C
for which there exists a positive integer d satisfying 〈M〉d+1 = C. Let N be the kernel of
the canonical graded algebra homomorphism Z∗(C) → Ext∗

C(M, M). We have N 2d

= {0}.

Proof. Let m, n be integers and let ϕ ∈ Zm(C) and ψ ∈ Zn(C). If ϕ ∈ N , then
ϕ(M) = 0 and hence ϕ(X) = 0 for all X in 〈M〉1. What we show is that if ϕ(X) = 0 =
ψ(X) for all objects in X in 〈M〉i, then (ψϕ)(Z) = 0 for all objects in 〈M〉i+1; the result
follows then by induction. This is a standard argument: consider an exact commutative
diagram in C of the form

X ��

0
��

Y ��

0
��

Z ��

ϕ(Z)
����� �

�
�

�
� Σ(X)

0
��

Σm(X) ��

0
��

Σm(Y ) ��

0
��

Σm(Z) ��

ψ(Σm(Z))
��

Σm+1(X)

0
����� � � � � �

Σm+n(X) �� Σm+n(Y ) �� Σm+n(Z) �� Σm+n+1(X)

with X in 〈M〉i and Y in 〈M〉1. Since ϕ(Z) composed with the morphism Σm(Z) →
Σm+1(X) is zero, ϕ(Z) factors through Σm(Y ). For similar reasons, ψ(Σm(Z)) factors
through Σm+1(X). But then ψ(Σm(Z)) ◦ ϕ(Z) factors through two consecutive mor-
phisms in an exact triangle, and hence is zero. �

Proof of Proposition 1.2. Let B be a block algebra over an algebraically closed
field k of prime characteristic p. We refer the reader to [8, § 5] for the definition of
block cohomology. By [8, 5.6 (iii)] there is a canonical graded algebra homomorphism
H∗(B) → HH∗(B). Thus, for any B-module U , we have a sequence of canonical algebra
homomorphisms

H∗(B) → HH∗(B) → Z∗(Db(B)) → Ext∗
B(U, U).

By Proposition 2.9 there exists a finitely generated B-module U such that N =
ker(Z∗(Db(B)) → Ext∗

A(U, U)) is a nilpotent ideal (for instance, U = B/J(B) would have
this property because then 〈U〉d+1 = Db(B) for some integer d bounded by the Loewy
length of B by [12, 3.7]). Since Ext∗

B(U, U) is Noetherian over H∗(G, k) (cf. [1, 4.2.4]),
it follows from the commutative diagram in [9, 4.2 (iii)] that Ext∗

A(U, U) is Noetherian
as module over H∗(B). Thus, its submodule isomorphic to Z∗(Db(B))/N is Noetherian
over H∗(B). �

Proof of Proposition 1.3. Set ∆P = {(u, u) | u ∈ P} ⊆ P × P . The ‘diagonal’
induction functor IndP×P

∆P sends the trivial k∆P -module k to kP viewed as a k(P × P )-
module via (u, v) · y = uyv−1 for u, v, y ∈ P . This functor hence induces a graded
homomorphism δP : H∗(P, k) → HH∗(kP ) (this is well known: see, for example, [8, § 4]
for more details). When composed with the canonical homomorphisms

HH∗(kP ) → Z∗(Db(kP )) → Ext∗
kP (k, k) = H∗(P, k),
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this yields the identity on H∗(P, k); in particular, the canonical map Z∗(Db(kP )) →
H∗(P, k) is surjective. Since k is the unique simple kP -module, up to isomorphism, we
have Db(kP ) = 〈k〉d+1 for some positive integer d, and hence the kernel N of this map
is nilpotent by Proposition 2.9. The result follows. �

Proof of Proposition 1.4. Let ζ(U) ∈ HomA(U, Ω(U)) such that ζ(U) represents
an Auslander–Reiten sequence ending in U . Then ζ(U) is almost vanishing in the sense
of Happel [5, I.4.1]; that is, for any morphism β : W → U in mod(A) which is not a
split epimorphism, we have ζ(U) ◦ β = 0, and, for any morphism γ : Ω(U) → W in
mod(A) which is not a split monomorphism, we have γ ◦ ζ(U) = 0. For any integer n, set
ζ(Ωn(U)) = (−1)nΩn(ζ(U)); this is possible even if U has an odd period thanks to the
assumption char(k) = 2 in that case. For any indecomposable non-projective A-module
V not isomorphic to Ωn(U) for any integer n, set ζ(V ) = 0 in HomA(V, Ω(V )). Note
that Ωn(ζ(U)) represents an Auslander–Reiten sequence ending in Ωn(U). In order to
show that this family of morphisms defines an element in the graded centre, it suffices
to show that for any two indecomposable non-projective A-modules X, Y and any α ∈
HomA(X, Y ), the diagram in mod(A)

X
ζ(X) ��

α

��

Ω(X)

Ω(α)
��

Y
ζ(Y )

�� Ω(Y )

is commutative. It suffices in fact to do this for X and Y running over a set of represen-
tatives of the isomorphism classes of indecomposable non-projective modules. If neither
X or Y is isomorphic to Ωn(U) for some integer n, this holds trivially as then both ζ(X)
and ζ(Y ) are zero. Thus, we may assume that one of X or Y is equal to Ωn(U) for some
integer n. By applying Ω−n to such a diagram, we may in fact assume that one of X

or Y is equal to U . Suppose that both X = Y = U . Since k is algebraically closed and
since U is indecomposable non-projective, the algebra EndA(U) is split local; that is, we
can write α = λIdU + ρ for some λ ∈ k and some ρ ∈ J(EndA(U)). If ρ = 0, then α

is a multiple of the identity on U ; hence, Ω(α) is the same multiple of the identity on
Ω(U), and the commutativity of the above diagram is clear. If λ = 0, we have α = ρ, and
hence neither α nor Ω(α) is a split epimorphism or split monomorphism in mod(A) and
thus ζ(U) ◦ α = 0 = Ω(α) ◦ ζ(U) in that case. For general α ∈ EndA(U), the required
commutativity follows from adding the two previous cases.

If X = U but Y 
∼= U , then Ω(X) 
∼= Ω(Y ), and hence Ω(α) ◦ ζ(X) = 0. We need to
show that then also ζ(Y ) ◦ α = 0. If Y 
∼= Ωn(U) for any integer n, then ζ(Y ) = 0, so
this is clear. Suppose that Y ∼= Ωn(U) for some integer n. Since Y 
∼= X, the morphism
α is not a split epimorphism and therefore ζ(Y ) ◦ α = 0 because ζ(Y ) represents an
Auslander–Reiten sequence ending in Y . Similarly, if Y = U but X 
∼= U , then α is
not a split epimorphism; hence, ζ(Y ) ◦ α = 0. To see that also Ω(α) ◦ ζ(X) = 0 we
distinguish two cases, as before: if X 
∼= Ωn(U) for any integer n, then ζ(X) = 0, so
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the commutativity is clear. If X ∼= Ωn(U) for some integer n, then ζ(X) represents an
Auslander–Reiten sequence ending in Y and Ω(α) is not a split monomorphism because
Ω(X) 
∼= Ω(Y ). Hence, Ω(α) ◦ ζ(X) = 0 as required. �

3. Compatible adjunctions for functors between graded categories

Definition 3.1. Let C, D be R-linear categories, endowed with R-linear equivalences
Σ : C → C and ∆ : D → D. Let F : C → D and G : D → C be R-linear functors such
that G is left adjoint to F , and let f : IdD → FG be the unit and g : GF → IdC be the
counit of an adjunction. Suppose that there are isomorphisms of functors a : ∆F ∼= FΣ

and b : G∆ ∼= ΣG.
We say that the left adjunction given by f and g is compatible with Σ and ∆ with

respect to a and b if the following diagrams of natural transformations are commutative:

∆
∆f ��

f∆
��

∆FG

aG
��

G∆F bF ��

Ga

��

ΣGF
Σg

��
FG∆ Fb

�� FΣG GFΣ
gΣ

�� Σ

If G is also right adjoint to F and f ′ : IdC → GF the unit, g′ : FG → IdD the counit of
a right adjunction, we say that the adjunction of F and G given by the units and counits
f , g, f ′, g′ is compatible with Σ and ∆ with respect to a and b, if the left adjunction of
G to F is compatible with Σ and ∆ with respect to a, b, and if the left adjunction of F
to G is compatible with Σ and ∆ with respect to a−1, b−1, in other words, if, in addition
to the two previous diagrams, the two following diagrams are also commutative:

Σ
Σf ′

��

f ′Σ

��

ΣGF

b−1F
��

FΣG a−1G ��

Fb−1

��

∆FG

∆g′

��
GFΣ

Ga−1
�� G∆F FG∆

g′∆
�� ∆

Remark 3.2. Especially when dealing with derived categories, the natural transfor-
mations a and b will typically be equalities ∆F = FΣ and G∆ = ΣG, in which case the
four compatibility diagrams reduce to equalities of natural transformations ∆f = f∆,
Σg = gΣ, Σf ′ = f ′Σ, ∆g′ = g′∆. Verdier [13] defined an exact functor of triangulated
categories (C, Σ) → (D, ∆) to be an additive functor F : C → D satisfying FΣ = ∆F
and mapping exact triangles to exact triangles. Other authors allow more flexibility, in
that they require only a natural isomorphism FΣ ∼= ∆F and Definition 3.1 is intended to
accommodate this extra degree of generality; the price to pay in this context is that the
notion of an adjoint pair of functors between triangulated categories as in Definition 3.1
becomes more formally involved.

The above definition is redundant in various ways; the following lemmas describe this
in detail. The next lemma says that the commutativity of the first two diagrams in
Definition 3.1 is equivalent.
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Lemma 3.3. With the notation of Definition 3.1, if one of the following two diagrams
is commutative, so is the other:

∆
∆f ��

f∆
��

∆FG

aG
��

G∆F bF ��

Ga

��

ΣGF
Σg

��
FG∆ Fb

�� FΣG GFΣ
gΣ

�� Σ

Proof. If the first diagram is commutative, there is a commutative diagram

G∆F
G∆fF ��

GfG∆F
��

G∆FGF
G∆Fg ��

GaGF
��

G∆F

Ga

��
GFG∆F GFbF ��

gG∆F
��

GFΣGF
GFΣg ��

gΣGF
��

GFΣ

gΣ

��
G∆F

bF
�� ΣGF

Σg
�� Σ

The upper left square in this diagram is obtained by composing the first diagram in
Definition 3.1 with G on the left and F on the right. The other squares are commutative
because f and g are natural transformations. Moreover, the first row and the first column
of this diagram are the identity transformation. Thus, by considering the four outer
corners of the above 3 × 3 diagram, it follows that the second diagram in Lemma 3.3 is
commutative. A dual argument shows that the commutativity of the second diagram in
Lemma 3.3 implies the commutativity of the first one. �

By the same argument, the commutativity of the third and fourth diagrams in Defini-
tion 3.1 is equivalent. When specialized to the case where a and b are equalities, this says
that the equality ∆f = f∆ holds if and only if Σg = gΣ, and similarly Σf ′ = f ′Σ if
and only if ∆g′ = g′∆. If the first diagram in Definition 3.1 commutes, then the natural
isomorphisms a and b determine each other, as follows.

Lemma 3.4. With the notation of Definition 3.1, suppose that the following diagram
is commutative:

∆
∆f ��

f∆
��

∆FG

aG
��

FG∆ Fb
�� FΣG

Then a = (FΣg) ◦ (FbF) ◦ (f∆F) and b = (gΣG) ◦ (GaG) ◦ (G∆f).
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Proof. In order to prove the formula for a we observe that there is a commutative
diagram

∆F
∆fF ��

f∆F
��

∆FGF
∆Fg ��

aGF
��

∆F
a

��
FG∆F FbF

�� FΣGF FΣg
�� FΣ

Indeed, the left square is obtained by composing the first diagram in Definition 3.1 (which
is commutative by the assumptions) with F on the right. The second square uses the
fact that g is a natural transformation from GF to IdC . Moreover, the first row is the
identity transformation on ∆F by the general properties of adjunctions. The formula for
a follows. The formula for b is obtained by composing the first diagram in Definition 3.1
with G on the left and then using g again, obtaining a commutative diagram of the form

G∆
G∆f ��

Gf∆
��

G∆FG

GaG
��

GFG∆
GFb ��

gG∆
��

GFΣG
gΣG

��
G∆

b
�� ΣG

Observing again that the left column is the identity transformation on G∆ yields the
formula for b. �

If all four diagrams in Definition 3.1 are commutative, then the left and right adjunc-
tions are related, as follows.

Lemma 3.5. With the notation of Definition 3.1, assume that all four diagrams in
Definition 3.1 are commutative. Then

(∆g′) ◦ (∆f) = (g′∆) ◦ (f∆),

(Σg) ◦ (Σf ′) = (gΣ) ◦ (f ′Σ).

Proof. To see the first equality (of natural transformations on ∆) combine the first
diagram in Definition 3.1 with the fourth diagram in Definition 3.1 rotated by 90◦ coun-
terclockwise, and for the second equality (of natural transformations on Σ) combine the
second diagram in Definition 3.1 with the third diagram rotated by 90◦ clockwise. �

Compatible adjunctions can be ‘added’, as follows.

Proposition 3.6. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences Σ, ∆, respectively. Let F ,F ′ : C → D and G,G′ : D → C be R-linear functors.
Suppose that F , G and F ′, G′ are two pairs of adjoint functors which are both compatible
with Σ, ∆ with respect to natural isomorphisms of functors a : ∆◦F ∼= F ◦Σ, b : G◦∆ ∼=
Σ ◦ G and a′ : ∆ ◦ F ′ ∼= F ′ ◦ Σ b′ : G′ ◦ ∆ ∼= Σ ◦ G′.
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Then the direct sum of the adjunction isomorphisms of the adjoint pairs of functors F ,
G and F ′, G′ is an adjunction between the functors F ⊕F ′ and G⊕G′ which is compatible
with Σ, ∆ with respect to a ⊕ a′, b ⊕ b′.

Proof. Let U be an object in C and let V be an object in D. The sum of the
adjunction isomorphisms HomC(U,G(V )) ∼= HomD(F(U), V ) and HomC(U,G′(V )) ∼=
HomD(F ′(U), V ) obviously yields a natural isomorphism

HomC(U,G(V ) ⊕ G′(V )) ∼= HomD(F(U) ⊕ F ′(U), V )

showing that F⊕F ′ is left adjoint to G⊕G′. Similarly one shows that F⊕F ′ is right adjoint
to G⊕G′. We determine the unit IdC → (G⊕G′)(F ⊕F ′) of this adjunction in terms of the
units f : IdC → GF and f ′ : IdC → G′F ′, as follows. The morphism f(U) : U → GF(U)
is the image of IdF(U) under the appropriate adjunction isomorphism; the situation is
similar for f ′(U). Chasing IdF(U)⊕F ′(U) through the isomorphism

HomD(F(U) ⊕ F ′(U),F(U) ⊕ F ′(U))
∼= HomC(U, (G ⊕ G′)(F(U) ⊕ F ′(U)))

= HomC(U,GF(U) ⊕ GF ′(U) ⊕ G′F(U) ⊕ G′F ′(U))

shows that the counit IdC → (G ⊕ G′)(F ⊕ F ′) is in fact simply obtained by taking the
‘sum’ of f , f ′ evaluated at the object U , that is,(

f(U)
f ′(U)

)
: U → GF(U) ⊕ G′F ′(U)

followed by the canonical inclusion

GF(U) ⊕ G′F ′(U) → (G ⊕ G′)(F ⊕ F ′)(U) = GF(U) ⊕ GF ′(U) ⊕ G′F(U) ⊕ G′F ′(U).

A similar statement holds for the counits. Since units and counits for F ⊕ F ′, G ⊕ G′

are essentially obtained by adding those for the two pairs of adjoint functors, the result
follows. �

Compatible adjunctions can be composed as follows.

Proposition 3.7. Let C, D, E be R-linear categories endowed with R-linear self-
equivalences Σ, ∆, Γ , respectively.

Let F : C → D, G : D → C be adjoint R-linear functors, compatible with Σ, ∆ with
respect to isomorphisms a : FΣ ∼= ∆F , b : G∆ ∼= ΣG.

Let F ′ : D → E , G′ : E → D be adjoint R-linear functors, compatible with ∆, Γ with
respect to isomorphisms a′ : F ′∆ ∼= ΓF ′, b′ : G′Γ ∼= ∆G′.

The composition of adjunction isomorphisms of the adjoint pairs of functors F ,G and
F ′,G′ is an adjunction between the compositions of functors F ′ ◦ F , G ◦ G′ which is
compatible with Σ, Γ with respect to the isomorphisms (a′F) ◦ (F ′a) : F ′FΣ ∼= ΓF ′F
and (bG′) ◦ (Gb′) : GG′Γ ∼= ΣGG′.

Proof. Straightforward verification. �
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4. Adjunction and transfer

In the context of group cohomology and Hochschild cohomology of symmetric algebras,
transfer appears to be the translation of the adjunction principle to cohomology rings
arising from triangulated categories. The following definition extends the pattern of var-
ious sources, such as [3,8,10].

Definition 4.1. Let C, D be R-linear categories endowed with R-linear equivalences
Σ : C → C and ∆ : D → D. Let F : C → D and G : D → C be R-linear functors which are
adjoint to each other, compatible with Σ and ∆ with respect to natural transformations
a : ∆ ◦ F ∼= F ◦ Σ and b : G ◦ ∆ ∼= Σ ◦ G. Denote by f : IdD → FG, g : GF → IdC and
f ′ : IdC → GF , g′ : FG → IdD, the units and counits of adjunctions which are compatible
with Σ and ∆, with respect to a, b.

For any integer n and any natural transformation ϕ : IdC → Σn we define the nat-
ural transformation trF (ϕ) : IdD → ∆n to be the natural transformation equal to the
composition

IdD
f−→ FG = F IdC G FϕG−−−→ FΣnG ∼= ∆nFG ∆ng′

−−−→ ∆n,

where the isomorphism FΣnG ∼= ∆nFG is given by applying repeatedly a. Similarly, for
any two objects U , V in D, we define the relative transfer map

trF (U, V ) : Ext∗
C(G(U),G(V )) → Ext∗

D(U, V )

to be the graded R-linear map sending a morphism α ∈ HomC(G(U), Σn(G(V ))) to the
morphism β ∈ HomD(U,∆n(V )), which is equal to the composition

U
f(U)−−−→ FG(U)

F(α)−−−→ FΣnG(V ) ∼= ∆nFG(V )
∆n(g′)−−−−→ ∆n(V ),

where the isomorphism FΣnG(V ) ∼= ∆nFG(V ) is again given by evaluating the natural
transformation a.

Remarks 4.2. (i) The definition of trF makes use of the unit f and the counit g′;
using the unit f ′ and counit g instead, one analogously obtains trG . The transfer map
trF defined above depends on the choices of the adjunction isomorphisms as well as on
the choices of the natural transformations a, b. Whenever we do not specify these choices
in a statement, this means that we implicitly assert that either the statement does not
depend on this choice or the context determines such a choice canonically. It can in fact
be useful to play two different choices off against each other. In practice, the natural
isomorphisms a, b are frequently given canonically by the context; they may sometimes
just be equalities of functors.

(ii) Examples of pairs of biadjoint functors include induction/restriction between alge-
bras of finite groups, Harish-Chandra induction/restriction, and more generally, functors
between module categories of symmetric algebras induced by bimodules which are finitely
generated projective on both sides (see § 7 for details).
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(iii) With the notation of Definition 4.1, the degree zero component trF sends a natural
transformation ϕ : IdC → IdC to the natural transformation

trF (ϕ) : IdD
f−→ FG = F IdC G FϕG−−−→ F IdC G = FG g′

−→ IdD .

Similarly, for any two objects U , V in D, the degree zero component of the relative
transfer map trF (U, V ) is the map tF (U, V ) : HomC(G(U),G(V )) → HomD(U, V ) sending
a morphism α : G(U) → G(V ) to the morphism β = g′(V ) ◦ F(α) ◦ f(U) : U → V .

Theorem 4.3. Let C, D be R-linear categories endowed with R-linear equivalences
Σ : C → C and ∆ : D → D. Let F : C → D and G : D → C be R-linear functors which are
adjoint to each other, compatible with Σ and ∆ with respect to natural transformations
a : ∆ ◦ F ∼= F ◦ Σ and b : G ◦ ∆ ∼= Σ ◦ G. The map sending a natural transformation
ϕ : IdC → Σn to trF (ϕ) for any integer n induces a graded R-linear map trF : Z∗(C) →
Z∗(D) such that, for any object V in D, the diagram

Z∗(C) ��

trF

��

Ext∗
C(G(V ),G(V ))

trF (V,V )
��

Z∗(D) �� Ext∗
D(V, V )

is commutative, where the horizontal maps are the canonical graded algebra homomor-
phisms. More explicitly, for any integer n, any natural transformation ϕ : IdC → Σn and
any object V in D we have trF (ϕ)(V ) = trF (V, V )(ϕ(G(V ))).

Proof. Let n be an integer and let ϕ ∈ Zn(C); that is, ϕ : IdC → Σn is a natural trans-
formation satisfying ϕΣ = (−1)nΣϕ. We need to show that trF (ϕ)∆ = (−1)n∆ trF (ϕ).
To see this, we consider the following diagram of functors and natural transformations:

∆
∆f �� ∆FG ∆F IdC G ∆FϕG ��

a IdC G
��

∆FΣnG
∼= ��

aΣnG
��

∆n+1FG
∆n+1g′

��

∆naG
��

∆n+1

(−1)n

FΣ IdC G FΣϕG �� FΣΣnG
∼= ��

(−1)n

∆nFΣG

(−1)n

F IdC ΣGFϕΣG∆�� FΣnΣG
∼= �� ∆nFΣG

∆
f∆

�� FG∆ F IdC G∆

F IdC b

��

FϕG∆
�� FΣnG∆ ∼=

��

FΣnb

��

∆nFG∆

∆nFb

��

∆ng′∆
�� ∆n+1

The first row is ∆ trF (ϕ) and the last row is trF (ϕ)∆. The left and right rectangle of the
diagram commute by the compatibility assumption. The commutativity of the remaining
squares is easily checked by using either the naturality, the compatibility condition or the
assumption ϕΣ = (−1)nΣϕ. The unmarked isomorphisms are obtained from iterating a.
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We need to check the commutativity of the diagram in the statement of the theorem. The
left side of that diagram is trF (ϕ) evaluated at V , and hence equal to the composition

V
f(V )−−−→ FG(V )

FϕG(V )−−−−−→ FΣnG(V ) ∼= ∆nFG(V )
∆ng′(V )−−−−−→ ∆n(V ).

This is clearly equal to the map trF (V, V ) evaluated at ϕ(G(V )). �

Corollary 4.4. With the notation of Theorem 4.3, setting πF = trF (IdIdC ), we have
πF ∈ Z0(D).

Proof. The identity transformation IdIdC commutes obviously with Σ; hence, it be-
longs to Z0(C) and thus its image πF = trF (IdIdC ) belongs to Z0(D) by Theorem 4.3. �

Definition 4.5. With the notation above, we call πF = trF (IdIdC ) the relatively F-
projective element in Z0(D).

The transfer map trF depends additively on F , as follows.

Proposition 4.6. Let C, D be R-linear categories endowed with R-linear self-
equivalences Σ, ∆, respectively. Let F ,F ′ : C → D and G,G′ : D → C be R-linear
functors. Suppose that F , G and F ′, G′ are two pairs of adjoint functors which are both
compatible with Σ, ∆ with respect to natural isomorphisms of functors a : ∆◦F ∼= F ◦Σ,
b : G ◦ ∆ ∼= Σ ◦ G and a′ : ∆ ◦ F ′ ∼= F ′ ◦ Σ b′ : G′ ◦ ∆ ∼= Σ ◦ G′.

(i) We have trF⊕F ′ = trF + trF ′ .

(ii) For any two objects V , W in D, any α ∈ HomC(G(V ),G(W )) and any α′ ∈
HomC(G′(V ),G′(W )) we have

trF⊕F ′(V, W )(α ⊕ α′) = trF (V, W )(α) + trF ′(V, W )(α′).

Proof. Straightforward verification using Proposition 3.6. �

Transfer maps compose as expected.

Proposition 4.7. Let C, D, E be R-linear categories endowed with R-linear self-
equivalences Σ, ∆, Γ , respectively. Let F : C → D, G : D → C be adjoint R-linear
functors, compatible with Σ, ∆ with respect to isomorphisms a : FΣ ∼= ∆F , b : G∆ ∼=
ΣG. Let F ′ : D → E , G′ : E → D be adjoint R-linear functors, compatible with ∆, Γ

with respect to isomorphisms a′ : F ′∆ ∼= ΓF ′, b′ : G′Γ ∼= ∆G′.

(i) We have trF ′◦F = trF ′ ◦ trF .

(ii) For any two objects V , W in E we have

trF ′◦F (V, W ) = trF ′(V, W ) ◦ trF (G(V ),G(W )).

Proof. Straightforward verification, using Proposition 3.7. �
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The class of morphisms which are in the image of a transfer map form an ‘ideal’, as
follows.

Proposition 4.8. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences Σ, ∆, respectively. Let F : C → D and G : D → C be R-linear functors which
are adjoint to each other, compatible with Σ, ∆ with respect to natural isomorphisms of
functors a : ∆ ◦ F ∼= F ◦ Σ and b : G ◦ ∆ ∼= Σ ◦ G. Let U , V , W be objects in D, and let
α ∈ Ext∗

C(G(V ),G(W )).

(i) For any β ∈ Ext∗
D(U, V ) we have trF (V, W )(α)β = trF (U, W )(αG(β)).

(ii) For any γ ∈ Ext∗
D(W, U) we have γ trF (V, W )(α) = trF (V, U)(G(γ)α).

Proof. We prove (i); the proof of (ii) is analogous. We may assume that α and β are
homogeneous of degree m and n, respectively. That is,

α : G(V ) → ΣmG(W )

is a morphism in C and
β : U → ∆n(V )

is a morphism in D. The product αG(β) is the composition of morphisms

G(U)
G(β)−−−→ G∆n(V ) ∼= ΣnG(V )

Σn(α)−−−−→ Σn+mG(W ).

With the notation of Theorem 4.3, applying trF (U, W ) to αG(β) yields the composition
of morphisms

U
f(U)−−−→ FG(U)

FG(β)−−−−→ FG∆n(V ) ∼= FΣnG(V )
FΣn(α)−−−−−→ FΣn+mG(W ) ∼= ∆n+mFG(W )

∆n+mg′(W )−−−−−−−−→ ∆n+m(W )

We need to compare this to the product trF (V, W )(α)β, which is equal to the composition

U
β−→ ∆n(V )

∆nf(V )−−−−−→ ∆nFG(V )
∆nF(α)−−−−−→ ∆nFΣmG(W ) ∼= ∆n+mFG(W )

∆n+mg′(W )−−−−−−−−→ ∆n+m(W ).

The right ends of these two morphisms coincide because FΣn(α) and ∆nF(α) are equal
modulo the identifications induced by a and b. We need to show that the two left mor-
phisms compose to the same morphism modulo identifications; that is, we need to show
that the diagram

U
f(U) �� FG(U)

FG(β) �� FG∆n(V )

∼=
��

U
β �� ∆n(V )

∆nf(V )�� ∆nFG(V )
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commutes. Now we have a commutative diagram

U
f(U) ��

β

��

FG(U)

FG(β)
��

∆n(V )
f(∆n(V ))

�� FG∆n(V )

because f is a natural transformation, and we have a commutative diagram

∆n(V )
f(∆n(V ))

�� FG∆n(V )

∼=
��

∆n(V )
∆nf(V )

�� ∆nFG(V )

because of the compatibility conditions in Definition 4.1. Together they yield the required
statement. �

5. Stable elements

Definition 5.1. Let C, D be R-linear categories endowed with R-linear self-equiv-
alences Σ, ∆, respectively. Let F : C → D be an R-linear functor such that there is
a natural isomorphism a : FΣ ∼= ∆F . Given an integer n, a natural transformation
ϕ : IdC → Σn is called F-stable, if there is a natural transformation ψ : IdD → ∆n such
that the diagram

F
Fϕ �� FΣn

∼=
��

F
ψF

�� ∆nF

commutes, where the isomorphism FΣn ∼= ∆nF is induced by a. An element ϕ ∈ Z∗(C)
is called F-stable if there is ψ ∈ Z∗(D) such that the previous diagram is commutative
for the components of ϕ and ψ in any degree n; in that case we write abusively Fϕ = ψF .
We denote by Z∗

F (C) the set of F-stable elements in Z∗(C).

The notion of F-stability depends on the choice of the natural isomorphism a : FΣ ∼=
∆F .

Proposition 5.2. Let C, D be R-linear categories endowed with R-linear self-
equivalences Σ, ∆, respectively. Let F : C → D be an R-linear functor such that there is
a natural isomorphism a : FΣ ∼= ∆F . Then the F-stable elements Z∗

F (C) form a graded
subalgebra of Z∗(C).

Proof. This follows from adding and composing commutative diagrams as in Defini-
tion 5.1. �
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The image of a transfer map is a bimodule for the subalgebra of stable elements. This is
a ‘general abstract nonsense version’ of well-known Frobenius reciprocity-type statements
in cohomology such as [8, 3.4] in Hochschild cohomology.

Theorem 5.3. Let C, D be R-linear categories endowed with R-linear self-equivalences
Σ, ∆, respectively. Let F : C → D and G : D → C be R-linear adjoint functors compatible
with Σ, ∆. Let ϕ ∈ Z∗

F (C) and ψ ∈ Z∗(D) such that Fϕ = ψF .

(i) We have ϕG = Gψ; in particular, ψ ∈ Z∗
G(D).

(ii) For any τ ∈ Z∗(C) we have trF (ϕτ) = ψ trF (τ) and trF (τϕ) = trF (τ)ψ.

(iii) We have trF (ϕ) = πFψ.

In particular, �(trF ) is a sub-Z∗
G(D)–Z∗

G(D)-bimodule of Z∗(D) and trF (Z∗
F (C)) =

πFZ∗
G(D).

Proof. We may assume that ϕ, ψ are homogeneous of degree n and that τ is homo-
geneous of degree m. In order to prove (i) we will show that there is a commutative
diagram of the following form:

G
ϕG ��

��

ΣnG

��
GFG

GFϕG �� GFΣnG
∼=

��
GFG

��

GψFG
�� G∆nFG

��
G Gψ

�� G∆n

Indeed, the upper square is obtained from the square of adjunction units

IdC
ϕ ��

��

Σn

��
GF

GFϕ �� GFΣn

composed with G on the right. The lower square is obtained from the square of adjunction
counits

FG
ψFG

��

��

∆nFG

��
IdD

ψ
�� ∆n
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composed with G on the left. For the square in the middle, we use the hypothesis on ϕ,
ψ according to which we have a commutative diagram

F
Fϕ �� FΣn

��
F

ψF
�� ∆nF

which we then compose with G on both sides. Since the composition of adjunction units
and counits G → GFG → G is the identity transformation, this proves (i). For the first
equality in (ii) we will show that there is a commutative diagram of the form

IdD �� FG
FϕτG �� FΣn+mG

∼= ��

∼=
��

∆n+mFG �� ∆n+m

IdD ��

ψ

��

FG

ψFG
��

ψFτG �� ∆nFΣmG
∼= �� ∆n+mFG �� ∆n+m

∆n �� ∆nFG ∆nFτG�� ∆nFΣmG
∼= �� ∆n+mFG �� ∆n+m

obtained as follows. The first row is trF (ϕτ), where one notes that ϕτ = Σm(ϕ) ◦ τ :
IdC → Σn+m. The second row is obtained from the first by making use of the hypothesis
ψF = Fϕ. The last row uses the fact that ψ is a natural transformation. The last row is
easily seen to be equal to ∆n(trF (τ)) and, hence, upon composition with ψ (the left lower
vertical arrow in the diagram), is equal to ψ trF (τ) as claimed. A similar argument proves
the second equality in (ii). One can also show this using Theorem 4.3 and Proposition 4.8.
Statement (iii) follows from (ii) applied to τ = IdIdC . The last two statements follow from
(ii) and (iii), respectively. �

Corollary 5.4. Let C and D be R-linear categories endowed with R-linear self-equiv-
alences Σ and ∆, respectively. Let F : C → D and G : D → C be R-linear adjoint functors
compatible with Σ, ∆. We have Z∗

F (C) ⊆ Z∗
GF (C).

Proof. Let ϕ ∈ Zn(C) and ψ ∈ Zn(D) such that Fϕ = ψF , where n is an integer. By
Theorem 5.3 we get Gψ = ϕG, and hence (GF)ϕ = GψF = ϕ(GF), which shows that ϕ

is GF-stable. �

6. Normalized transfer

We extend some of the machinery in [8, § 3] to the present context. The following is [8,
3.1 (ii)] in the case of Hochschild cohomology.

Definition 6.1. Let C, D be R-linear categories endowed with R-linear equivalences
Σ : C → C and ∆ : D → D. Let F : C → D and G : D → C be R-linear functors
which are adjoint to each other, compatible with Σ and ∆. Suppose that the relatively
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projective element πF = trF (IdIdC ) is invertible in Z0(D). The normalized transfer map
TrF : Z∗(C) → Z∗(D) is the graded R-linear map defined by TrF (ϕ) = (πF )−1 trF (ϕ)
for all ϕ ∈ Z∗(C).

This makes sense as Z∗(D) is a module over Z0(D). Unlike trF , the normalized transfer
TrF restricted to appropriate subalgebras of stable elements no longer depends on the
choices of a compatible adjunction (but still depends on the choice of the transformations
a, b), provided that the relatively projective elements are invertible; this generalizes [8,
3.6], as follows.

Theorem 6.2. Let C, D be R-linear categories endowed with R-linear equivalences
Σ : C → C and ∆ : D → D. Let F : C → D and G : D → C be R-linear functors
which are adjoint to each other, compatible with Σ and ∆ with respect to isomorphisms
a : FΣ ∼= ∆F and b : GΣ ∼= ∆F . Suppose that the relatively projective element πF =
trF (IdIdC ) is invertible in Z0(D). The normalized transfer map TrF induces a surjective
homomorphism of graded R-algebras

RF : Z∗
F (C) → Z∗

G(D)

which is independent of the choice of a compatible adjunction with respect to a, b for
which the relatively projective element πF is invertible. In addition, if both πF and πG
are invertible in Z0(D) and Z0(C), respectively, then RF and RG are graded R-algebra
isomorphisms

Z∗
F (C) ∼= Z∗

G(D),

which are inverse to each other.

Proof. Let ϕ ∈ Zn(C) and ψ ∈ Zn(D) such that Fϕ = ψF , with the notation as in
Definition 5.1. By Theorem 5.3 (iii) we have

TrF (ϕ) = ψ.

This proves that RF is a surjective algebra homomorphism and that RG is inverse to
RF if πG is invertible as well. Since the equality Fϕ = ψF does not involve the adjunc-
tion isomorphism (but involves the transformation a) the independence statement in
Theorem 6.2 also follows. �

The next theorem generalizes the cancellation property from [8, 3.8] to this context.

Theorem 6.3. Let C, D, E be R-linear categories endowed with R-linear self-equiv-
alences Σ, ∆, Γ , respectively. Let F : C → D, G : D → C be adjoint functors compatible
with Σ, ∆, and let F ′ : D → E , G′ : E → D be adjoint functors compatible with ∆, Γ .
Suppose that the relatively projective element πG′ in Z0(D) is invertible.

Let n be a non-negative integer, let ζ ∈ Zn(C) and let τ ∈ Zn(E) such that F ′Fζ =
τF ′F . Then

Fζ = TrG′(τ)F .

In particular, we have Z∗
F ′F (C) ⊆ Z∗

F (C) and TrG′(Z∗
GG′(E)) ⊆ Z∗

G(D).
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Proof. We will show that there is a commutative diagram of the following form:

F

����
��

��
��

�
Fζ �� FΣn

�������������

∼= �� ∆nF

����
��

��
��

��
��

��
��

�

πG′ Id∆nF

��

G′F ′F
G′F ′Fζ �� G′F ′FΣn

∼=
��

G′F ′F G′τF ′F �� G′ΓnF ′F
∼= �� ∆nG′F ′F

������������

F

		���������

trG′ (τ)F
�� ∆nF

The unmarked arrows are induced by the adjunction unit IdD → G′F ′ and adjunction
counit G′F ′ → IdD. The composition of these two is the relatively projective element πG′ ,
which is invertible by the assumptions. This accounts for the commutativity of the right
triangle in the diagram. The smaller square in the middle of the diagram is commutative,
because this is the equality F ′Fζ = τF ′F composed with G′ on the left. The lower part
of the diagram is commutative, because this is the definition of trG′(τ) composed with F
on the right. The pentagon in the upper right area of the diagram is commutative by the
compatibility assumptions. Consider now the outer square of this diagram and invert the
right vertical arrow (which is possible as πG′ is invertible). The resulting square expresses
the equality Fζ = TrG′(τ)F as stated. Thus, in particular, ζ ∈ Zn

F (C), which yields the
inclusion Z∗

F ′F (C) ⊆ Z∗
F (C), and by Theorem 5.3 (i), we also have TrG′(τ) ∈ Zn

G (D),
which proves the rest. �

Corollary 6.4. Let C, D be R-linear categories endowed with R-linear self-equiva-
lences Σ, ∆, respectively. Let F : C → D, G : D → C be adjoint functors compatible with
Σ, ∆. Suppose that the relatively projective element πF in H0(D) is invertible. Then
Z∗

F (C) = Z∗
GF (C).

Proof. By Theorem 6.3 we have Z∗
GF (C) ⊆ Z∗

F (C). The other inclusion follows from
Corollary 5.4. �

Remark 6.5. When applied to the degree zero component and the case where Σ, ∆
are the identity functors on R-linear categories C, D, the notion of stability (with the
notation of Definition 5.1) reads as follows: an element ϕ ∈ Z(C) is called F-stable if
there is ψ ∈ Z(D) such that Fϕ = ψF ; that is, such that F(ϕ(U)) = ψ(F(U)) for any
object U in C. The set ZF (C) of F-stable elements in Z(C) is a subalgebra of Z(C), and
Theorem 6.2 can be specialized to the following statements.

Corollary 6.6. Let C, D be R-linear categories and let F : C → D and G : D → C
be R-linear functors which are adjoint to each other. Suppose there is an adjunction
isomorphism such that the relative projective elements πF and πG are invertible in Z(D)
and Z(C), respectively. Then, for any ϕ ∈ Z(C) and any ψ ∈ Z(D), we have Fϕ = ψF if
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and only if Gψ = ϕG, and the correspondence mapping ϕ to ψ satisfying these equalities
is an algebra isomorphism ZF (C) ∼= ZG(D).

7. Symmetric algebras

7.1. Let k be a field. A k-algebra A is called symmetric if A is isomorphic to its
k-dual A∗ = Homk(A, k) as A–A-bimodule. In particular, A is self-injective; that is,
A is both projective and injective as a left and as a right A-module. Any choice of a
bimodule isomorphism Φ : A ∼= A∗ determines a symmetrising form s : A → k by
s = Φ(1). Since A is generated as left and right A-module by 1, A∗ is generated as left
and right A-module by s; that is, for any a ∈ A we have Φ(a) = a · s = s · a, where
(a · s)(b) = s(ba) and (s · a)(b) = s(ab) for any b ∈ A. Thus, in particular, s(ab) = s(ba)
for all a, b ∈ A, and Φ is determined by s. For any A-module U we have a natural
isomorphism HomA(U, A) ∼= Hom(U, k) = U∗ sending ϕ ∈ HomA(U, A) to s ◦ ϕ. Indeed,
this map is functorial in U and an isomorphism for U = A; as both sides are exact in U

it follows that this is an isomorphism for all U . Given two symmetric k-algebras A, B

and a B–A-bimodule M which is finitely generated projective as left B-module and as
right A-module, the two functors

M ⊗
A

− : mod(A) → mod(B) and M∗ ⊗
B

− : mod(B) → mod(A)

are left and right adjoint to each other (all this is well known: see, for example, [8,
Appendix] for a very brief review with some proofs). The algebra A ⊗

k
A0 is symmetric

as well, and if we take

(C, Σ) =
(
mod

(
A ⊗

k
A0

)
, ΣA⊗A0

)
,

we get the Tate analogue of Hochschild cohomology

Ext∗
C(A, A) = ĤH

∗
(A).

Applying the transfer formalism to Db(A), mod(A), and related Ext-rings yields the well-
known transfer maps in group cohomology, Tate cohomology and the standard reciprocity
statements.

7.2. For
(C, Σ) =

(
Db

(
A ⊗

k
A0

)
, [1]

)
and U = V = A, the notation in Remark 2.6 yields Hochschild cohomology; that is,
Ext∗

C(A, A) ∼= HH∗(A). Specializing the definition of transfer maps in § 7.1 to this sit-
uation yields the transfer maps in Hochschild cohomology introduced in [8]. In order
to describe this more precisely, let A and B be two symmetric k-algebras. Let X be
a bounded complex of B–A-bimodules which are finitely generated projective as left
B-modules and as right A-modules. The k-dual X∗ = Homk(X, k) is then a bounded
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complex of A–B-bimodules which are finitely generated projective as left A-modules and
as right B-modules; this uses the symmetry of A and B. The functors

F = X ⊗
A

− : Db(A) → Db(B) and G = X∗ ⊗
B

− : Db(B) → Db(A)

are left and right adjoint to each other; more precisely, any choice of bimodule isomor-
phisms A ∼= A∗ and B ∼= B∗ determines adjunction isomorphisms which commute with
the shift functors. The transfer map trX : HH∗(A) → HH∗(B) in [8, 2.9] coincides with
the transfer map

trF (A, A) : Ext∗
Db(A⊗

k
A0)(A, A) → ExtDb(B⊗

k
B0)(B, B)

with the notation from § 7.1. It is an immediate consequence of the formal proper-
ties of the definition of transfer maps and stable elements that the canonical map
HH∗(A) → Z∗(Db(A)) restricts to an algebra homomorphism on stable elements
HH∗

X∗(A) → Z∗
F (Db(A)) and we have a commutative diagram

HH∗(A) ��

trX∗

��

Z∗(Db(A))

trF

��
HH∗(B) �� Z∗(Db(B))

(7.1)

The image of the relative projective element πX∗ ∈ Z(A) = HH0(A) in Z0(Db(A))
is the relatively G-projective element πG ; in particular, if πX∗ is invertible, so is πG .
Similarly, πF is the image of πX . Therefore, if both πX and πX∗ are invertible, we get a
commutative diagram of graded algebras

HH∗
X∗(A) ��

RX

��

Z∗
F (Db(A))

RF

��
HH∗

X(B) �� Z∗
G(Db(B))

(7.2)

where the vertical arrows are isomorphisms by [8, 3.6] and Theorem 6.2, respectively.

7.3. With the notation in § 7.2, let X ′ be a direct summand of the complex of B–A-
bimodules X. The functors

F ′ : X ′ ⊗
A

− : Db(A) → Db(B) and G′ : (X ′)∗ ⊗
B

− : Db(B) → Db(A)

are again left and right adjoint to each other.

Lemma 7.1. With the notation above, let n be an integer, let ζ ∈ Zn(Db(A)) be
F-stable and let τ ∈ Zn(Db(B)) such that Fζ = τF . Then F ′ζ = τF ′. In particular, we
have Z∗

F (Db(A)) ⊆ Z∗
F ′(Db(A)).
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Proof. The assumption Fζ = τF means that for any bounded complex of A-modules
U the diagram

X ⊗
A

U IdX ⊗ζ(U) �� X ⊗
A

U [n]

X⊗
A τ(X⊗

A
U)

�� X ⊗
A

U [n]

is commutative. Choose chain maps of B-A-modules ι : X ′ → X and π : X → X ′ such
that π◦ι = IdX′ . Using the fact that τ is a natural transformation, we get a commutative
diagram

X ′ ⊗
A

U IdX′ ⊗ζ(U) ��

ι⊗IdU

��

X ′ ⊗
A

U [n]

ι⊗IdU [n]
��

X ⊗
A

U IdX ⊗ζ(U) �� X ⊗
A

U [n]

X ⊗
A

U
τ(X⊗

A
U)

��

π⊗IdU

��

X ⊗
A

U [n]

π⊗IdU [n]
��

X ′⊗
A τ(X′⊗

A
U)

�� X ′ ⊗
A

U [n]

This shows that F ′ζ = τF ′ and hence that ζ is also F ′-stable. �

8. Proof of Theorem 1.1

Let k be an algebraically closed field of prime characteristic p, let G be a finite group
and let B be a source algebra of a block b of kG with P as defect group; that is,
B = ikGi for some primitive idempotent i in (kGb)P satisfying BrP (i) 
= 0, where
BrP : (kG)P → kCG(P ) is the Brauer homomorphism. The canonical symmetrising form
on kG (sending 1G to 1k and x ∈ G − {1G} to 0) restricts to a symmetrising form
s : B → k. Set X = B, viewed as a B–kP -bimodule. Then X∗ ∼= B, as kP–B-bimodule
because B is symmetric. In other words, if we consider as in § 7.2 the functors

F = X ⊗
kP

− : Db(kP ) → Db(B) and G = X∗ ⊗
B

− : Db(B) → Db(kP ),

then G is the restriction functor. By [8, 5.6 (iii)], the canonical map from block cohom-
ology H∗(B) to Hochschild cohomology HH∗(B) sends H∗(B) to HH∗

X(B). By § 7.2,
the canonical map from HH∗(B) to the graded centre H∗(Db(B)) sends HH∗

X(B) to
H∗

G(Db(B)).
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Lemma 8.1. With the notation above, the relative projective elements πX ∈ Z(B),
πX∗ ∈ Z(kP ), πF ∈ Z0(Db(B)), πG ∈ Z0(Db(kP )) are all invertible.

Proof. For πX and πX∗ this is proved in [8, 5.6 (i)]. Since πF and πG are their images
in Z0(Db(B)) and Z0(Db(kP )), respectively (see § 7.2), the result follows. �

Denote by γ : H∗(B) → HH∗
X∗(B) the canonical algebra homomorphism from [8,

5.6 (iii)]; this is obtained by composing the inclusion H∗(B) ⊆ H∗(P, k) with the canon-
ical ‘diagonal induction’ map δP : H∗(P, k) → HH∗(kP ) followed by the normalized
transfer map TX : HH∗(kP ) → HH∗(B). Furthermore, denote by ε : Z∗(Db(kP )) →
H∗(P, k) the canonical graded algebra homomorphism obtained from evaluating natu-
ral transformations at the trivial kP -module k, as in Example 2.8. By Proposition 1.2
the kernel of ε is a nilpotent ideal in Z∗(Db(kP )). Define η : Z∗

F (Db(B)) → H∗(P, k)
as the unique algebra homomorphism obtained from restricting ε to Z∗

F (Db(kP )) and
precomposing it with the normalized transfer TG : Z∗

G(Db(B)) ∼= Z∗
F (Db(kP )) (this is

an isomorphism by Lemma 8.1 and Theorem 6.2). Using the last commutative diagram
in § 7.2 we ultimately obtain a commutative diagram of graded algebra homomorphisms

H∗(B)
γ ��

��

HH∗
X(B) ��

∼=
��

Z∗
G(Db(B))

η ��

∼=
��

H∗(P, k)

HH∗
X∗(kP ) ��

��

Z∗
F (Db(kP ))

��
H∗(P, k) �� HH∗(kP ) �� Z∗(Db(kP )) ε

�� H∗(P, k)

(8.1)

The unmarked vertical arrows in (8.1) are inclusions. Composing the three maps in
the last row of this diagram yields the identity on H∗(P, k). In order to show a similar
statement for the first row of this diagram, we need to show the following statement.

Lemma 8.2. With the notation above, the homomorphism η maps Z∗
G(Db(B)) onto

H∗(B).

Proof. The relative projective elements determined by F , G are invertible by
Lemma 8.1. Thus, by Theorem 6.2, we have Z∗

G(Db(B)) ∼= Z∗
F (Db(kP )). By Corollary 6.4,

we have Z∗
F (Db(kP )) = Z∗

GF (Db(kP )). Thus, it suffices to show that the canonical map
ε in the above diagram sends Z∗

GF (Db(kP )) to H∗(B). Let n be an integer and let
ζ ∈ Zn(Db(kP )) such that there exists τ ∈ Zn(Db(kP )) satisfying GFζ = τGF . Since
the functor GF is isomorphic to the functor B ⊗

kP
− on Db(kP ), this is equivalent to the

commutativity of the diagrams

B ⊗
kP

U Id ⊗ζ(U) �� B ⊗
kP

U [n]

B ⊗
kP

U
τ(B ⊗

kP
U)

�� B ⊗
kP

U [n]
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for any bounded complex of kP -modules U , where B is regarded as kP–kP -bimodule.
Any indecomposable direct summand of B is isomorphic to kP ⊗

kQ
ϕkP for some subgroup

Q of P and some morphism
ϕ : Q → P

belonging to the fusion system of the source algebra B of b. By Lemma 7.1 the diagram

kP ⊗
kQ

ϕkP ⊗
kP

U Id ⊗ζ(U) �� kP ⊗
kQ

ϕkP ⊗
kP

U [n]

kP ⊗
kQ

ϕkP ⊗
kP

U
τ(kP ⊗

kQ
ϕkP ⊗

kP
U)

�� kP ⊗
kQ

ϕkP ⊗
kP

U [n]

is then still commutative. By the standard adjunction we get a commutative diagram in
Db(kQ) of the form

ϕU
ζ(U) ��

ϕU [n]

ϕU
σ(ϕU) ��

ϕU [n]

where we abusively denote again by ζ(U) its restriction via ϕ and where σ(ϕU) is the map
induced by τ . Now apply this to U = k, the trivial kP -module. Then ResP

Q(U) = ϕU = k,
the trivial kQ-module. So in that case(

kP ⊗
kQ

ϕkP
)

⊗
kP

k =
(
kP ⊗

kQ
kP

)
⊗
kP

k = kP ⊗
kQ

k;

hence
τ
((

kP ⊗
kQ

ϕkP
)

⊗
kP

k
)

= τ
((

kP ⊗
kQ

kP
)

⊗
kP

k
)

= τ
(
kP ⊗

kQ
k
)

and so σ(ϕk) does not depend on the choice of the homomorphism ϕ from Q to P in
the fusion system of iBi. But that means precisely that ResP

Q(ζ(k)) = Resϕ(ζ(k)) for all
morphisms ϕ in the fusion system of iBi, and thus ζ ∈ Hn(B). This shows that η maps
Z∗

G(Db(B)) to H∗(B). This map is onto because the last row in the diagram (8.1) is the
identity. �

The proof of Theorem 1.1 now concludes as follows. Set N = ker(η). Then H∗(B) ∼=
Z∗

G(Db(B))/N by Lemma 8.2 and N is nilpotent as a consequence of the commutative
diagram (8.1) in conjunction with the fact that ker(ε) is nilpotent by Proposition 1.3.
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