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Abstract

Let X/Fq be a smooth, geometrically connected, quasi-projective scheme. Let E be a
semi-simple overconvergent F -isocrystal on X. Suppose that irreducible summands Ei of
E have rank 2, determinant Q̄p(−1), and infinite monodromy at ∞. Suppose further that
for each closed point x of X, the characteristic polynomial of E at x is in Q[t] ⊂ Qp[t].
Then there exists a dense open subset U ⊂ X such that E|U comes from a family of
abelian varieties on U . As an application, let L1 be an irreducible lisse Q̄l sheaf on X
that has rank 2, determinant Q̄l(−1), and infinite monodromy at ∞. Then all crystalline
companions to L1 exist (as predicted by Deligne’s crystalline companions conjecture) if
and only if there exist a dense open subset U ⊂ X and an abelian scheme πU : AU → U
such that L1|U is a summand of R1(πU )∗Q̄l.

1. Introduction

Throughout this paper, p is a prime number and q is a power of p. If X/k is a smooth scheme
over a perfect field of characteristic p, then F-Isoc†(X) denotes the category of overconvergent
F -isocrystals on X and F-Isoc†(X)

Qp
denotes its Qp-linearization. Overconvergent F -isocrystals

are a p-adic analog of lisse l-adic sheaves.

Definition 1.1. Let X/k be a smooth, geometrically connected scheme over a perfect field k
of characteristic p and let E ∈ F-Isoc†(X)

Qp
. We say that E has infinite local monodromy at

infinity if, for every triple (X ′, X ′, f) where X ′ is smooth projective over k, X ′ ⊂ X ′ is a dense
Zariski open subset, and f : X ′ → X is an alteration, the overconvergent F -isocrystal f∗E does
not extend to an F -isocrystal on X ′.

This definition of infinite local monodromy at infinity applies equally well to lisse Ql-sheaves
and is compatible with the other notions of infinite local monodromy at infinity.

Theorem 1.2. Let X/Fq be a smooth, geometrically connected, quasi-projective scheme. Let
E ∈ F-Isoc†(X) be a semi-simple overconvergent F -isocrystal. Suppose:

• for every closed point x of X, the polynomial Px(E , t) has coefficients in Q ⊂ Qp;
• every irreducible summand Ei ∈ F-Isoc†(X)

Qp
of E has rank 2, determinant Qp(−1), and

infinite local monodromy around infinity.

Then E comes from a family of abelian varieties. More precisely, there exist a non-empty open
subset U ⊂ X and an abelian scheme AU → U , so that D(AU [p∞]) ⊗ Qp

∼= E|U .
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Rank 2 local systems and abelian varieties II

Here, if G→ X is a p-divisible group, D(G) is the (contravariant) Dieudonné crystal attached
to G. We have the following applications. Deligne formulated what is now called the companions
conjecture in [Del80, Conjecture 1.2.10(vi)]. For a guide to the crystalline companions conjecture,
see [Ked18, Ked22].

Corollary 1.3. Let X/Fq be a smooth, geometrically connected, quasi-projective scheme. Let
L1 be an irreducible rank 2 lisse Ql sheaf on X with infinite monodromy around infinity and
determinant Ql(−1). Then the following are equivalent:

(1) there exist a non-empty open subset U ⊂ X and an abelian scheme π : AU → U such that
L1|U is a summand of R1(πU )∗Ql;

(2) all crystalline companions to L1 exist (as predicted by Deligne’s crystalline companions
conjecture).

Corollary 1.4. Let X/Fq be a smooth, geometrically connected, quasi-projective scheme. Let
E1 be an irreducible rank 2 object of F-Isoc†(X)

Qp
with infinite monodromy around infinity

and determinant Qp(−1). Suppose the (number) field E1 ⊂ Qp generated by the coefficients of
Px(E1, t) as x ranges through the closed points of X has a single prime over p. Then E1 comes
from a family of abelian varieties: there exist a non-empty open subset U ⊂ X and an abelian
scheme AU → U such that E1|U is a summand of D(AU [p∞]) ⊗ Qp.

In particular, Corollaries 1.3 and 1.4 provide some evidence for a question of Drinfeld
[Dri12, Question 1.4] and a conjecture of the authors [KP21, Conjecture 1.2]. Our motivation
for formulating this conjecture was a celebrated theorem of Corlette and Simpson over C

[CS08, Theorem 11.2], the proof of which uses non-abelian Hodge theory. In contrast to our
earlier work [KP21], this paper does not use Serre–Tate deformation theory nor does it use the
algebraization/globalization techniques of [Har70].

We briefly sketch the proof. Drinfeld’s first work on the Langlands correspondence for GL2,
together with Abe’s work on the p-adic Langlands correspondence and Lemma 2.5, implies
Theorem 1.2 when dim(X) = 1. (The precise argument is given in Step 2 of the proof and also
uses Remark 2.8 to organize the summands, as explained in Step 1.) Note that the resulting
abelian scheme is not unique, but it is unique up to isogeny.

To deal with the higher-dimensional case, we first assume that X admits a simple nor-
mal crossings compactification X̄ and E is a logarithmic F -isocrystal with nilpotent residues.
(We recall the notion of logarithmic F -isocrystals in Appendix A.) A technique of Katz, com-
bined with slope bounds originally due to Lafforgue, allows one to construct a (non-canonical)
logarithmic Dieudonné crystal on an open set U of the compactification X̄ whose associated
logarithmic F -isocrystal is isomorphic to the restriction E|U . After the work of Kato and Trihan,
this logarithmic Dieudonné crystal yields a natural line bundle, which we call the Hodge bundle
ω of the logarithmic Dieudonné crystal, on X̄.

For any odd prime l �= p, let Ah,1,l denote the moduli space of principally polarized abelian
schemes of dimension h equipped with full level l structure over Spec(Z[1/l]). It is well known
that the Hodge line bundle is ample on Ah,1,l over Spec(Z[1/l]). We use Poonen’s Bertini theorem
over finite fields together with Drinfeld’s result and Zarhin’s trick to find a well-adapted family
of extremely ample space-filling curves C̄n of X̄ that each map to the minimal compactification
A ∗
h,1,l ⊂ Pm via some fixed power of the Hodge bundle ω|r

C̄n
. (This step uses foundational work

of Étesse, Kato, Kedlaya, and Trihan that we explain in Appendix A.) Note that H0(X̄, ωr)
is a finite-dimensional vector space over a finite field and is hence a finite set. We use this
finiteness together with the pigeonhole principle to prove that infinitely many of these maps
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can be pieced together into a rational map X̄ ��� Ah,1,l ⊂ Pm. Therefore we obtain an abelian
scheme ψU : BU → U over some open U ⊂ X. The space-filling properties of the C̄n and Zarhin’s
work on the Tate isogeny theorem for fields finitely generated over Fq then allow us to conclude.

To deduce the general case, we use Kedlaya’s semi-stable reduction theorem for overconver-
gent F -isocrystals.

Remark 1.5. We comment on the relation of this paper to [KP21]. In [KP21] we prove a Lefschetz-
style theorem for families of GL2-type abelian schemes over finite fields. This has the following
implication for [KP21, Conjecture 1.2]: if X/Fq is a smooth projective variety, then there exists
an ample curve C ⊂ X such that if E ∈ F-Isoc(X)Qp

and E|C comes from an abelian scheme
AC → C of GL2-type, then there is an open subset U ⊂ X such that E|U comes from an abelian
scheme BU → U of GL2-type. (It follows from Zarhin’s work on the Tate isogeny conjecture that
BC → C is indeed isogenous to AC → C.) To prove this, we use Serre–Tate deformation theory
and globalization results of [Har70], the latter of which critically uses the positivity of C in X.
In this paper, we only deal with non-proper varieties X/Fq and we use infinitely many (space-
filling, affine) curves together with a result of Drinfeld, which is only known for affine curves. In
particular, the main results of [KP21] do not imply the main result of this paper.

2. Preliminaries

Before proving Theorem 1.2, we need several preliminary results. A key ingredient in the
proof is the following theorem, which is a byproduct of Drinfeld’s first work on the Langlands
correspondence for GL2.

Theorem 2.1 (Drinfeld). Let C/Fq be a smooth affine curve and let L1 be a rank 2 irreducible
Ql sheaf with determinant Ql(−1). Suppose L1 has infinite local monodromy around some point
at ∞ ∈ C\C. Then L1 comes from a family of abelian varieties in the following sense. Let E be
the field generated by the Frobenius traces of L1 and suppose [E : Q] = g. Then there exist an
abelian scheme

πC : AC → C

of dimension g and an isomorphism E ∼= EndC(A) ⊗ Q, realizing AC as a GL2-type abelian
scheme, such that L1 occurs as a summand of R1(πC)∗Ql. Moreover, AC → C is totally
degenerate around ∞.

See [ST18, Proof of Proposition 19, Remark 20] for how to recover this result from Drinfeld’s
work. This amounts to combining [Dri83, Main Theorem, Remark 5] with [Dri77, Theorem 1].

For completeness, we briefly recall the theory of companions and what is known about them.
For a thorough summary about the definitions and also what is known, we refer the reader to
[Ked18]. Alternatively, the reader may see [KP21, § 4].

Definition 2.2. Let X/Fq be a smooth, geometrically connected variety. Let λ be a prime
number and let E denote either a smooth Qλ sheaf onX if λ �= p or an overconvergent F -isocrystal
with coefficients in Qp if λ = p. Following Kedlaya [Ked18, § 1], we call such E coefficient objects.

(1) Let l �= p be a prime number and let L be a lisse Ql-sheaf on X. Fix a (possibly non-
continuous) field isomorphism ι : Qλ → Ql. We say that L is an ι-companion of E if, for all
closed points x ∈ X, we have

ι(Px(E , t)) = Px(L, t) ∈ Ql[t],

where Px(−, t) denotes the reverse characteristic polynomial at the closed point x.
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(2) Let F be an overconvergent F -isocrystal onX with coefficients in Qp and fix an isomorphism
ι : Qλ → Qp. We say F is an ι-companion of E if, for all closed points x ∈ X, we have

ι(Px(E , t)) = Px(F , t) ∈ Qp[t].

In either of these cases, we say that the ι-companion to E exists.

Suppose E is semi-simple and each irreducible summand has algebraic determinant. Then
Deligne’s conjecture, together with Crew’s p-adic enhancement, predict that all ι-companions to
E exist. It follows from work of Abe, Abe and Esnault, Deligne, Drinfeld, Kedlaya, and Lafforgue
[AE19, Abe18, Del12, Dri12, Laf02] that this conjecture is known to hold in the following cases.

Theorem 2.3. Let X/Fq be a smooth, geometrically connected variety. Let E be a semi-simple
coefficient object on X such that the irreducible summands have algebraic determinant.

• If dim(X) = 1, then all ι-companions exist ([Laf02, Théorème VII.6] and [Abe18,
Theorem 4.4.1]).

• For any l �= p and any isomorphism ι : Qλ → Ql, the ι-companion to E exists ([Dri12,
Theorem 1.1] and [AE19, Theorem 4.2] or [Ked18, Theorem 0.4.1]).

In particular, p-adic companions are not known to exist when dim(X) > 1, although Kedlaya
has recently proposed a promising strategy [Ked21].

Proposition 2.4. Maintain the hypotheses of Theorem 1.2. Let ι : Qp → Ql be a field
isomorphism and let L := ιE be the (semi-simple) ι-companion to E .

• The isomorphism class of L is independent of the choice of ι.
• Let Li be an irreducible summand of L. Then Li has rank 2, determinant Ql(−1), and infinite

monodromy at infinity.

Proof. For all closed points x of X, we have that Px(L, t) ∈ Q[t] ⊂ Ql[t] as ι(Q) = Q ⊂ Ql. The
first statement then follows from the Cebotarev density theorem and the Brauer–Nesbitt theorem.

If Ei is an irreducible summand of E , then ιEi is an irreducible Ql-sheaf by [Ked18,
Theorem 3.3.1]. As the companions relation commutes with direct sum, it follows that if
E ∼= ⊕Emi

i is the decomposition of E into irreducible objects in F-Isoc†(X)
Qp

, then L ∼= ⊕(ιEi)mi

is a decomposition of L into irreducible lisse Ql-sheaves on X. One may observe that det(ιEi) ∼=
Ql(−1) because, for every closed point x of X, the constant term of Px(Ei, t) is q and hence the
constant term of Px(ιEi, t) is also q. Finally, suppose for contradiction that there exists an i with
Li := ιEi having finite local monodromy at infinity. Then there exist a smooth projective variety
X̄ ′/Fq, an open dense subscheme X ′ ⊂ X̄ ′, and an alteration f : X ′ → X such that f∗Li extends
to X̄ ′. It follows from [Ked18, Corollary 3.3.3] that f∗Ei also extends to X̄ ′, contradicting the
hypothesis that Ei had infinite local monodromy at infinity. �

We will need the following lemma to ensure that, given the hypotheses of Theorem 1.2, every
p-adic companion of Ei is again a summand of E ; moreover, the companion relation preserves
multiplicity in the isotypic decomposition of E .

Lemma 2.5. Let X/Fq be a smooth, geometrically connected scheme.

(1) Let l �= p be a prime and let L be a lisse, semi-simple Ql-sheaf on X, all of whose irre-
ducible summands Li have algebraic determinant. Suppose that, for all closed points x of X,
we have

Px(L, t) ∈ Q[t] ⊂ Ql[t].
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Let Li be an irreducible summand of L that occurs with multiplicity mi and ι ∈ AutQ(Ql)
be a field automorphism. Then the ι-companion to Li, denoted ιLi, is isomorphic to an
irreducible summand of L that occurs with multiplicity mi.

(2) Let F be a semi-simple object of F-Isoc†(X)
Qp

, all of whose irreducible summands Fi have

algebraic determinant. Suppose that, for all closed points x of X, we have

Px(F , t) ∈ Q[t] ⊂ Qp[t].

Let Fi be an irreducible summand of F that occurs with multiplicity mi. Let ι ∈ AutQ(Qp).
Then the ι-companion of Fi, denoted by ιFi, exists and is isomorphic to a direct summand
of F that occurs with multiplicity mi.

Proof. We reduce the crystalline case to the étale case. (Note that we could have equiva-
lently proceeded by reduction to curves using [AE19].) As F is semi-simple, write an isotypic
decomposition:

F ∼=
a⊕

i=1

Fmi
i .

Note that each Fi is pure by [AE19, Theorem 2.7]. Fix an isomorphism σ : Qp → Ql. By
[AE19, Theorem 4.2] or [Ked18, Corollary 3.5.3], the σ-companion to each Fi exists as an
irreducible lisse Ql-sheaf Li. Setting L to be the semi-simple σ-companion of F , we have

L ∼=
a⊕

i=1

Lmi
i .

Set ι ∈ AutQ(Qp). Then Fj is the ι-companion to Fi if and only if Lj is the σ ◦ ι ◦ σ−1-
companion to Li. Therefore it suffices to prove the result in the étale setting.

Let M be an irreducible lisse Ql-sheaf on X. Then M is pure by [Del12, Théorème 1.6] and
class field theory. Then the multiplicity of M in the semi-simple sheaf L is dim(H0(X,M∗ ⊗ L)).
By assumption we have that, for all closed points x of X, Px(L, t) ∈ Q[t] ⊂ Ql[t]. Let ι ∈
AutQ(Ql), and note that the semi-simple ι-companion to L is again isomorphic to L. Then
we claim that the ι-companion to M∗ ⊗ L is isomorphic to (ιM∗) ⊗ L. Indeed, this follows from
the following two facts. First of all, both M∗ ⊗ L and (ιM∗) ⊗ L, being the tensor product
of semi-simple representations of characteristic 0, are semi-simple. Second, it follows from the
fundamental theorem of symmetric functions that for fixed d, e ∈ N there exist universal poly-
nomials (ui)dei=0 in the ring Q[α1, . . . , αd, β1, . . . , βe] with the following property. Let V and W
be finite-dimensional vector spaces over a field K of characteristic 0 and of dimensions d and
e and let A and B be linear operators on V and W , respectively. Write P (A, t) =

∑d
i=0 ait

i

and P (B, t) =
∑e

j=0 bjt
j for the reverse characteristic polynomials of A and B. Then the reverse

characteristic polynomial P (A⊗B, t) of A⊗B is equal to

P (A⊗B, t) =
de∑

k=0

uk(a0, . . . , ad, b0, . . . , be)tk.
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Translating back, let x be a closed point of X and write Px(M∗, t) =
∑d

i=0 ait
i and Px(L, t) =∑e

j=0 bjt
j . Then we have

Px(M∗ ⊗ L, t) =
de∑

k=0

uk(a0, . . . , ad, b0, . . . , be)tk.

It follows that

Px(ι(M∗ ⊗ L), t) = Px((ιM∗) ⊗ ιL, t) =
de∑

k=0

uk(ι(a0), . . . , ι(ad), ι(b0), . . . , ι(be))tk.

But ι(bj) = bj because bj ∈ Q for all j. Therefore Px(ι(M∗ ⊗ L), t) = Px(ι(M∗) ⊗ L, t). The semi-
simplicity of ι(M∗ ⊗ L) and ιM∗ ⊗ L allows us to conclude that ι(M∗ ⊗ L) is isomorphic to
ιM∗ ⊗ L.

On the other hand, the exact argument of [AE19, 3.2] for lisse l-adic sheaves
implies that dim(H0(X,M∗ ⊗ L)) = dim(H0(X, ι(M∗ ⊗ L)). Therefore dim(H0(X,M∗ ⊗ L)) =
dim(H0(X, (ιM∗) ⊗ L)), and the result follows. �
Remark 2.6. The argument of [AE19, 3.2] cited in the proof of Lemma 2.5 is based on [Laf02,
Corollary VI.3] and uses L-functions. A similar idea is used in the proof that the companions rela-
tions preserves irreducibility, which was crucial to Proposition 2.4. See also [Ked18, Lemma 3.1.5,
Theorem 3.3.1].

Remark 2.7. It follows from the argument of Lemma 2.5 that if X/Fq is smooth and geometri-
cally connected and if E ,F ∈ F-Isoc†(X)

Qp
are semi-simple objects, all of whose summands are

algebraic, then, for any field isomorphism ι : Qp → Ql, we have ι(E ⊗ F) ∼= ιE ⊗ ιF , that is, the
relation of being ι-companions commutes with tensor product.

Remark 2.8. It follows from Lemma 2.5 that, in the context of Theorem 2.1, there is a
decomposition

R1(πC)∗Ql
∼=

g⊕

i=1

(Li)

where the Li form a complete set of Ql companions. There are exactly g non-isomorphic com-
panions because the field generated by Frobenius traces of L1 is isomorphic to E and the l-adic
companions are in bijective correspondence with the embeddings E ↪→ Ql. In particular, each
companion occurs with multiplicity 1. In fact, as E ∼= EndC(AC) ⊗ Q, it follows that E ⊗ Ql acts
on R1(πC)∗Ql. On the other hand, E ⊗ Ql

∼=
∏
i Ql, where i runs over the embeddings E ↪→ Ql.

For each i, pick a non-trivial idempotent ei ∈ E ⊗ Ql whose image is the ith component of the
direct product decomposition. The above direct sum decomposition is induced by these ei.

To apply Drinfeld’s Theorem 2.1, we will use the following lemma.

Lemma 2.9. Let Y/Fq be a smooth, geometrically connected, projective scheme and let α be
a line bundle on Y . Let M ⊂ PmFq

be a closed subset. Suppose there exists an infinite collection

(Cn)n∈N of smooth, projective, geometrically connected, closed subcurves Cn ⊂ Y such that:

(1) for each n ∈ N, the natural map H0(Y, α) → H0(Cn, α|Cn) is an isomorphism;
(2) for any infinite subset S ⊂ N, the union

⋃

n∈S
Cn

is Zariski dense in Y ;
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(3) for each curve Cn, there exist m+ 1 globally generating sections

tn,0, . . . , tn,m ∈ H0(Cn, α|Cn)

such that the induced morphism to Pm factors through M :

Cn

����
��

��
��

fn
�� Pm

M

��

Then there exist global sections t̃0, . . . , t̃m ∈ H0(Y, α) such that the induced rational map
f̃ : Y ��� Pm has image in M . Moreover, f̃ can be chosen to be compatible with infinitely many
of the maps fn.

Proof. There are finitely many ordered m+ 1-tuples of sections H0(Y, α) ∼= H0(Cn, α|Cn)
because H0(Y, α) is a finite-dimensional vector space over Fq. By the pigeonhole principle, in our
infinite collection we may find an m+ 1-tuple of sections t̃0, . . . , t̃m ∈ H0(Y, α) such that there
exists an infinite set S ⊂ N with

(t̃0, . . . , t̃m)|Cn = (tn,0, . . . , tn,m)

for every n ∈ S. There is therefore an induced rational map f̃ : Y ��� Pm with f̃ |Cn = fn for
each n ∈ S. On the other hand, the collection (Cn)n∈S is Zariski dense in Y by assumption and
f̃(Cn) ⊂M ; therefore the image of f̃ lands inside of M , as desired. �

Lemma 2.9 has two key ingredients. The first ingredient is that if X/Fq is a projec-
tive variety and α is a coherent sheaf on X, then H0(X,α) is a finite set. The second
ingredient is the pigeonhole principle. To use Lemma 2.9, the following definition will be
useful.

Definition 2.10. Let X̄/k be a smooth, geometrically connected, projective scheme of dimen-
sion at least 2, let Z ⊂ X̄ be a reduced simple normal crossings divisor, and set X := X\Z. Let
Ū ⊂ X̄ be an open subset whose complement has codimension at least 2. Let (xj)sj=1 be a finite
collection of closed points of U := Ū ∩X. Let α be a line bundle on X̄. We say that C̄ ⊂ Ū is a
good curve for the quintuple (X̄,X, Ū , α, (xj)sj=1) if:

• C̄ is the smooth complete intersection of smooth ample divisors of X̄ that intersect Z in good
position;

• C̄ contains each of the closed points xj , for j = 1, . . . , s;
• the natural map H0(X̄, α) → H0(C̄, α|C̄) is an isomorphism.

In the proof of Theorem 1.2, we will need to know that good curves exist. This is guaranteed
by the following two results.

Proposition 2.11. Let Y/k be a smooth, geometrically connected, projective scheme of dimen-
sion d ≥ 2 and let α be a line bundle on Y . Let D ⊂ Y be an ample divisor. Then there exists
an s0 > 0 such that, for any s ≥ s0, and for any integral divisor E ∈ |sD| in the linear series, the
natural map

H0(Y, α) → H0(E,α|E)

is an isomorphism.
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Proof. For any s > 0, let E ∈ |sD| be an integral divisor in the linear series. Then there is an
exact sequence

0 → α(−E) → α→ α|E → 0.

If h0(Y, α(−E)) = h1(Y, α(−E)) = 0, then by the long exact sequence in cohomology, the restric-
tion map H0(Y, α) → H0(E,α|E) is an isomorphism. Our task is therefore to show that, for all
sufficiently large s, h0(Y, α(−sD)) = h1(Y, α(−sD)) = 0.

Let L be the canonical bundle of Y . Then by Serre duality, hi(Y, α(−sD)) =
hd−i(Y, α∨(sD) ⊗ L). It follows from Serre vanishing that there exists an s0 > 0 such that, for
any s ≥ s0 and for any i < d, hd−i(Y, α∨(sD) ⊗ L) = 0. Therefore, for any s ≥ s0 and for any
i < d, hi(Y, α(−sD)) = 0 and the result follows. �
Lemma 2.12. Let X̄/Fq be a smooth, geometrically connected, projective scheme of dimension
at least 2, let Z ⊂ X̄ be a reduced simple normal crossings divisor, and set X := X̄\Z. Let
Ū ⊂ X̄ be an open subset whose complement has codimension at least 2. Let (xj)sj=1 be a finite

collection of closed points of U := Ū ∩X. Let α be a line bundle on X̄. Then there is a good
curve C̄ ⊂ Ū for the quintuple (X̄,X, Ū , α, (xj)sj=1)

Proof. By induction, it suffices to construct a smooth ample divisor D̄ ⊂ X̄ such that:

• D̄ ∩ Ū has complementary codimension at least 2 in D̄;
• D̄ intersects Z transversely;
• D̄ contains xj , for j = 1, . . . , s; and
• the natural map H0(X̄, α) → H0(D̄, α|D̄) is an isomorphism.

This is a standard application of Poonen’s Bertini theorem over finite fields [Poo04,
Theorem 1.3]. Fix a closed embedding X̄ ↪→ PmFq

and let Shomog be the set of homogenous poly-
nomials on PmFq

, as in [Poo04, p. 1100]. Consider the set T of those functions f ∈ Shomog such
that D̄ := V (f) ∩ X̄ is a smooth ample divisor of X̄ and the above four properties hold for D̄.
Our goal is to show that T is non-empty.

• Let Ē := X̄\Ū ; by hypothesis, dim(Ē) ≤ n− 2. If f ∈ Shomog is such that V (f) does not
contain any component of Ē, then dim(V (f) ∩ Ē) ≤ n− 3. For this to hold, it is suffi-
cient that V (f) avoids at least one given closed point ei on each connected component
of Ē.

• Write Z =
⋃r
j=1 Zj to be the decomposition of Z into connected components. For each J ⊂

{1, 2, . . . , r}, set ZJ :=
⋂
j∈J Zj to be the corresponding scheme-theoretic intersection. By

assumption, for each J , ZJ is a smooth subvariety of X̄. The condition that D̄ intersects Z in
good position means that D̄ must intersect each stratum ZJ transversely, that is, that ZJ ∩ D̄
is a smooth subvariety of D̄ of dimension n− 1 − |J |.

Then the positive density (and hence non-emptiness) of T immediately follows from [Poo04,
Theorem 1.3]: the conditions on f are that V (f) ∩ X̄ intersect a finite set of smooth subvarieties
transversely, avoid a given finite set of points, pass through another given finite set of points,
and have sufficiently high degree by Proposition 2.11. �

Note that Lemma 2.12 also holds with Fq replaced by any infinite field k by the usual Bertini
theorems. Finally, the following lemma is surely well known but we could not find a reference
for exactly the statement we need. (The essential content is contained in [CCO14, § 3.3].) We
will use this lemma to make a particular choice of AC → C in the isogeny class from Drinfeld’s
Theorem 2.1 (though this choice will not be unique).
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Lemma 2.13. Let X be a scheme and let A→ X be an abelian scheme. Let r be a prime
and let G be an r-divisible group on X. Suppose there exists an isogeny ψ : A[r∞] → G of
r-divisible groups on X (as in [CCO14, 3.3.5]). Then there exist an r-primary isogeny ϕ : A→ B
of abelian schemes over X and an isomorphism ε : B[r∞] → G such that the following diagram
commutes:

A[r∞]

ϕ[r∞] ����
��

��
��

�

ψ
�� G

B[r∞]

ε

�����������

Proof. Set N = ker(ψ). Then N is a (commutative) finite flat group scheme over X of r-primary
order. We have a short exact sequence in the category of fppf sheaves:

0 → N → A[p∞]
ψ−→ G→ 0.

Consider the quotient A/N in the category of fppf sheaves. It follows from, for example, [CCO14,
1.4.1.3, 1.4.1.4] that there exists an abelian scheme B → X that represents the sheaf A/N . We
then have the following commutative diagram of fppf sheaves:

0 �� N ��

∼=
��

A[r∞]
ψ

��

��

G ��

��

0

0 �� N �� A �� B �� 0

where the right vertical arrow exists because G = coker(N → A[r∞]). We claim that the induced
map G→ B yields an isomorphism G→ B[r∞]. By the snake lemma, G→ B is injective.
However, an injective isogeny of r-divisible groups is an isomorphism. �

3. Proofs of Theorem 1.2 and Corollaries 1.3, 1.4

Proof of Theorem 1.2. We proceed in several steps.

Step 1: organizing the summands of E . As Ei is irreducible, has determinant Qp(−1), and
has rank 2, the slopes of (Ei)x are in the interval [0, 1] for every closed point x of X (see [DK17,
§ 1.2, pp. 136–137], where it is deduced from Corollary 1.1.7).

Write the isotypic decomposition of E in F-Isoc†(X)
Qp

:

E ∼=
a⊕

i=1

(Ei)mi .

The field generated by the coefficients of Px(E , t) as x ranges through closed points of X
is Q. Therefore, by [Dri18, E.10] and either [AE19, Theorem 4.2] or [Ked18, Corollary 3.5.3], we
can pick an l and a field isomorphism σ : Qp → Ql such that the semi-simple σ companion L to
E exists and in fact may be defined over Ql, that is, corresponds to a representation

π1(X) → GLN (Ql).

(We emphasize that L is independent of the choice of σ by Proposition 2.4.) By compactness
of π1(X), we may conjugate the representation into GLN (Zl). We refer to the attached lisse
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Zl-sheaf as L̃. Similarly, for each i we denote by Li the σ-companion to Ei (the Li indeed do
depend on the choice of σ). The companion relation commutes with direct sum; hence, we have

L ∼=
a⊕

i=1

Lmi
i .

(See also the proof of Proposition 2.4.) Let Ei ⊂ Qp denote the (number) field generated by the
coefficients of Px(Ei, t) as x ranges through the closed points ofX. Note that for each Ei, all p-adic
companions exist and are summands of E by Lemma 2.5. For each Ei, set Fi to be the sum of all
distinct p-adic companions of Ei. Note that there are [Ei : Q] distinct p-adic companions of Ei,
parametrized by the embeddings Ei ↪→ Qp. By reordering the indices, we write the decomposition
of E as

E ∼=
b⊕

i=1

Fmi
i (3.1)

for some integer 1 ≤ b ≤ a. (Under this reordering, the collection of (Ei)bi=1 are all mutually
not companions and, for each b+ 1 ≤ j ≤ a, there exists a unique 1 ≤ i ≤ b such that Ej is a
companion of Ei.) Set

g =
b∑

j=1

mi[Ei : Q]. (3.2)

Step 2: the proof in a simplified situation. We first assume that X admits a simple normal
crossings compactification X̄ such that E extends to a logarithmic F -isocrystal Ē with nilpotent
residues on X̄ and, moreover, that L̃ has trivial residual representation. Write Z := X̄\X for the
boundary. (Note that under the above assumption on E , the l-companion L is tamely ramified.)

By Lemma A.7, there exist a Zariski open Ū ⊂ X̄ with complementary codimension at least
2, and a logarithmic Dieudonné crystal (MŪ , F, V ) on Ū (with the logarithmic structure coming
from Z ∩ Ū) such that the associated logarithmic F -isocrystal is isomorphic to E|Ū . (In other
words, MŪ is an F and p ◦ F−1 stable lattice in E|Ū .) Let

(NŪ , F, V ) := (MŪ , F, V )4 ⊕ ((MŪ , F, V )t)4,

where the t denotes the dual logarithmic Dieudonné crystal. We also consider this logarithmic
Dieudonné crystal as we will need to use Zarhin’s trick. We set U := Ū\(Ū ∩ Z).

After Remark A.8, it follows that we may define Hodge line bundles ωM and ωN on
Ū attached to the two logarithmic Dieudonné crystals. As Ū ⊂ X̄ has complementary codi-
mension at least 2 and X̄ is smooth, it follows that ωM and ωN extend canonically to line
bundles on all of X̄.

The Hodge line bundle α on the fine moduli scheme A8g,1,l ⊗ Fq is ample by [MB85,
Ch. IX, Théorème 3.1, p. 210] or [FC90, Ch. V, Theorem 2.5(i)]. Let g be as in (3.2) and
choose an r so that the αr is very ample on A8g,1,l. As 8g > 1, it follows from the Koecher prin-
ciple that H0(A8g,1,l ⊗ Fq, α

r) is a finite-dimensional Fq-vector space for all r ∈ Z [FC90, Ch. V,
Theorem 1.5(ii)]. Fix a basis s0, . . . , sm of the vector space

s0, . . . , sm ∈ H0(A8g,1,l ⊗ Fq, α
r) (3.3)

once and for all. There is an induced embedding A8g,1,l ⊂ Pm. As is customary, denote by A ∗
8g,1,l

the Zariski closure of A8g,1,l in Pm; we call this the minimal compactification. In an abuse of
notation, we also denote by α the Hodge line bundle on A ∗

8g,1,l. The Koecher principle implies
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that H0(A8g,1,l ⊗ Fq, α
r) = H0(A ∗

8g,1,l ⊗ Fq, α
r); this follows from [FC90, Ch. V, Theorem 1.5(ii),

Theorem 2.5(iii)].
It follows from [Del12, Proposition 3.4] that there exist a finite number of closed points

(xj)sj=1 of U such that, for each Ei, the field generated by the coefficients of Pxj (Ei, t) ∈ Qp[t] as
j = 1, . . . , s is Ei ⊂ Qp. We call this fact �.

If C̄ ⊂ Ū is a good curve for the quintuple (X̄,X, Ū , ωrN , (xj)
s
j=1) as in Definition 2.10, set

C := C̄ ∩X. Then the following three properties hold.

• Each Ei|C is irreducible by [AE19, Theorem 2.6].
• The field generated by Frobenius traces of Ei|C is Ei by �.
• Each Ei|C has infinite monodromy around ∞. Indeed, from the positivity of C̄, and the good

position assumption, it follows that C̄ intersects each irreducible component Zm of Z in a non-
empty and transverse way; moreover, C̄ does not intersect the codimension 2 strata Zm ∩ Zn.
By assumption, for each Ei, there exists a component Zm around which the monodromy
around Zm of Ei (equivalently, of Li) is infinite. On the other hand, there is a surjective
morphism of tame fundamental groups

πtame
1 (C) � πtame

1 (X)

by [EK16, Theorem 1.1(a)]. Moreover, for each m, we may restrict the above surjection to a
surjective map of tame inertia groups

Itame
Zm∩C̄(C) � Itame

Zm
(X)

around Zm ∩ C̄ and Zm, respectively. By the assumption that Li had infinite monodromy
around Zm and the fact that wild inertia is a pro-p group, it follows that the image of
Itame
Zm

(X) in the l-adic representation corresponding to Li is infinite. Therefore, the image of
Itame
Zm∩C̄(C) in the l-adic representation corresponding to Li|C is also infinite, or equivalently,
Ei|C has infinite monodromy around Zm ∩ C̄, as desired.

Let C̄ ⊂ Ū be a good curve for the quintuple (X̄,X, Ū , ωrN , (xj)
s
j=1). Recall the decomposition

from (3.1): E ∼= ⊕b
i=1Fmi

i , where each Fi is the sum of the distinct companions of Ei under
the reordering specified in Step 1. (Note that Fi has Frobenius traces in Q.) By Theorem 2.1
and Remark 2.8, for each i ∈ {1, . . . , b}, there exists an abelian scheme Ai → C of dimension
gi = [Ei : Q] such that Fi|C is compatible with Ai. By taking the iterated fiber product over
C, it therefore follows from (3.2) that there exists an abelian scheme πC : AC → C of relative
dimension g such that

R1(πC)∗Ql
∼= L|C .

As l is prime to p, it follows from the Galois correspondence for π1(X) that the category of
(necessarily étale) l-divisible groups on X is equivalent to the category of lisse Zl sheaves on X
(see, for example, [CCO14, pp. 147–148], where they explain that the functor is explicitly given
as the Tate l-group). Write Φ for an inverse functor. We have assumed that the Zl-lattice L̃ has
trivial residual representation, that is, the following map is trivial:

π1(X) → GL2g(Z/lZ).

Then it follows from the Galois correspondence that Φ(L̃)[l] is isomorphic to the split étale group
scheme (Z/lZ)2g (see, for example, the explicit formula on [CCO14, p. 148]). On the other hand,
Φ(L̃) is isogenous to AC [l∞] because L̃ is isogenous to Tl(AC). It follows from Lemma 2.13 that
there exists an l-primary isogeny AC → A′

C over C such that A′
C [l] → C is isomorphic to the
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split étale group scheme (Z/lZ)2g. The abelian scheme A′
C → C therefore has a full collection of

l-torsion sections, that is, it has trivial l-torsion. Replacing AC by A′
C , we may assume that AC

has trivial l-torsion.
Similarly, we claim that D(AC [p∞]) ⊗ Qp

∼= E|C . Indeed, D(AC [p∞]) ⊗ Qp is a semi-simple
object of F-Isoc†(C)

Qp
by [Pál15] and is compatible with L|C by [KM74]. Therefore, D(AC [p∞])

is isogenous to (M,F, V )C as Dieudonné crystals on C. We claim that we may replace AC by an
(p-primarily) isogenous abelian scheme in order to ensure that

D(AC [p∞]) ∼= (M,F, V )C

as Dieudonné crystals on C. To see this, use [dJ95] to construct a p-divisible group GC on C
where D(GC) ∼= (MC , F, V ). It follows that AC [p∞] and GC are isogenous. Applying Lemma 2.13,
we see that there is a p-primary isogeny AC → A′

C such that A′
C [p∞] ∼= GC . As the group of

l-torsion points of an abelian scheme is a finite flat l-primary group scheme, it follows that
A′
C also has trivial l-torsion. Replace AC by A′

C . We emphasize that this choice of AC is not
canonical!

By construction, the l-torsion of AC → C is trivial; it follows that AC → C has semi-stable
reduction along C̄ ∩ Z. (Use that the monodromy representation π1(C) → GL2g(Zl) has image
in Γ(l) := {1 +M |M ∈ lMn×n(Zl)} ⊂ GL2g(Zl), and the fact that if l > 2, the group (1 + lZl)×

is torsion-free. Therefore, if γ ∈ π1(C) has quasi-unipotent image in the representation, it then
in fact has unipotent image. The claim then follows from Grothendieck’s semi-stable reduction
theorem for abelian varieties.)

Let AC̄ → C̄ be the Néron model and let Ao
C̄
→ C̄ denote the associated semi-abelian

scheme, that is, the open subset of AC̄ → C obtained by removing the non-identity compo-
nents along C̄\C. It follows from the third part of Proposition A.11 that the logarithmic
Dieudonné crystal of AC̄ → C̄ constructed in Remark A.9 is isomorphic to (M,F, V )C̄ . Then,
by the second part of Proposition A.11, the Hodge bundle of the Ao

C̄
→ C̄ is isomorphic

to ωM |C̄ .
Set BC := (AC ×C A

t
C)4. By Zarhin’s trick [MB85, Chapitre IX, Lemme 1.1, p. 205], BC

admits a principal polarization. By construction, we have that

• BC has trivial l-torsion, and
• D(BC [p∞]) ∼= (NC , F, V ).

By the uniqueness part of Proposition A.11 it follows that there is an isomorphism of logarithmic
Dieudonné crystals:

Dlog(BC̄) ∼= (N,F, V )C̄ .

Hence, the Hodge line bundle of Bo
C̄
→ C̄ is isomorphic to ωN |C̄ again by Proposition A.11.

However, we emphasize again that the choice BC → C is not canonical!
We have an induced morphism to a fine moduli scheme C → A8g,1,l. This extends to a

morphism from C̄ to the minimal compactification A ∗
8g,1,l/Fq because the latter is proper and

the former is a smooth curve:

C ��

��

A8g,1,l

��

C̄ �� A ∗
8g,1,l

(3.4)
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We now claim the pullback of α, the Hodge line bundle on A ∗
8g,1,l, is isomorphic to ωN |C̄ . Here

is the reason. Choose a toroidal compactification Ā8g,1,l. We then have a commutative diagram

C̄

����
��

��
��

�

h �� Ā8g,1,l

ϕ

��
A ∗

8g,1,l

(3.5)

again, because Ā8g,1,l/Fq is proper and C̄/Fq is a smooth curve. By [FC90, Ch. V, Theorem 2.5],
there is a semi-abelian scheme G→ Ā8g,1,l such that ϕ∗α is isomorphic to the Hodge line bundle
of G→ Ā8g,1,l. Now, [FC90, Ch. I, Proposition 2.7] implies that h∗G is isomorphic to Ao

C̄
→ C̄,

that is, the semi-abelian scheme given by the open subset of AC̄ → C̄ obtained by removing the
non-identity components along C̄\C. In particular, it follows from part (2) of Proposition A.11
that the Hodge line bundle of h∗G is compatible with the Hodge line bundle constructed in
Remark A.8.

In (3.3), we have already fixed a basis of sections

s0, . . . , sm ∈ H0(A8g,1,l ⊗ Fq, α
r) = H0(A ∗

8g,1,l ⊗ Fq, α
r);

after pulling back the sections to C̄ via (3.4), we obtain an m+ 1-tuple of sections t0, . . . , tm in
H0(C̄, ωrN |C̄) that define the morphism C̄ → A ∗

8g,1,l ⊂ Pm.
In conclusion, for every good curve C̄ ⊂ Ū for the quintuple (X̄,X, Ū , ωrN , (xj)

s
j=1), we have

constructed an m+ 1-tuple of globally generating sections t0, . . . , tm ∈ H0(C̄, ωrN |C̄) such that

• the induced map lands in A ∗
8g,1,l ⊂ Pm;

• the image of C under the induced map lands in A8g,1,l ⊂ A ∗
8g,1,l;

• and such that the induced abelian variety on BC → C is isomorphic to (AC ×C A
t
C)4 where

AC → C is an abelian scheme with D(AC [p∞]) ∼= (M,F, V )|C as Dieudonné crystals on C.
(Therefore we also have that D(BC [p∞]) ∼= (N,F, V )|C .)

In particular, setting M = A ∗
8g,1,l ⊂ Pm, condition (3) of Lemma 2.9 holds for C̄ ⊂ X̄ (corre-

sponding to the symbols C ⊂ Y in Lemma 2.9). Note that for two such good curves C and C ′,
there is no reason that the induced maps to A8g,1,l match up on the intersection C ∩ C ′ because
our choices of abelian schemes were not canonical.

For each n > 0, let Pn denote the union of the set of closed points of U whose residue field is
contained in Fqn! . Note that, for any infinite subset S ⊂ N, the set

⋃
n∈S Pn is Zariski dense in X;

indeed, any given closed point x of U is an element of Pn for all n� 0. By Lemma 2.12, it follows
that, for each n > 0, there exists a good curve C̄n ⊂ Ū for the quintuple (X̄,X, Ū , ωrN , Pn).

For each n ∈ N, by the above remarks we obtain anm+ 1-tuple of globally generating sections

tn,0, . . . , tn,m ∈ H0(C̄n, ωrN |C̄n
)

such that the induced map factors fn : C̄n → A ∗
8g,1,l ⊂ Pm. Moreover, any infinite subcollection

of the C̄n is Zariski dense because they are space-filling: if x is a closed point of U with residue
field Fqe , then x is contained in Cn for all n ≥ e. By Lemma 2.9, it follows that there exist
an infinite set S ⊂ N and sections t̃0, . . . , t̃m ∈ H0(X̄, ωrN ) such that the induced rational map
f̃ : X̄ ��� Pm lands in A ∗

8g,1,l and, moreover, for each n ∈ S, we have an equality of morphisms
f̃ |C̄n

= fn.
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By shrinking U , we therefore obtain a map f̃ : U → A8g,1,l and hence an abelian scheme
BU → U such that BU [l] is a trivial étale cover of U . The maps fn : C̄n → A ∗

8g,1,l were all
constructed such that the induced abelian scheme BCn → Cn is compatible with

(NCn , F, V ) ⊗ Qp
∼= (E ⊕ E∗(−1))4|Cn .

On the other hand, if u is a closed point of U , then u lies on Cn for all n� 0. We claim that
it follows that BU → U is compatible with (L⊕ L∗(−1))4|U . Indeed, it suffices to show that
for every closed point u of U , Bu → u and (L⊕ L∗(−1))4|u are compatible, that is, that the
characteristic polynomials of Frobenius match up. Pick n ∈ S with Cn containing u. As the
map f̃ : U → A8g,1,l extends the map fn : Cn → A8g,1,l by the definition of S in Lemma 2.9,
the induced abelian scheme BU → U extends the abelian scheme BCn → Cn constructed above,
which is compatible with (L⊕ L∗(−1))4|Cn by construction. Therefore Bu → u is compatible
with (L⊕ L∗(−1))4|u, as desired.

For each n ∈ S we have that f̃ |C̄n
= fn. By construction there exists an abelian scheme

ACn → Cn of dimension g with

BU |Cn
∼= (ACn ×Cn A

t
Cn

)4.

Consider the map of representations induced by the first Zl-cohomology of the abelian schemes
BU → U and BU |Cn → Cn:

π1(Cn)

������������
�� π1(U)

		����������

GL16g(Zl)

(3.6)

Then [Katz01, Lemma 6(b)] implies that for n� 0, the two representations have the same
image (which lands in GL2g(Zl)8). By the fundamental work of Tate and Zarhin on Tate’s
isogeny theorem for abelian varieties over finitely generated fields of positive characteristic
[MB85, Ch. XII, Théorème 2.5(i), p. 244], it follows that, for all n� 0, the natural injective
map EndU (BU ) ↪→ EndCn(BU |Cn) is an isomorphism when tensored with Zl and hence also
when tensored with Ql. Therefore, for all n� 0, the map

EndU (BU ) ⊗ Q → EndCn(BU |Cn) ⊗ Q

is an isomorphism as both sides are finite-dimensional semi-simple Q-algebras of the same rank.
We know that EndCn(BU |Cn) has a non-trivial idempotent eCn that projects onto a copy of

ACn . After replacing eCn by a high integer multiple, we may lift eCn to eU ∈ EndU (BU ). Set the
image of eU to be the abelian scheme πU : AU → U . Finally, we claim that AU is compatible with
L (equivalently, E). Indeed, the image AU → U is an abelian scheme of dimension g that extends
ACn → Cn. On the other hand, in (3.6) the two images in GL16g(Zl) are the same (as we have
assumed n� 0) and hence have corresponding decompositions in irreducible Ql representations.

Step 3: the proof in the general case via reduction to Step 2. There exists a projective divisorial
compactification X̄ of X. (This means that X̄ is normal and the boundary is an effective Cartier
divisor.) By Kedlaya’s semi-stable reduction theorem (see [Ked22, Theorem 7.6] for a meta-
reference), there is a generically étale alteration ϕ : X ′ → X together with a simple normal
crossings compactification X ′ such that the overconvergent pullback E ′ extends to a logarithmic
F -isocrystal with nilpotent residues. After replacing X ′ with a further finite étale cover, we may
guarantee that the residual representation of L′ is trivial.
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We have proven the theorem for E ′ on X ′: there exist an open subset W ′ ⊂ X ′ and an abelian
scheme AW ′ →W ′ of relative dimension g with D(AW ′ [p∞]) ∼= E ′|W ′ . After shrinking W ′ and
W , we may assume that ϕ|W ′ : W ′ →W is finite étale, of degree d.

Set BW := ResW
′

W (AW ′) to be the Weil restriction of scalars. This is an abelian scheme over
W of dimension dg. We claim that BW is compatible with Ld. One way to see this is as follows.
Consider the short exact sequence of abelian sheaves in the étale topology:

0 → AW ′ [ln] → AW ′
ln−→ AW ′ → 0.

As W ′ →W is finite étale, Weil restriction is exact on the level of abelian étale sheaves. There-
fore ResW

′
W (AW ′ [ln]) ∼= BW [ln]. As AW ′ [ln] is a finite étale group over W , one deduces that the

representation associated to BW is isomorphic to

Indπ1(W ′)
π1(W ) L

′.

However, L′, as a representation, is the restriction of L along the inclusion π1(W ′) ↪→ π1(W ).
Then the desired compatibility follows from the following fact: if H ⊂ G is the inclusion of a
subgroup of finite index d, and if V is a finite-dimensional representation of G, then

IndGHResGH(V ) ∼= V ⊕d.

Recall that we wrote an isotypic decomposition:

L ∼=
a⊕

i=1

(Li)mi

where each Li is irreducible on X (and hence on W by [Ked18, Lemma 1.1.2]). Let Ei ⊂ Ql

denote the field generated by the traces of Frobenius on Li as x ranges through the
closed points of W . We claim that we may find a smooth curve C ⊂W with the following
properties:

(1) each Li|C is irreducible;
(2) the field generated by Frobenius traces of Li|C is Ei ⊂ Ql;
(3) each Li|C has infinite monodromy around ∞; and
(4) the induced monodromy representations coming from BW →W and BW |C → C

π1(C)

������������
�� π1(W )

		����������

GL2gd(Zl)

have the same image.

We have a projective normal compactification X̄ of X, which is smooth away from a closed
subset of codimension at least 2. Let F = X̄\X and let F ′ ⊂ F be the singular locus of X̄. For
each Li, there is an irreducible component Fj of F that witnesses the fact that Li has infinite
monodromy at ∞: having infinite monodromy at ∞ means that a certain inertia group has
infinite image in the representation.

Pick a closed point yj ∈ Fj\(Fj ∩ F ′) for each j. Then, by using [Dri12, C.2], we may con-
struct an infinite set of curves (Cn)n∈N where each Cn ⊂W is a smooth, geometrically connected
curve that contains all closed points of W whose residue fields are contained in Fqn! and that
pass through the yj transversally (i.e., with a tangent direction that is not contained in Fj).
(We remark that this is a consequence of Poonen’s Bertini theorem [Poo04, Theorem 1.3].)
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Each Li|Cn has infinite monodromy around ∞. By [Katz01, Lemma 6(b)], it follows that for
all n� 0, Cn satisfies (4). For n� 0, [Katz01, Lemma 6(b)] and [Del12] guarantee that setting
C := C ′

n satisfies the above four conditions.
Again, by using Drinfeld’s Theorem 2.1, Remark 2.8, and (3.1) as in Step 2, there exists an

abelian scheme AC → C that is compatible with L|C . On the one hand, using the Tate isogeny
theorem [MB85, Ch. XII, Théorème 2.5], it follows that AdC is isogenous to BW |C . On the other
hand, another application the Tate isogeny theorem together with property (4) of C implies that
the natural map

EndW (BW ) → EndC(BW |C)

is an isomorphism after tensoring with Q. As BW |C is isogenous to AdC , it follows that
EndC(BW |C) ⊗ Q has an element eC projecting onto a factor of AC . After replacing eC with a
high integer multiple, we may lift to eW ∈ EndW (BW ). Set the image of eW to be the abelian
scheme AW →W ; this is compatible with L|W , as desired. �
Proof of Corollary 1.3. Suppose there exists πU : AU → U such that R1(πU )∗Ql has L1 as a
summand. By the assumption that X is smooth and geometrically connected, it is irreducible;
hence U ⊂ X is dense. A theorem of Zarhin implies that R1(πU )∗Ql is semi-simple [MB85,
Chapitre XII, Theorem 2.5, pp. 244–245]. The field generated by the characteristic polynomials
of R1(πU )∗Ql is clearly Q; indeed, this follows Weil’s theorem that the characteristic polynomial
of Frobenius acting on the Tate module of an abelian variety over a finite field has coefficients
in Z [Wei48, IX,X].

We claim that D(AU [p∞]) ⊗ Qp is a semi-simple object of F-Isoc†(U). This is essentially
contained in [Pál15, Remark 4.11], but some comments are in order.

While the statement of [Pál15, Remark 4.11] assumes that U is a smooth curve, this assump-
tion is unnecessary. Indeed, the only point where this assumption is used is in the citation of
[KT03, 4.3–4.8], to argue that the associated F -isocrystal is overconvergent. However, [Éte02,
Théorème 7] essentially states and proves exactly this: if S/k is a smooth separated scheme over
a field k of characteristic p and A→ S is an abelian scheme, then R1frig(OX/K) is an overconver-
gent F -isocrystal on S. When k is perfect, this F -isocrystal is isomorphic to R1fcrys(OX/W ) ⊗ Q

because A→ S is smooth and proper (see, for example, [Ber97, Proposition 1.9]). On the other
hand, R1fcrys(OX/W ) ∼= D(A[p∞]). In particular, to obtain the semi-simplicity, one simply com-
bines Corollary 4.9 and Proposition 3.5 of [Pál15] with the fact that D(AU [p∞]) ∈ F-Isoc†(U),
exactly as explained in [Pál15, Remark 4.11].

As D(AU [p∞]) ⊗ Qp is isomorphic to the rational crystalline cohomology of AU → U , it
follows from [KM74] that D(AU [p∞]) ⊗ Qp and R1(πU )∗Ql are companions. It follows from
Lemma 2.5 that all crystalline companions of L1|U exist and, moreover, are summands of
D(AU [p∞]) ⊗ Qp. Then, by [Ked18, Corollary 3.3.3], all crystalline companions to L1 exist.

Conversely, suppose all crystalline companions (Ei)bi=1 to L1 exist. We first of all claim that
each Ei has infinite monodromy at ∞. Indeed, suppose for contradiction that there existed an
alteration f : X ′ → X and a compactification X ′ such that f∗Ei extends to an object F ′ of
F-Isoc†(X ′)

Qp
. Then f∗L1 would also extend to X ′ by [Ked18, Corollary 3.3.3], contradicting

the assumption that L1 had infinite monodromy at ∞. Moreover, each Ei is irreducible by
[Ked18, Lemma 3.3.1]. Similarly, tensorial operations respect the companion relation, hence
det(Ei) ∼= Qp(−1). There exists a p-adic local field K with each Ei an object of F-Isoc†(X)K .
Set E :=

⊕b
i=1 Ei, considered as an object of F-Isoc†(X) (by restricting scalars from K to Qp,

so the rank of E is 2b[K : Q]). Note that E , being the sum of irreducible objects, is semi-simple.
Then E satisfies the hypotheses of Theorem 1.2, and L1 is a companion of a summand of E .
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It follows that there is an open set U ⊂ X together with an abelian scheme πU : AU → U such that
E ∼= D(AU [p∞) ⊗ Qp. Again using Zarhin’s semi-simplicity, L1|U is a summand of R1(πU )∗Ql,
as desired. �
Proof of Corollary 1.4. Under the assumption on E1, all p-adic companions to E1 exist by [KP21,
Corollary 4.16]. (This result is straightforward; they are all Galois twists of each other.) Fix
σ : Qp → Ql. Then the σ-companion to E1 exists by [AE19, Theorem 4.2] or [Ked18, Corollary
3.5.3]. Apply Corollary 1.3. �

Appendix A. Logarithmic F -crystals

We first recall the notion of a logarithmic F -crystal/isocrystal. While this notion is due to Kato
[Kato89, § 6], our treatment is copied from recent work of Kedlaya.

Definition A.1. A smooth pair over a perfect field k is a pair (Y, Z) where Y/k is a smooth
variety and Z ⊂ Y is a strict normal crossings divisor.

Definition A.2. Let (Y, Z) be a smooth pair over a perfect field k of characteristic p > 0.
A smooth chart for (Y, Z) is a sequence of elements t̄1, . . . , t̄n of elements of OY (Y )
such that

• the induced map f̄ : Y → An is étale, and
• there exists an m ∈ [1, n] such that the zero-loci of ti, for i = 1, . . . ,m, are exactly the

irreducible components of Z.

Smooth charts exist Zariski locally on smooth pairs (in characteristic p) by [Ked05,
Theorem 2]. Let (Y, Z) be a smooth pair over a perfect field k of characteristic p > 0. Let
t̄1, . . . , t̄n be a smooth chart of (Y, Z). Let P0 be the formal scheme given by the formal com-
pletion of W (k)[t1, . . . , tn] along (p). By topological invariance of the étale site, there exist a
unique smooth formal scheme P and an étale morphism f : P → P0 lifting f̄ . We call the pair
(P, t1, . . . , tn) the lifted smooth chart of (Y, Z) associated to the original chart.

Let σ0 : P0 → P0 be the Frobenius lift with σ∗(ti) = tpi for i ∈ [1, . . . , n]. Then there exists an
associated Frobenius lift σ : P → P .

Definition A.3. Let (Y, Z) be a smooth pair over a perfect field k and let t̄1, . . . , t̄n be a smooth
chart of (Y, Z). Keep notation as above. A logarithmic crystal with nilpotent residues on (Y, Z)
is a pair (M,∇) where:

• M is a p-torsion free coherent module over P ; and
• ∇ is an integrable, topologically quasi-nilpotent connection on M (with respect to W (k))

with logarithmic poles and nilpotent residues along the zero-loci of f∗(ti) for i ∈ 1, . . . ,m.

A logarithmic F -crystal with nilpotent residues is a triple (M,∇, F ) where (M,∇) is a logarithmic
crystal with nilpotent residues and F is an injective, horizontal morphism

F : σ∗(M) →M

of coherent P -modules. A logarithmic Dieudonné crystal with nilpotent residues is a quadruple
(M,∇, F, V ) where (M,∇, F ) is a logarithmic F -crystal in finite, locally free modules with
nilpotent residues and V is an injective, horizontal map

V : (M) → σ∗M

such that FV = V F = p.
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Remark A.4. In the definition of a logarithmic F -crystal with nilpotent residues, we do not
demand that M is locally free. However, in our definition of a logarithmic Dieudonné crystal, we
do demand that the underlying logarithmic crystal is locally free.

This definition extends to general smooth pairs by Zariski gluing; every smooth pair admits a
finite open covering on which the restriction admits a smooth chart. We often drop the connection
∇ from the notation and write a logarithmic F -crystal as (M,F ).

There is a natural category of logarithmic crystals with nilpotent residues on (Y, Z) (where
morphisms are P -linear and horizontal), and the category of logarithmic isocrystals with nilpo-
tent residues is defined to be the induced isogeny category. One similarly defines the category of
logarithmic F -isocrystals with nilpotent residues.

Remark A.5. Part of the definition of a logarithmic F -crystal (M,∇, F ) in Definition A.3
explicitly assumes that the residues of the underlying crystal (M,∇) were nilpotent. This
assumption is indeed superfluous; we now explain why.

First of all, the associated logarithmic isocrystal (M,∇) ⊗ Q to (M,∇, F ) is a convergent
logarithmic isocrystal: indeed, a logarithmic isocrystal is convergent if and only if it is infinitely
Frobenius divisible; see [Ogu95, Remark 16], the argument of which is just a logarithmic variant
of [Ogu84, 2.18]. (See [Ber96, § 2.4] or [ES18, Remark 2.4] for several other perspectives in the
non-logarithmic setting.) Then it is a general fact that a convergent logarithmic F -isocrystal has
nilpotent residues; see, for example, [Ked22, Definition 7.2].

Remark A.6. Let (Y, Z) be a smooth pair over k and let U = Y \Z. We denote by Y the (fine,
saturated) logarithmic scheme given by (Y, α : O∗

U ↪→ OY ). Then our definition of a logarithmic
crystal is compatible with the definition of Kato (see [Kato89, Theorem 6.2]), our definition of
a logarithmic F -crystal in finite, locally free modules is compatible with the definition of Kato
and Trihan (see [KT03, 4.1]) and our definition of a logarithmic F -isocrystal is compatible with
the definition given by Shiho (see [Shi00, Definition 4.1.3]).

The mathematical content of the following lemma is essentially [Katz79, Theorem 2.6.1]
(and relatedly [Cre87, Lemma 2.5.1]); we have simply rewritten Katz’s argument in the
logarithmic setting. The key is that Katz’s slope bounds holding on the open subset where the
logarithmic structure is trivial guarantees that they hold everywhere. We use Kato’s definition
of logarithmic F -crystals only for convenience to discuss global objects; all of the computations
use the local definitions given above.

Lemma A.7. Let (Y, Z) be a smooth pair over a perfect field k of positive characteristic and let
U := Y \Z. Let E be a logarithmic F -isocrystal on (Y, Z).

(1) Suppose the Newton slopes of EU are all non-negative. Then there exist an open subset
W ⊂ Y , whose complementary codimension is at least 2, and a logarithmic F -crystal
in finite, locally free modules (M ′′, F ) on the smooth pair (W,W ∩ Z) such that
(M ′′, F ) ⊗ Q ∼= EW .

(2) Suppose the Newton slopes of EU are in the interval [0, 1]. Then there exist an open subset
W ⊂ Y , whose complementary codimension is at least 2, and a logarithmic Dieudonné
crystal in finite, locally free modules (M ′′, F, V ) on the smooth pair (W,W ∩ Z) such that
(M ′′, F ) ⊗ Q ∼= EW .

Proof. By the definition of a logarithmic F -isocrystal, there exist a logarithmic crystal in coherent
(not necessarily locally free!) modules M and a map F : Frob∗YM →M ⊗ Q that is isomorphic to
E when thought of as a logarithmic F -isocrystal. Here, FrobY refers to the absolute Frobenius (on
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the fine and saturated (f.s.) log scheme Y induced from the smooth pair (Y, Z)) and the ∗ refers
to pullback on the logarithmic crystalline topos. This is compatible with our above definitions.

As M is a logarithmic crystal in coherent modules, there exists a non-negative integer ν so
that

F : (FrobY )∗M → p−μM.

We have assumed that the Newton slopes of E are all non-negative. Slope bounds of Katz
(see the proof on [Katz79, pp. 151–152]) imply then that there exists a non-negative ν such that,
for all n ≥ 0,

Fn : (FrobnU )∗MU → p−νMU . (A.1)

We explicate this in local coordinates. Take an affine open neighborhood T ⊂ Y such that
(T, T ∩ Z) has a smooth chart (t̄1, . . . , t̄n). Let (P, t1, . . . , tn) be the associated lifted smooth
chart; note that P = Spf(A) where A is a noetherian W (k) algebra equipped with the p-adic
topology. Then the logarithmic crystal yields a finitely generatedAmoduleMA and the Frobenius
structure induces a continuous, A-linear homomorphism F : σ∗MA → p−μMA.

As U ∩ T ⊂ T is open dense, it follows from (A.1) that

Fn : (σn)∗MA → p−νMA.

By varying T , one deduces that Fn : (FrobnY )∗M → p−νM for our fixed ν as above and for all
n ≥ 0.

Consider the module

M ′
A :=

∑

n≥0

Fn((σnX)∗MA) ⊂ p−νMA.

As A is noetherian, M ′
A is finitely generated, being a submodule of a finitely generated mod-

ule. Moreover, M ′
A is stable under F . Finally, M ′

A is the finite sum of (logarithmic) horizontal
submodules. Therefore the pair (M ′

A, F ) is in fact a logarithmic F -crystal in coherent modules.
We have an isomorphism (M ′

A, F ) ⊗ Q ∼= ET in the category of logarithmic F -isocrystals with
nilpotent residues on (T,Z ∩ T ).

Now set M ′′
A := (M ′

A)∗∗. This is a coherent reflexive sheaf on the ring A, and hence is
locally free away on an open set of Spec(A) whose complement has codimension at least 3
[Sta20, 0AY6]. M ′′

A is manifestly stable under the connection and F . In particular, we can find
an open subset T ′′ ⊂ T with complementary codimension at least 2 such that the logarithmic
F -crystal (M ′′

A, F )T ′′ is a crystal in finite, locally free modules.
After initially choosing a pair (M,F : Frob∗YM → p−μM) representing E , the constructions

we have made are canonical. Therefore, ranging over T , we may glue the (M ′′, F )T ′′ ; that is,
there is an open subset W ⊂ T with complementary codimension at least 2 and a logarithmic
F -crystal (M ′′, F )W in finite, locally free modules on the smooth pair (W,Z ∩W ) that is a lattice
inside of EW .

We now indicate how to complete the result if the Newton polygons on U are in the interval
[0, 1]. Let (M,F ) be a logarithmic F -crystal in finite, locally free modules on a smooth pair (Y, Z)
over a perfect field k and suppose the Newton slopes on U are no greater than 1. Set V := F−1 ◦ p.
Then V does not necessarily stabilize M ; however, the pair (M,V )U is a logarithmic σ−1-F -
isocrystal in the language of [Katz79]. (Fortunately, Katz’s entire paper is written in the context
of σa-F -crystals for any a �= 0, not just the positive a. In particular, all of Katz’s results also
hold for σ−1-F -crystals. Katz does not deal with logarithmic crystals, but we only use the slope
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bounds on the open set U .) By the coherence argument as above, we may find η such that

V : (Frob−1
Y )∗M → p−ηM

on all of Y . Again, using Katz’s slope bounds on U (which hold equally well for σ−1-F -crystals)
and the same coherence argument, one shows that after possibly increasing η, we in fact have

V n : (Frob−nY )∗M → p−ηM

for all n ≥ 0. Now run exactly the above argument with V instead of F : then

M ′ :=
∑

n≥0

V n(Frob−1
Y )∗M) ⊂ p−ηM

will be coherent, horizontal, and stabilized by V . Recall that FV = V F = p; therefore, M ′ is also
stabilized by F ! Then M ′′ := (M ′)∗∗ is a reflexive logarithmic crystal on (Y, Z) that is stabilized
by both F and V . Exactly as above, there exists an open subset W ⊂ Y of complementary
codimension at least 2 such that (M ′′, F, V )W is a logarithmic Dieudonné crystal in finite, locally
free modules, as desired. �
Remark A.8. Let (Y, Z) be a smooth pair over k and let (M,F, V ) be a logarithmic Dieudonné
crystal (in finite, locally free modules) on (Y, Z). We construct a natural line bundle ω, which
we call the Hodge line bundle, attached to (M,F, V ).

Evaluating M on the trivial thickening of (Y, Z), we obtain a vector bundle M(Y,Z) on Y
together with an integrable connection with logarithmic poles on Z and a horizontal map:

F(Y,Z) : Frob∗YM(Y,Z) →M(Y,Z).

The kernel is a vector bundle on Y . Set ω := det(ker(F(Y,Z))). We call ω the Hodge line bundle
associated to (M,F ).

As a reference for this remark: in the case when Z is empty, one finds this construction
in [dJ98, 2.5.2 and 2.5.5]. In the setting of logarithmic Dieudonné crystals, Kato and Trihan
construct the dual object: Lie(M,F, V ) (see [KT03, 5.1] and especially [KT03, Lemma 5.3].
Note that this lemma holds in our situation: our hypothesis that (Y, Z) is a smooth pair over a
perfect field k implies that the conditions of 5.1 of [KT03, p. 563] hold: étale locally, there is a
p-basis of Y such that each (regular) component of Z is cut out by some member of the p-basis.

Remark A.9. Let Y/k be a smooth scheme over a perfect field k. Let AY → Y be an abelian
scheme. Then there is an associated Dieudonné crystal (M,F, V ) = D(AY [p∞]) on Y [BBM82].
The Hodge bundle of (M,F ) is isomorphic to the Hodge line bundle of the abelian scheme
AY → Y by [BBM82, 3.3.5 and 4.3.10].

Finally, we have the following key Proposition A.11, which furnishes several compatibil-
ities that we need for our main argument. The proof of the proposition largely amounts to
collating well-known results in the theory of F -(iso)crystals. We first require the following
setup.

Setup A.10. Let C/k be a smooth, proper, geometrically irreducible curve over a perfect field
k of characteristic p > 0, let U ⊂ C be an open dense subset, and let Z ⊂ C be the reduced
complement. Let AU → U be an abelian scheme with semi-stable reduction along Z. Call the
Néron model AC → C. Then there is an attached logarithmic Dieudonné crystal on (C,Z),
which we call Dlog(AC) [KT03, 4.4–4.8]. (Kato and Trihan construct a covariant Dieudonné
functor. We assume ours is contravariant, which may be accomplished by taking a dual as
in [KT03, 4.1].)
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Proposition A.11. In the context of Setup A.10, the following assertions hold.

(1) The (non-logarithmic) Dieudonné crystal Dlog(AC)|U is isomorphic to the crystalline
Dieudonné module of the p-divisible group AU [p∞]

(2) Let AoC → C be the semi-abelian scheme associated to AC → C, obtained by removing the
non-identity components of the fibers over Z.The Hodge line bundle of AoC → C, is isomor-
phic to the Hodge line bundle of the logarithmic Dieudonné crystal Dlog(AC) described in
Remark A.8.

(3) The logarithmic Dieudonné crystal Dlog(AC) is the unique logarithmic Dieudonné crystal
(with nilpotent residues) on (C,Z) that extends D(AU [p∞]).

Proof. We prove each point in turn. Point (1) follows by the construction of the logarithmic
Dieudonné module: see the description of gluing as in [KT03, Lemma 4.4.1].

Point (2) is given in [KT03, Example 5.4(b)], with the caveat that they work with the
covariant Dieudonné functor and Lie(AC → C).

We now prove point (3). First of all, note that we only need to check that there is at most one
extension as a logarithmic F -crystal in finite, locally free modules. In our setting, V is determined
by F under the relation FV = V F = p. By [Éte02, Théorème 7], it follows that D(AU [p∞]) ⊗ Qp

is overconvergent. Forgetting the V -structure, we are left with a logarithmic F -crystal (M,F ) on
(C,Z). (By Remark A.5, the residues of (M,F ) are automatically nilpotent.) Note that (M,F )|U
is an overconvergent F -crystal by [Ked04].

We are now able to prove the desired uniqueness. Let (N,F ) be a logarithmic F -crystal
on (C,Z) such that (M,F )|U ∼= (N,F )|U . (By the above, (N,F ) automatically has nilpotent
residues along Z.) We introduce the following notation.

• FC(C,Z) is the category of logarithmic F -crystals in finite, locally free modules (with
nilpotent residues) on (C,Z).

• FC(U) is the category of F -crystals in finite, locally free modules on U .
• F-Isoc(C,Z) is the category of logarithmic F -isocrystals (with nilpotent residues) on (C,Z).
• F-Isoc(U) is the category of (convergent) F -isocrystals (with nilpotent residues) on U .

Consider the following diagram:

HomFC(C,Z)((M,F ), (N,F ))
res ��

��

HomFC(U)((M,F )|U , (N,F )|U )

��

HomF-Isoc(C,Z)((M,F ) ⊗ Q, (N,F ) ⊗ Q)
resQ

�� HomF-Isoc†(U)((M,F )|U ⊗ Q, (N,F )U ⊗ Q)

(A.2)

To prove that (M,F ) ∼= (N,F ) in the category FC(C,Z), it suffices to show that the top hori-
zontal arrow is an isomorphism. We first prove that this arrow is injective with torsion cokernel;
then we will show that the image is p-saturated.

The natural map

HomIsoc(C,Z)(M ⊗ Q, N ⊗ Q) → HomIsoc†(U)(M |U ⊗ Q, N |U ⊗ Q)

is an isomorphism by a full-faithfulness result of Kedlaya [Ked07, Theorem 6.4.5]. It follows
immediately that the bottom horizontal arrow of (A.2) is an isomorphism. (See also [Ked22,
Theorem 7.3] for exactly this statement.)
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The group HomFC(C,Z)((M,F ), (N,F )) is a finite free Zp-module because (C,Z)/k is log
smooth. The left vertical arrow of (A.2) is injective because it is simply the map ⊗Q on a finite
free Zp-module.

The group HomFC(U)((M,F )|U , (N,F )|U ) is a priori only a torsion-free Zp-module. (In par-
ticular, it could have infinite rank.) However, the right vertical arrow fits into the following
diagram:

HomFC(U)((M,F )|U , (N,F )|U ) ��

⊗Q 

�����������������������
HomF-Isoc†(U)((M,F )|U ⊗ Q, (N,F )|U ⊗ Q)

∼=
��

HomF-Isoc(U)((M,F )|U ⊗ Q, (N,F )|U ⊗ Q)

where the vertical arrow is an isomorphism by [Ked04]. As

HomF-Isoc†(U)((M,F )|U ⊗ Q, (N,F )|U ⊗ Q)

is a finite-dimensional Qp-vector space, it follows that HomFC(U)((M,F )|U , (N,F )|U ) is a finite
free Zp-module. As the diagonal arrow is injective (it is the map ⊗Q), we deduce that

HomFC(U)((M,F )|U , (N,F )|U ) → HomF-Isoc†(U)((M,F )|U ⊗ Q, (N,F )|U ⊗ Q)

is also injective. Then the top arrow, res, in diagram (A.2) must be injective with torsion cokernel
by consideration of the ranks.

Finally, we prove that res is a saturated map of finite free Zp modules. Equivalently,
we prove that if ϕ ∈ HomFC(C,Z)((M,F ), (N,F )) is such that res(ϕ) is divisible by p in
HomFC(U)((M,F )|U , (N,F )|U ), then ϕ is divisible by p. This will use an explicit local calculation
with Definition A.3.

Pick smooth charts for (C,Z). More precisely, C may be covered by open subsets Yi such
that there exist étale maps f̄i : Yi → A1 = Spec(k[x]) with the following property: if Yi ∩ Z �= ∅,
then Yi ∩ Z = f̄∗i (V (x)). As both the categories of logarithmic F -crystals and usual F -crystals
are stacks in the Zariski topology, it suffices to prove the desired saturatedness for a single
(Yi, Yi ∩ Z), which we relabel (Y, Y ∩ Z). If Y ∩ Z = ∅, there is nothing to prove, so we may
assume that Y ∩ Z �= ∅.

Let f̄ : Y → A1 be an étale map with f̄∗(V (x)) = Y ∩ Z, which exists by the definition of
Y . Let A0 := W (k)[x]∧ be the p-adic completion of W (k)[x]. By topological invariance of the
étale site, the map k[x] → OY (Y ) (with x �→ f̄) deforms to an étale map A0 → A; set f to be
the image of x in A. Similarly, let B0 = W (k)[x, x−1]∧ be the p-adic completion of W (k)[x, x−1].
Again using topological invariance of the étale site, the map k[x, x−1] → OY (Y \(Y ∩ Z)) induced
from f̄ deforms to an étale map B0 → B. As Y ∩ Z = f̄∗(V (x)), we have that B ∼= A⊗̂A0B0. In
particular, there is the following diagram of p-adic rings:

A
� � �� B

A0

��

� � �� B0

��

As in Definition A.3, equip A0 and B0 with the Frobenius lift σ0 sending t �→ tp. Set σ to be the
induced Frobenius lift on A and B.

Let (M,∇, F ) and (N,∇, F ) be the realizations of (M,F ) and (N,F ) on A as in
Definition A.3. In particular, M and N are finite, locally free A modules. Then the statement
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we wish to prove is that

HomA((M,∇, F ), (N,∇, F )) → HomB((M,∇, F )B, (N,∇, F )B)

is a saturated map of Zp modules, that is, if ϕ ∈ HomA((M,∇, F ), (N,∇, F )) is a map such that
ϕB is divisible by p in HomB((M,∇, F )B, (N,∇, F )B), then ϕ was divisible by p. In particular,
we assume that ϕ(MB) ⊂ pNB and wish to prove that ϕ(M) ⊂ pN ; indeed, if ϕ(M) ⊂ pN ,
then ϕ/p will automatically commute with ∇ and F and hence would yield an element ϕ/p ∈
HomA((M,∇, F ), (N,∇, F )). Therefore, it suffices to prove that if M and N are finite, locally
free A modules, then the map HomA(M,N) → HomB(MB, NB) is p-saturated.

We claim that A ↪→ B is a p-saturated map of p-adic rings. As noted above, B ∼= A⊗̂A0B0;
therefore, to prove that A ↪→ B is a p-saturated, it suffices to prove that A0 ↪→ B0 is p-saturated.
This map is simply the inclusion W (k)[x]∧ ↪→W (k)[x, x−1]∧, which is clearly p-saturated from
the explicit description of the elements of the two rings as series.

As M and N are finite locally free A-modules, the natural map HomA(M,N) ⊗A B →
HomB(MB, NB) is an isomorphism. It follows that the natural map

HomA(M,N) → HomA(M,N) ⊗A B ∼= HomB(MB, NB)

is p-saturated, as desired. �
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Wei48 A. Weil, Variétés abéliennes et courbes algébriques. Actualités scientifiques et industrielles,

vol. 1064, Publ. Math. Inst. Univ. Strasbourg. 8 (Hermann & Cie., Paris, 1948), 163.

Raju Krishnamoorthy krishnamoorthy@alum.mit.edu

Arbeitsgruppe Algebra und Zahlentheorie, Fakultät Mathematik und Naturwissenschaften,
Bergische Universität Wuppertal, F 13.05, Gaußstraße 20, Wuppertal 42119, Germany

Ambrus Pál a.pal@imperial.ac.uk

Department of Mathematics, Imperial College, 180 Queens Gate, London SW7 2AZ, UK

892

https://doi.org/10.1112/S0010437X22007333 Published online by Cambridge University Press

https://arxiv.org/abs/1512.03587
https://stacks.math.columbia.edu
https://doi.org/10.1112/S0010437X22007333

	1 Introduction
	2 Preliminaries
	3 Proofs of Theorem 1.2 and Corollaries 1.3, 1.4
	Appendix A. Logarithmic F-crystals
	Acknowledgements
	References

