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1. Definitions and introduction. Let Ul = {U;|7 e I} be asystem of subsets of a normal
topological space R ; i.e. a mapping from the index set I into the set of all subsets of R. The
order of a point x is the number of distinct member sets of U which contain z, and is denoted
by x: U ; the sets U, are here considered distinct if they have distinct indices. Thus z: 1l
is the number of indices ¢ for which z € U;; »(lI) = max {x : U | z € R} is called the order of
the system 1. If every point has an (open}) neighbourhood meeting only finitely many mem-
bers of 11, then U is said to be locally finite.

We shall call U a k-covering of Rif x : Il = k for some positive integer & and all points z.
The covering D = {V, | j € J} is said to be a refinement of the covering U if, for each j, there
is an index ¢ = o () such that V; = U,;. Moreover, the refinement D is called finite-to-one,
one-to-one, or strict according as the mapping ¢ : J — I can be chosen such that o is finite-to-
one, o is one-to-one, or o is one-to-one and 7, < U,

Theorem 1 of § 2 shows that if the dimension of R is at most # then every finite open
covering admits a finite open k-refinement of order at most n + k, and conversely (¢ = 1, 2, ...) ;
when k& = 1 this is merely the definition of dim B < n. The class of all finite open coverings
involved here may be replaced by the class of all locally finite open coverings or by a certain
type of subclass of the latter. Thus, if dim B < n, then a locally finite open covering admits a
locally finite open k-refinement D say, of order at most » +%. We show in Theorem 2 that D
may be chosen as a strict refinement.

In § 3 it is shown that if dim R = = then, for any locally finite open (or closed) refinement
U of some suitably chosen finite open covering, there is a member set of U on which the func-
tion x : I assumes at least » +1 distinet values. This is a sharper result than the converse
part of Theorem 1. If in addition R is paracompact then there is some point in each neigh-
bourhood of which z : Il assumes at least » +1 values.

The author wishes to acknowledge his indebtedness to Dr A, H. Stone for his valuable
advice and criticism concerning this work.

2. The order of k-coverings. Two systems of subsets § and & are said to be similar
if there is some one-to-one correspondence between their index sets such that any finite sub-
system of § has an empty intersection if and only if the corresponding subsystem of &
has an empty intersection. Hereafter we identify the index set of a system with a section
of the ordinals 0, 1, ..., %, ... (¢+ < a) for some appropriate ordinal a. Also the underlying
space is always understood to be normal.

LemMa 1. If{F;|i < a} and {U,; |7 < a} are locally finite systems such that F, is closed,
U, 18 open and F, lies in U,, then there exists an open system {G; | i < a} such that F; = G,
G; c Usand {G; | i < a} is similar to {F; | i < a}.
For a proof of this see [4].
1 This paper is part of & doctoral thesis presented to the University of Manchester.
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Lemma 2. (An extension of a theorem due to Dieudonné [2]). If D = {V,|i <a}is
a locally finite open k-covering (of a normal space) then there exists an open k-refinement

W = (W, |i <a}
of D such that W, c V,.
Proof. Suppose that for all ordinals ¢ < j < j,, open sets W, are defined such that
W,V (i<j)
and X; ={W, Vy|i<j, b =j}is a k-covering.

These conditions hold initially with X, = D and j, = 1. In order to define W, we con-
sider first the set H; of all points 2 such that

x:{W,, Vh|i<j,h>J}<k.

From the induction hypothesis and the fact that X; is locally finite it follows easily that H,
is closed and lies in ¥;, and so by normality we can define W; to be an open set such that
HicW,W,cV,

Since the systems X; and X,,, differ only in their j-th members it follows that X, is at
least a (k —1)-covering. Now if « fails to belong to H;, then x : X;,, = & ; if otherwise, then x
belongs to W; and again z: X,,, = k.

If j, is a limit ordinal, then the open sets W, (¢ < j,) are defined by the induction hypo-
thesis and it is easily verified that X, is a k-covering. Thus the induction is complete and
D = X, is a strict open k-refinement of D as required.

We proceed to determine the dimension of a space in terms of its open k-coverings for
each fixed value of k. Let {11} denote a class of locally finite open coverings of a space R with
the properties that each finite open covering of R admits a member covering as a refinement
and each finite-to-one open refinement of a member is again a member.

TuroreM 1. dim B < » if and only if every covering U admits a k-refinement 1’ of order at
most n+k (U, We{ll},k =1,2..).

CoroLLarY. dim R < n if and only if every locally finite open covering of R admits a locally
finite open k-refinement of order at most n + k.

This follows by taking {U} to be the class of all locally finite open coverings of B. As
further examples we may take the class of all star-finite open coverings or the class of all finite
open coverings.

Proof by induction over k. In the initial case, if dim R < », then any locally finite open
covering U = {U, | i < a} admits a locally finite open refinement D = {V;|j < b} of order
at most » +1; for the proof of this see [3] or [4]. For each index j we can choose an index
i = o(j) such that ¥, <= U, and, by putting U; = U{V;| o(j) = i}, we see that the system
U = {U;|i < a} is a one-to-one open refinement of U of order at most »+1. Thus if U
belongs to {11} so does 1I'.

Conversely, if 11, is any finite open covering then there exists a refinement D of order at
most n + 1, which is also a member of {I}. The above process of uniting member sets of D
produces a finite open refinement of U, of order at most » +1. Hence dim B < » and the case
where & = 1 is established. The following lemma gives the inductive step and clearly suffices
to prove the theorem.

N
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LeMMaA 3. A locally finite open covering Ul admits a finite-to-one open k-refinement of order
at most p if and only if it admats a finite-to-one open (k + 1)-refinement of order at most p +1.

Proof. Let D = {V;| i < a} be a finite-to-one open k-refinement of U such that v(D) < p.
We consider the following system of which a typical member set is

F,-1 ey ={w|ze V,-1 s ++es Vi only} (¢, <. <, <a)

Clearly this system consists of mutually disjoint closed sets and the neighbourhoods
Vi ... nVy of F; ... ; form alocally finite open system. Hence we may apply Lemma 1 to
give the existence of mutually disjoint open sets G, ... ;; such that

Fiooe @y Vyn .. 0¥y

L
We now define a system & consisting of the mutually disjoint open sets
Gi = U{Gil e i]cl’i =7:1<... <ik} (i<a).

Since @, lies in V;, we see that the systems ® and D taken together form a finite-to-one

open (k -+ 1)-refinement of 11 of order at most p +1.
To prove the reverse implication of the lemma let us now take D to be a finite-to-one

open (k+1)-refinement of U of order at most p+1. By Lemma 2 there exists a strict open
(k +1)-refinement IV = {W,| i < a} of D. Thus the system
X={Wyn .. oW, i <iy<..<i}
is locally finite and consists of mutually disjoint sets. We now put
Wi=Wi-UW,n o nWy |6 =i < .o <idp),
W ={W;|i<a}

and show that ¥’ is a suitable open k-refinement of 11.

The subset W) of W, is open because the set union occurring in its definition is taken over
a subsystem of X. Also »(ID’) < p since, in defining V', each point of order p+1 with
respect to XD has been removed from just one of the member sets of I to which it belongs.
Finally 0 is a k-covering ; for if W, , ..., W, are some k +1 members of I containing a
given point , then « fails to belong to at most one of the sets W, ..., W, by virtue of belong-
ing to at most one member set of X. This proves Lemma 3. We remark that * finite-to-one *’
may be replaced by ““ locally finite >’ throughout the lemma and proof.

Suppose now that & is a locally finite open k-covering of an at most » dimensional space.
By Theorem 1 we know that a locally finite open k-refinement U of order at most = + & exists ;
(in fact D may be chosen as a finite-to-one refinement). The process of uniting member sets
of D in order to construct a one-to-one refinement of @ (as described in the proof of Theorem
1) will in general produce a covering which fails to be a %-covering. In the next theorem a
strict open k-refinement of ® of order at most » + k will be constructed without the existence of
the k-refinement D being assumed. The necessary connection with the dimension number will
be supplied by the following result which in the form quoted below is due to K. Morita [4].

If {X;| i < a},{Y;|i < a} are two locally finite open systems of an at most n dimensional
space, such that X, c Y,, then there exist open systems {Uilt <a}, {Vi|i <a} such that
X, cU,U; <V, V, < Y, and the order of the system {V;- U, | i < a} is at most n.
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THEOREM 2. If® = {G;|¢ < a}isalocally finite open k-covering of anatmostn dimensional
space R, then & admits a strict open k-refinement of order at most n +k.

Proof. Let § = {F;|¢ < a} be astrict closed k-refinement of @ as given by Lemma 2. We
suppose that for all ordinals ¢ < j < j, open sets U,;, V,; (h < a,1 < §) have been defined
by induction and that, together with the further definitions

Xy = U{Us | ¢ <3}, Yo = N{Vas |2 <3},

X ={Xn b <gh = {Yulk <}
and § ={F:|t<J}
the following conditions hold :
~ Uni = Vi = ¢ forall >, } ..................... (L)
and Uw e Uy, Ui Vi, Vi Vi, Vi © Gy
whenever ¢’ < ¢ <j;
z:X;zmin(k,x: §) @ER); i, (2.5)
x:ﬁ5§n+k (ZER). vivieiiiiiiiii e (3.9)

When j, = 1 this hypothesis is vacuous. From (1.j) it follows that
Xni = Unsry Unsar @ Vagog = ¥y
when j is not a limit ordinal. Hence
X Yoy Y3y © Ghe e (4.9)
This is also true if § is a limit ordinal, because in that case U, < V,,; for all 4,7 <4 and
moreover _ B B
Xy Vipme Vige Vg Gy, foralli <.
Now if jy is a limit ordinal then the open sets Uy;, Vi, (b < a, ¢ < j,) are defined and satisfy
(1.jg). From the definitions it is clear that
Xos & Xpjp Yngo e Yoy (R <J <Jo)
Thusif Fy, ..., F; (4 <... <1, <Jo) are the finitely many member sets of 8’0 containing &
given point z, it follows that for some 3y, 4, << ¢y << jg,
v: X2z X, 2min (k2 §) =minkz: §)
and 50 (2.5,) holds. Similarly, by using the local-finiteness of 1);, it is easily shown that (3.5,)

holds and so the induction is complete in the case of & limit ordinal.
We now put j, = j+1, thereby fixing j. In the following construction for the sets

Uyjs Vaslh < a) the symbol j is sometimes suppressed.
We observe that, by (4.4), the systems X;, I); satisfy the hypothesis of Morita’s theorem
and accordingly take open systems
U={Uy|b<jl D={Vu|h<j}
such that
X’u c U)”', ﬁh} [ amg th, th < th (h <j) }

and WV -Up | b <} <
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It remains only to define the sets U;, V;; (and the empty sets Uy, Vi 2 > 4). As
preliminaries to this we define

F={x|x:11<min(k:x3&1+1)}

and G ={x|z:D<n+k}
where D = {¥,, |k <j}. We show that
FcF;, Fcg@G, Fisclosed and Gisopen. ....c..covevvvuninninnnnn. (6)

Firstly let z ¢ F;, so that « : §; = z: §;,,; it follows, by (5) and (2.7), that
z:U=Za:X; Zmin (k2 §,)
and therefore z fails to belong to F.
Secondly let x € F' so that, in particular, z : I < k. Now, by (5), we have that
e {Vislh <i}Sa:{Vp—Ups | b <j}+a:{Upy| b <j};
ie. 2: D <n+k Therefore F lies in G as required.

Thirdly, since both the open system 11 and the closed system §,,, are locally finite, a given
point x has some small neighbourhood of which any point y satisfies the relations

y:U=za:U and z: §,29: §50-

Thus = ¢ F implies y ¢ F for all y and therefore F is closed. Similarly it can be shown that &
is open.
Since F lies in both ¢ and &; we can define Uj; and V; as open sets such that

FaU;j U;cVy VicGnG iiiieeeiieenn, (7)

This completes the construction of the sets Uy, Vy; (B < a).
From conditions (5) and (7) it is clear that (1.5 +1) holds. From the definitions it also
follows that X, ;.1 = Ups, Y10 = Vi (R =j). Thus

xi+1 ={, UJ'J'}) QHI ={D, Vst
and in particular  : X,,; = « : U for all 2. In proving (2.j + 1) we may therefore assume that

z: U0 < min (k,z: §,,)ie xeF. Since x necessarily belongs to U,; and F,, we have by (2.5)
that

@:X)-12z:Uz2z: X;Zmin(k,z: §) = min (k,z: §,,)-1.
This verifies (2.5 +1).
Lastly, let x ¢ V,,; ; together with (3.j) this implies that
v, =x:D<2: D), Sn+k.
On the other hand, if z € V;, then v € @ and consequently
x:f}-,+1§1+x:5§n+k.
In either case (3.7 +1) holds and the induction is complete.

Open systems X,, 1), exist satisfying (2.a), (3.0) and (4.0) ; (2.a) implies that X, is a
k-covering because §,{= §) was chosen as a k-refinement of & at the outset; (3.2) and (4.a)
imply that X, and 1}, are strict k-refinements of ¥), and & respectively, each having order at
most n +k&. Thus either k-refinement serves to prove the theorem.
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3. The values assumed by the functions z: D. Let dim R = n. From the corollary
to Theorem 1 we deduce that for each &k there exists a locally finite open covering U of which
every locally finite open k-refinement has order at least n + k. In view of Lemma 3 it is clear
that one fixed covering ll serves for all values of k. Now let D be any locally finite open
refinement of 1l and consider the values which the function z : D may assume. If k denotes
the least such value, then the greatest value is at least n + k. We generalise this by showing
that on some member set of D at least » + 1 distinct values are assumed. Moreover 1 may be
chosen as a finite open covering and a similar property holds for locally finite closed refinements
of ll. These results are corollaries to the proof of the following

THEOREM 3. If R is a paracompact space of dimension at least n, then there exists a finite
open covering U, such that for every locally finite open or closed refinement U there is some point in
every neighbourhood of which x : U assumes at least n + 1 distinct values.

We take U, = {U;|j < b} to be a finite open covering of which every finite open (or
closed) refinement has order at least » +1. The case of the closed refinements and that of the
open refinements are considered separately as the methods of proof differ. For brevity we
shall write X; = X; n ... nX; and X, = Xiln nX,-m, where {X; | i < a} is any system
of subsets, I is any finite set of ordinals ¢y, ..., 4, < aand | I| = m.

We mention a result allied to Theorem 3 which is given in [1]. In our terminology it
states that if R is a compact metric space of dimension at least # then, for any finite open or
closed refinement {X; | ¢ < a} of the covering 1, (chosen as above), there exist subsets I, ..., I,,
such that ¢ « Xy, = ... <« X; , the inclusions being proper.

Proof of Theorem 3 (closed case). Suppose that § = {F; |7 < a} is a locally finite closed
refinement of 1, such that each point z admits a neighbourhood U(z) in which the required
order property fails. By paracompactness the open covering {U(z) | x € R} has a locally
finite open refinement and by Lemma 2 there exists a further strict closed refinement . Thus
K has the property that

z: § = my(K),..,or my(K) (®eKeK), .viiiiiiiinininnn. (8)

where m, > ... > m, are some n positive integers chosen for each K.
Proceeding by induction we suppose that for each integer » << s = % +1 a finite system
{G,; | 5 < b} of mutually disjoint open sets has been constructed such that

G;c U, (j<b)
and zeG, = U{G,|r=0,..,8-1; j<b},
whenever z : § = m,_(K) (xe K € K).

We initiate the construction by putting Gy; = ¢ (j < b). Let §, be the system of which a
typical member set F; consists of all points = such that

By =Gty woeereeeeeeeeeeeeeeeereeeeeeeeeereereeeens (10)
zeK and my(K) =|I| forsome KeX, .....ccccovnnnnnn (11)

where I is any finite set of indices ¢,, ... 4,, < @. We assert that

&, 18 a locally finite system of mutually disjoint closed sets. ............... (12)
Firstly, by (10), §, inherits the local-finiteness property of §. Next let x ¢ F,;; if (10) fails,
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then (R - F;)wG,_, is an open neighbourhood of = ; if (11) fails then, by the local-finiteness of
the closed covering X, we can find a neighbourhood P(x) meeting only those members of K
which contain z. Thus, whenever y is a point of P, K 5y implies K 5 and consequently
condition (11) fails. In either case there is some neighbourhood of z disjoint from ¥,; and hence
the latter is closed.

Now let us suppose that for some distinet pair I, I’ the sets F,; and Fyy, have a common
point z; thus, by (10), x € F; nFp. If there is a (proper) inclusion relation between
Tand I',say I < I’,then,2: § > | I'|; the latter is also true when there is no inclusion rela-
tion. From (10) and (11) we have that, for some particular K containing z, my(K) = | I | and
z¢ G, ;. Now by (8), x: § assumes one of the values m,(K), ..., m,(K) and, by (9) the first
s —1 values are excluded. Thusz: § < m(K) and we have a contradiction from the fact that
myK) = |I|and |I| <2:§ This establishes (12).

Since § is & refinement of 1y, we can choose j = j(I) such that

FgycFrcU; (j<b)

and from (12) it follows that the sets U{F; | 5(I) = j} (§ < b) are mutually disjoint and closed.
By Lemma 1, we can find a system of mutually disjoint open sets {G;} such that

UtFy |5) = j} © Gy = U; (5 <b),

and it only remains to show that the induction hypothesis holds for this system.

Let x: § = my(K), (x € K € H). We may assume that « does not belong to G,_; as other-
wise = belongs to G, and there is nothing further to prove. Thus 2 : § = my(K) because the
other possible values are now excluded by (9). Taking F; to be the intersection of all members
of § containing , it is easy to see that, by conditions (10) and (11), = belongs to F,;. Conse-
quently x belongs to G, as required.

From (8) and (9) it follows that @, is the whole space. Thus the systems {G,; | j < b}
(r = 1,2, ..., n) of mutually disjoint sets form a finite open refinement of 1, of order at most n
and this is contrary to the choice of . This proves the closed case of Theorem 3.

With paracompactness omitted from the hypothesis the following weaker result is possible.

CoroLLARY. dim R = n implies that for every locally finite closed refinement § of U, there is
some member set on which x : § asswmes at least n + 1 values.
Forif § is a refinement for which this is not true, then we can identify § with X in the above
proof and derive a contradiction without reference to paracompactness.
The next lemma is designed to show that, if the open case of Theorem 3 is false, then it is
false for some locally finite covering by open F_-sets.

Lemma 4. If X is a locally finite closed covering and 1 = {U, |1 < a} is a locally finite
open covering with the property that x : 1 = my(K), ..., or m,(K) whenever x € K € K, then there
exists a one-to-one refinement D of U by open F -sets having the same order property as 11.

Proof. We put
I ={K,I)| |I]|#+m(K),..., m,(K)},

where K € K and I is any finite set 4y, ..., %,, << @. The order property of 1l is now equivalent
to .

EnUycU{U;li¢l; i <a} forall (K,I)eS. .ccocevvrnnnnn. (13)
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We shall prove the lemma by constructing a suitable refinement D for which the member sets
satisfy the same collection of inclusion relations. The construction consists mainly of establish-
ing a countable sequence of open systems D, = {V ;17 <a} (p = 0,1, ...) such that

Veic Vora i Vorri = U (1 <a) }
and KnV,ycUVpn:li¢l; i<a}
forall (K,)e £.

By putting V,; = ¢ (i < a) and taking a strict open refinement D, of Il we obtain (14.0).
We define D, by a transfinite process which, when iterated, will define D,,.

We assume that open sets Vy; (¢ < j < j,) have been defined such that

Vic Vo, Ve Uy (6 <)
and KnVycUVyu Ut <y h =35 6, B¢I}  coveviierienieieeiiiinnnne (15.5)
for all (K, I)e £.
Since ¥y, lies in U, (15.0) is given by (13). In order to see how to define V,;, we consider

all points which would cause an inclusion relation of (15.5 + 1) to fail if V,; were the empty set.
Formally this is the set H; of all points & such that for some element (X, I) of #

TEK AV o (16)
and 2g UV Uple<g > 35 6, h e} i (17)

It is easily shown that H; is closed. Moreover H; lies in U; ; for if x satisfies (16) and (17) for
some (K, I), then, by (15.5), « belongs to some member of the system

(Vo Unl i <j,hz2j; i, h¢ I}

Now U, fails to be a member set or not according as I happens to contain j or not, and by (17)
x cannot belong to any member set other than the jth. Hence I does not contain j and z
belongs to U, as required. We define V,; to be an open set such that H, = V,;, V,; « U,
and proceed to verify (15.j+1). Let xe K nVy;, (K, I)e S ; if x ¢ H; then (17) is not true
and it follows that = belongs to

UVeor Un i <j+LAZj+1;5 6 h¢1h  coeeeeecreceiennns (18)

On the other hand if « € H,, then I does not contain j (as shown above) and « belongs to V,;.
Hence again 2 belongs to (18), and thus (15.5 + 1) holds. The induction is easily completed in
the case where j; is a limit ordinal by using the local-finiteness of ll. Thus we have an open
system D, satisfying (14.1). By repeating the construction we obtain open systems D,
satisfying conditions (14.p). Since the system D, was chosen as a refinement of 1l all the
subsequent systems are refinements too. We now define

Vi=U{Vulp=12.} (i<a), D={V]i<a}

and observe that V; is an open F -set. It is simply verified that the order property of 1l
expressed in (13) also holds for the refinement D of 11 and the lemma is proved.

Let ® be a covering of a space R. We denote U{G | z € G € B} by st (z, B); B iscalleda
delta-refinement of a covering U if the covering {st (z, ®) | # € R} is a refinement of U. It is
known that a locally finite open covering (of a normal space) admits an open delta-refinement.
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Proof of Theorem 3 (open case). Suppose that U is a locally finite open refinement of 11,
admitting neighbourhoods U(z) (x € R) in each of which there occur points of at most =
distinet orders with respect to 1I. By paracompactness the covering {U(z) | « € R} admits a
locally finite open refinement and, by Lemma 2, there exists a further one-to-one closed
refinement X such that {Int (K) | K € K} is also a covering. Since z : 1l assumes at most n
values on any one member of X, 1l admits, according to Lemma 4, a one-to-one refinement
D = {V;] ¢ < a} having the same order property as lf. Taking & to be an open delta-refine-
ment of {Int (K) | K € K} we see that

the function y : D assumes at most n values on the set st (x, ®) (xeR). ...... (19)

Since ¥V, is an open F,-set we can find a continuous real-valued function f(¢ ; z) which is
positive on ¥V and zeroon R —V,. Let f(i; ... i, ; x)denote the sum of f(i, ; ), ..., (¢, ; 2).
We define a system D of which the typical member W, = W; _; consists of all points

n

such that
TeV; .o NV, e (20)
y: D =m forsome yest(x, B), cceovrriiininiiiniiniinna., en
fGy ooty &) <fly .o dm; ®) forall (4 ...%,) #J, iivienrinnnen (22)

where J is any finite set jj, ..., j, < @.

Firstly, let the members of D containing a given point « be Vis ... Vi, thenz belongs
to W; ;. because (20) and (21) are valid (with y = z) and (22) follows from the fact that the
functions f(j ; ) (§ = J15 -+-» Jm), and only these functions, are positive. Hence IV is a cover-
ing and refines D.

Secondly, let = be a point of W ; by restricting attention to some small neighbourhood of
x we see that condition (22) involves in effect only the finitely many functions f(¢ ; z) that are
not everywhere zero. Hence condition (22) is valid for all points in some smaller neighbour-
hood P(z) say. Now choose a point y and a member set & of & as given by (21) ; it is not diffi.
cult to see that the common part of P, @, ¥, ..., ¥,  is a neighbourhood of z lying in W,.

Thirdly, let z belong to W, , ..., W . Condition (22) implies that z belongs to at most one
set of the form W; _; for each value of m and condition (21) implies that st (¥, ®) contains

points of orders | J, |, ..., | J,|. Hence these orders are distinet and by (19) are at most n
in number. Thus we have that ID is an open refinement of U1, of order at most .

Finally, by the process of uniting member sets of ID, as described in the proof of Theorem
1, we produce a finite open refinement of U, of order at most », and this is contrary to the
choice of 1,

CoroLLARY. If Risanormalspace of dimension at least n (not necessartly paracompact), then
for any locally finite open refinement 11 of 11, there is some member set of U on which x : 1 assumes
at least n + 1 values.

For if not, then we can choose some member U, of I as a neighbourhood of  and identify
the system {U(z) | z € R} of the above proof with the covering {U, | € R} ; since the latter
admits some subsystem of U as a locally finite open refinement the above argument may be
applied without reference to paracompactness.

https://doi.org/10.1017/52040618500034146 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500034146

COVERINGS OF FINITE-DIMENIONAL SPACES 197

REFERENCES

1. P. Alexandroff and A. Kolmogoroff, Endliche Uberdeckungen topologischer Raiime.
Fundamenta Math. 26 (1936), 267.

2. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appliquées 23 (1944),
65-76.

3. C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-
242.

4. K. Morita, On the dimension of normal spaces II. J. Math. Soc. Japan 2 (1950), 16-33.

Tae UNIVERSITY
Grasaow

https://doi.org/10.1017/52040618500034146 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500034146

