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COHOMOLOGICAL LENGTH FUNCTIONS

HENNING KRAUSE

Abstract. We study certain integer valued length functions on triangulated

categories, and establish a correspondence between such functions and coho-

mological functors taking values in the category of finite length modules over

some ring. The irreducible cohomological functions form a topological space.

We discuss its basic properties, and include explicit calculations for the category

of perfect complexes over some specific rings.

§1. Introduction

Let C be a triangulated category with suspension Σ : C
∼−→ C. Given a

cohomological functor H : Cop→Mod k into the category of modules over

some (not necessarily commutative) ring k such that H(C) has finite length

for each object C, we consider the function

χ : Ob C−→ N, C 7→ lengthk H(C),

and ask the following questions.

– What are the characteristic properties of such a function Ob C−→ N?

– Can we recover H from χ?

Somewhat surprisingly, we can offer fairly complete answers to both

questions.

It should be noted that similar questions arise in Boij–Söderberg theory

when cohomology tables are studied; recent progress [8, 9] provides some

motivation for our work. Further motivation comes from the quest (initiated

by Paul Balmer, for instance) for points in the context of triangulated

categories.

Typical examples of cohomological functors are the representable functors

of the form Hom(−, X) for some object X in C. We begin with a result that

takes care of this case; its proof is based on a theorem of Bongartz [4].
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COHOMOLOGICAL LENGTH FUNCTIONS 137

Theorem 1.1. (Jensen–Su–Zimmerman [19]) Let k be a commutative

ring, and let C be a k-linear triangulated category such that each morphism

set in C has finite length as a k-module. Suppose also for each pair of objects

X, Y that Hom(X, ΣnY ) = 0 for some n ∈ Z. Then, two objects X and Y are

isomorphic if and only if the lengths of Hom(C, X) and Hom(C, Y ) coincide

for all C in C.

Examples of triangulated categories satisfying the assumptions in this

theorem arise from bounded derived categories. To be precise, if A is a

k-linear exact category such that each extension group in A has finite

length as a k-module, then its bounded derived category Db(A) satisfies

the above assumptions, since for all objects X, Y in A (viewed as complexes

concentrated in degree zero)

Hom(X, ΣnY ) = Extn(X, Y ) = 0 for all n < 0.

On the other hand, Auslander and Reiten provided in [2, Section 4.4]

simple examples of triangulated categories that do not have the property

that objects are determined by the lengths of their morphism spaces (see

also [3]).

Now, let C be an essentially small triangulated category. Thus, the

isomorphism classes of objects in C form a set. Given any additive functor

H : Cop→ Ab into the category of abelian groups, we denote by End(H)

the endomorphism ring formed by all natural transformations H →H. It

should be noted that End(H) acts on H(C) for all objects C. Moreover,

if a ring k acts on H(C) for all objects C in a way that commutes with

all morphisms in C, then this action factors through that of End(H) via

a ring homomorphism k→ End(H). In particular, when H(C) has finite

length over k, then it also has finite length over End(H). This observation

motivates the following definition.

Definition 1.2. A cohomological functor H : Cop→ Ab is called end-

ofinite 1 provided that for each object C

(1) H(C) has finite length as a module over the ring End(H), and

(2) H(ΣnC) = 0 for some n ∈ Z.

1The term endofinite reflects condition (1), while (2) is added for technical reasons.
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138 H. KRAUSE

If (Hi)i∈I are cohomological functors, then the direct sum
⊕

i∈I Hi is

cohomological. A non-zero cohomological functor H : Cop→ Ab is indecom-

posable if it cannot be written as a direct sum of two non-zero cohomological

functors.

An endofinite cohomological functor H : Cop→ Ab gives rise to a function

χH : Ob C−→ N, C 7→ lengthEnd(H) H(C),

which is cohomological in the following sense (see Lemma 2.4).

Definition 1.3. A function χ : Ob C→ N is called cohomological pro-

vided that

(1) χ(C ⊕ C ′) = χ(C) + χ(C ′) for each pair of objects C and C ′,

(2) for each object C there is some n ∈ Z such that χ(ΣnC) = 0, and

(3) for each exact triangle A→B→ C→ in C and each labeling

· · · →X−2→X−1→X0→X1→X2→ · · ·

of the induced sequence

· · · → Σ−1B→ Σ−1C→A→B→ C→ ΣA→ ΣB→ · · ·

with χ(X0) = 0 we have

n∑
i=0

(−1)i+nχ(Xi)> 0 for all n ∈ Z,

and equality holds when χ(Xn) = 0.

If (χi)i∈I are cohomological functions, and for any C in C the set {i ∈
I | χi(C) 6= 0} is finite, then we can define the locally finite sum

∑
i∈I χi. A

non-zero cohomological function is irreducible if it cannot be written as a

sum of two non-zero cohomological functions.

The following theorem is the main result of this paper; it is proved in

Section 2 and builds on work of Crawley-Boevey on finite endolength objects

(see [6, 7]).

Theorem 1.4. Let C be an essentially small triangulated category.

(1) Every endofinite cohomological functor Cop→ Ab decomposes essen-

tially uniquely into a direct sum of indecomposable endofinite cohomo-

logical functors with local endomorphism rings.

https://doi.org/10.1017/nmj.2016.28 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.28


COHOMOLOGICAL LENGTH FUNCTIONS 139

(2) Every cohomological function Ob C→ N can be written uniquely as a

locally finite sum of irreducible cohomological functions.

(3) The assignment H 7→ χH induces a bijection between the isomorphism

classes of indecomposable endofinite cohomological functors Cop→ Ab

and the irreducible cohomological functions Ob C→ N.

Examples of endofinite cohomological functors arise from representable

functors of the form Hom(−, X) when C is a Hom-finite k-linear category.

Thus, Theorem 1.1 can be deduced from Theorem 1.4. The following remark

shows that in some appropriate setting each endofinite cohomological

functor is representable.

Remark 1.5. Let T be a compactly generated triangulated cate-

gory, and let C be the full subcategory formed by all compact objects.

Then, each endofinite cohomological functor H : Cop→ Ab is isomorphic to

Hom(−, X)|C for some object X in T, which is unique up to an isomorphism

and represents the functor2

Top −→ Ab, C 7→ Hom(Hom(−, C)|C, H).

Thus, cohomological functions are “represented” by objects in this setting.

For specific examples, see [25].

Next, we consider the set of irreducible cohomological functions Ob C→ N
and endow it with the Ziegler topology (see Proposition B.5). The quotient

Sp C = {χ : Ob C→ N | χ irreducible and cohomological}/Σ

with respect to the action of the suspension is by definition the space of

cohomological functions on C. Thus, the points of Sp C are equivalence

classes of the form [χ] = {χ ◦ Σn | n ∈ Z}.
Take as an example the category of perfect complexes Db(projA) over a

commutative ring A. A prime ideal p ∈ SpecA with residue field k(p) yields

an irreducible cohomological function

χk(p) : Ob Db(projA)−→ N, X 7→ lengthk(p) Hom(X, k(p)),

where k(p) is viewed as a complex concentrated in degree zero.

2The functor is cohomological since H is an injective object in the category of additive
functors Cop→ Ab (see the proof of Theorem 1.4). Thus, Brown’s representability theorem
applies.
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140 H. KRAUSE

Theorem 1.6. The map SpecA→ Sp Db(projA) sending p to [χk(p)] is

injective and closed with respect to the Hochster dual of the Zariski topology

on SpecA.

We prove this result in Section 4 by analyzing the Ziegler spectrum [24,

34] of the category of perfect complexes. A general method for computing

the space Sp C of cohomological functions is to compute the Krull–Gabriel

filtration [11, 15] of the abelianization Ab C (see [10, 31] or Section 2).

A specific example is the algebra k[ε] of dual numbers over a field k. Each

complex

Xn : · · · → 0→ k[ε]
ε−→ k[ε]

ε−→ · · · ε−→ k[ε]→ 0→ · · ·

of length n corresponds to an isolated point in Sp Db(proj k[ε]), and their

closure yields exactly one extra point corresponding to the residue field.

Thus,

Sp Db(proj k[ε]) = {[χXn ] | n ∈ N} ∪ {[χk]}.

This example is of particular interest because the derived category

Db(proj k[ε]) is discrete in the sense of Vossieck [32]; that is, there are no

continuous families of indecomposable objects. On the other hand, there are

infinitely many indecomposable objects, even up to shift. The Krull–Gabriel

dimension explains this behavior because it measures how far an abelian

category is away from being a length category. For instance, a triangulated

category C is locally finite (see [26] or Section 4) if and only if the Krull–

Gabriel dimension of Ab C equals at most 0.

Proposition 1.7. The abelianization Ab Db(proj k[ε]) has Krull–Gabriel

dimension equal to 1.

It should be noted that the Krull–Gabriel dimension of the free abelian

category AbA over an Artin algebra A [14] behaves differently; it equals 0

if and only if A is of finite representation type by a result of Auslander [1],

and is greater than 1 otherwise (see [17, 21]).

As a final example, let us describe the cohomological functions for the

category coh P1
k of coherent sheaves on the projective line over a field k.

Proposition 1.8. The abelianization Ab Db(coh P1
k) has Krull–Gabriel

dimension equal to 2, and

Sp Db(coh P1
k) = {[χX ] |X ∈ coh P1

k indecomposable} ∪ {[χk(t)]}.
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COHOMOLOGICAL LENGTH FUNCTIONS 141

These examples illustrate in the triangulated context the following

representation theoretic paradigm:

finite type ←→ Krull–Gabriel dimension = 0,
discrete type ←→ Krull–Gabriel dimension6 1,
continuous families exist ←→ Krull–Gabriel dimension> 1.

§2. Cohomological functors and functions

In this section, Theorem 1.4 is proved. We deduce it from work of Crawley-

Boevey on endofinite objects in locally finitely presented abelian categories

(see [6, 7]). We begin with some preparations.

Let C be an essentially small triangulated category.

The abelianization. Following Freyd [10, Section 3] and Verdier [31, II.3],

we consider the abelianization Ab C of C, which is the abelian category of

additive functors F : Cop→ Ab into the category Ab of abelian groups that

admit a copresentation

0−→ F −→ Hom(−, A)−→ Hom(−, B).

The suspension Σ : C
∼−→ C extends to an equivalence Ab C

∼−→ Ab C sending

F to ΣF := F ◦ Σ−1.

In addition, we work in the category Mod C of additive functors Cop→ Ab.

This is a locally finitely presented abelian category, and the abelianization

Ab C identifies with the full subcategory of finitely presented objects of

Mod C (see [6] for details).

Additive functions. Let us introduce the analogue of a cohomological

function for the abelianization of C.

Definition 2.1. A function χ : Ob Ab C→ N is called additive3 provided

that

(1) χ(F ) = χ(F ′) + χ(F ′′) if 0→ F ′→ F → F ′′→ 0 is an exact sequence,

and

(2) for each object F there is some n ∈ Z such that χ(ΣnF ) = 0.

We show that additive and cohomological functions are closely related.

3The term additive reflects condition (1), while (2) is added for technical reasons.
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142 H. KRAUSE

Lemma 2.2. Restricting a function χ : Ob Ab C→ N to Ob C by setting

χ(C) = χ(Hom(−, C)) gives a natural bijection between

– the additive functions Ob Ab C→ N and

– the cohomological functions Ob C→ N.

Proof. Let χ : Ob Ab C→ N be an additive function. An exact triangle

A→B→ C→ in C yields in Ab C an exact sequence

· · · → Hom(−, A)→ Hom(−, B)→ Hom(−, C)→ Hom(−, ΣA)→ · · · .

Using this sequence, it is easily checked that the restriction of χ to C is a

cohomological function.

Conversely, given a cohomological function χ : Ob C→ N, we extend it to

a function Ob Ab C→ N, which again we denote by χ. We fix F in Ab C with

copresentation as above induced by an exact triangle A→B→ C→ in C,

and choose n ∈ Z such that χ(Σn(A⊕B ⊕ C)) = 0. Then, we define

χ(F ) =



n∑
i=0

(
(−1)iχ(ΣiA)− (−1)iχ(ΣiB)

+ (−1)iχ(ΣiC)
)
, if n> 0;

−1∑
i=n

(
(−1)i+1χ(ΣiA)− (−1)i+1χ(ΣiB)

+ (−1)i+1χ(ΣiC)
)
, if n < 0.

This gives a non-negative integer, and does not depend on n since χ is a

cohomological function. Moreover, χ(F ) does not depend on the choice of

the exact triangle that presents F by a variant of Schanuel’s lemma (see

Lemma A.1). It should be noted that χ(Hom(−, C)) = χ(C) for each C in

C. Standard arguments involving resolutions in Ab C show that χ is additive.

Clearly, restricting from Ab C to C and extending from C to Ab C are

mutually inverse operations.

There is a parallel between functions and functors. The analogue of

Lemma 2.2 for functors is due to Freyd.

Lemma 2.3. (Freyd [10]) Restricting a functor F : (Ab C)op→ Ab to C

by setting F (C) = F (Hom(−, C)) gives a natural bijection between

– the exact functors (Ab C)op→ Ab and

– the cohomological functors Cop→ Ab.
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COHOMOLOGICAL LENGTH FUNCTIONS 143

Proof. The inverse map sends a cohomological functor H : Cop→ Ab to

the exact functor Hom(−, H) : (Ab C)op→ Ab.

An endofinite cohomological functor H : Cop→ Ab induces two functions:

χH : Ob C−→ N, C 7→ lengthEnd(H) H(C),

χ̂H : Ob Ab C−→ N, F 7→ lengthEnd(H) Hom(F, H).

Lemma 2.4. The function χH is cohomological, and χ̂H is additive.

Proof. The functor Hom(−, H) : (Ab C)op→ Ab is exact since H is

cohomological. It follows that χ̂H is additive. The restriction of χ̂H to C

equals χH . Thus, χH is cohomological by Lemma 2.2.

Proof of the main theorem. The proof of our main result is based on

work of Crawley-Boevey, but we provide some complementary material in

Appendix B.

Proof of Theorem 1.4. An endofinite cohomological functor H : Cop→
Ab is a finite endolength injective object in Mod C, as defined in [6]. The

term “finite endolength” refers to the fact that Hom(F, H) has finite length

as End(H)-module for each F in Ab C (see Lemma 2.4). The injectivity

follows from the proof of [23, Theorem 1.2], using that Ext1(−, H) vanishes

on Ab C for any cohomological functor H.

In [6, Theorem 3.5.2], it is shown that each finite endolength object

decomposes into a direct sum of indecomposable objects with local endo-

morphism rings. (See [23, Theorem 1.2] for an alternative proof.) This yields

part (1).

In [7], additive functions on locally finitely presented abelian categories

are studied. In particular, there it is shown that every additive function on

Ab C can be written uniquely as a locally finite sum of irreducible additive

functions. This proves part (2), in view of Lemma 2.2. For an alternative

proof, see Proposition B.1.

Finally, part (3) follows from the main theorem in [7], which estab-

lishes the bijection between isomorphism classes of indecomposable finite

endolength injective objects in Mod C and irreducible additive functions

Ob Ab C→ N. For an alternative proof, see Proposition B.2, using the

bijection between cohomological and exact functors from Lemma 2.3.
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144 H. KRAUSE

§3. Properties of cohomological functions

The correspondence between functors and functions. The assignment H 7→
χH between endofinite cohomological functors and cohomological functions

satisfies some weighted additivity. For instance, χH⊕H′ = χH + χH′ pro-

vided that H and H ′ have no common indecomposable summand, but

χH⊕H = χH . We have the following concise formula.

Proposition 3.1. Let H =
⊕

i∈I Hi be the decomposition of an end-

ofinite cohomological functor Cop→ Ab into indecomposables. If J ⊆ I is

a subset such that (Hi)i∈J contains each isomorphism class from (Hi)i∈I
exactly once, then χH =

∑
i∈J χHi.

Proof. We adapt the proofs of [25, Propositions 4.5 and 4.6]. Alterna-

tively, we use Remark B.4.

Remark 3.2. Let C be a k-linear category such that each morphism set

in C has finite length as a k-module. Then, we have two maps Ob C× Ob C→
N, taking (X, Y ) either to lengthk Hom(X, Y ) or to lengthEnd(Y ) Hom(X, Y ).

While the first map preserves sums in both arguments, the second one does

not in the second argument, but it satisfies the above “weighted additivity”.

Duality. The correspondence in Theorem 1.4 yields a remarkable duality

between cohomological functors Cop→ Ab and cohomological functors C→
Ab. This follows from the fact that the definition of a cohomological function

Ob C→ N is self-dual; it is an analogue of the elementary duality between

left and right modules over a ring studied by Herzog [16].

The duality links indecomposable endofinite cohomological functors H :

Cop→ Ab and H ′ : C→ Ab when χH = χH′ . In that case,

(End(H)/rad End(H))op ∼= End(H ′)/rad End(H ′),

where radA denotes the Jacobson radical of a ring A. This follows from

Remark B.3.

The duality specializes to Serre duality when C is a Hom-finite k-linear

category with k a field. More precisely, if F : C→ C is a Serre functor [29]

and D = Hom(−, k), then

Hom(−, FX)∼=D Hom(X,−)

for each object X, and therefore χHom(−,FX) = χHom(X,−).
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The space of cohomological functions. Consider the set of irreducible

cohomological functions Ob C→ N, and identify this via Lemma 2.2 with

a subspace of Sp Ab C, endowed with the Ziegler topology, as explained in

Proposition B.5. The quotient

Sp C = {χ : Ob C→ N | χ irreducible and cohomological}/Σ

with respect to the action of the suspension is by definition the space of

cohomological functions on C. Thus, the points of Sp C are equivalence

classes of the form [χ] = {χ ◦ Σn | n ∈ Z}.
The construction of this space is functorial with respect to certain

functors. Let f : C→ D be an exact functor between triangulated categories.

Given [χ] in Sp D, the composite χ ◦ f is cohomological but need not be

irreducible. Thus, f induces a continuous map Sp D→ Sp C provided that

irreducibility is preserved. For instance, a quotient functor C→ C/B with

respect to a triangulated subcategory B⊆ C has this property; it induces a

homeomorphism

Sp C/B
∼−→ {[χ] ∈ Sp C | χ(B) = 0}.

Before we discuss specific examples, let us give one general result. Let k

be a field, and let C be a k-linear triangulated category such that for each

pair of objects X, Y we have Hom(X, ΣnY ) = 0 for some n ∈ Z. Suppose

that all morphism spaces are finite dimensional, and that C is idempotent

complete. Suppose also that C admits a Serre functor [29]. Denote for each

object X by χX the cohomological function corresponding to Hom(−, X).

Proposition 3.3. A point in Sp C is isolated if and only if it equals

[χX ] for some indecomposable object X. Moreover, the isolated points form

a dense subset of Sp C.

Proof. Each indecomposable object X fits into an Auslander–Reiten

triangle X → Y → Z→ in C, by [29, Theorem I.2.4]. Such a triangle provides

in Ab C the following copresentation of a simple object SX :

0−→ SX −→ Hom(−, X)−→ Hom(−, Y ).

Thus, (SX) = {χX} is a basic open set for each indecomposable object X.

Now, let (F ) be a non-empty basic open set with F ∈ Ab C. The functor

F admits a copresentation

0−→ F −→ Hom(−, X)−→ Hom(−, Y )
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146 H. KRAUSE

with an indecomposable direct summand X ′ ⊆X such that

Hom(F, Hom(−, X ′)) 6= 0.

Thus, χX′ belongs to (F ). It follows that each non-empty open subset of

Sp C contains a point of the form [χX ].

The space of cohomological functions may be empty, as the following

example shows.

Example 3.4. Let A be a ring without invariant basis number, for exam-

ple the endomorphism ring of an infinite dimensional vector space. Then,

there is no non-zero endofinite cohomological functor H : Db(projA)op→ Ab.

To see this, observe that H(ΣnA) is a finite endolength A-module for all

n ∈ Z, and therefore the zero module (see [5, Section 4.7]).

§4. Examples: perfect complexes

We compute the space Sp C of cohomological functions in some examples,

for instance when C is the triangulated category of perfect complexes over

some ring. It is convenient to view Sp C as a subspace of the spectrum Zsp C,

as defined in Appendix C.

The problem of computing the space of cohomological functions is reduced

to the study of the Krull–Gabriel filtration of the abelianization Ab C. This

filtration yields a dimension. For an abelian category A, the Krull–Gabriel

dimension KGdim A is an invariant, which measures how far A is away from

being a length category (see Appendix C).

Modules. Let A be a ring. We write ModA for the category of A-modules,

modA for the full subcategory of finitely presented ones, and projA for the

full subcategory of finitely generated projectives.

Following [14], we consider the free abelian category 4 over A, and denote

it by AbA. Thus, the category of A-modules identifies with the category of

exact functors (AbA)op→ Ab.

We consider the derived category D(ModA), and write per A for the full

subcategory Db(projA) of perfect complexes.

4The category AbA is the opposite of the category of functors F : modA→ Ab that
admit a presentation Hom(Y,−)→ Hom(X,−)→ F → 0, and A (viewed as a category
with a single object) embeds via A 7→ Hom(A,−). Any additive functor A→ A to an
abelian category A extends uniquely to an exact functor AbA→ A.
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COHOMOLOGICAL LENGTH FUNCTIONS 147

The Ziegler spectrum ZspA of A is by definition the set of isomorphism

classes of indecomposable pure-injective A-modules with the topology

introduced by Ziegler [28, 34]. We identify ZspA with the spectrum Zsp AbA

of the abelian category AbA (see Appendix C).

It should be noted that the spectrum Zsp per A identifies with a quotient

of the Ziegler spectrum of the compactly generated triangulated category

D(ModA) introduced in [24] and further investigated in [12]. The identifi-

cation takes an object X in D(ModA) to Hom(−, X)|per A.

Let us compare ZspA and Zsp per A. We consider the natural inclusion

i :A→ per A, which extends to an exact functor i∗ : AbA→ Ab per A by the

universal property of AbA.

Lemma 4.1. Let S0 ⊆ Ab per A be the Serre subcategory generated by the

representable functors Hom(−, ΣnA) with n 6= 0. Then, the composite

AbA
i∗−→ Ab per A� (Ab per A)/S0

is an equivalence.

Proof. The cohomological functors H : (per A)op→ Ab annihilating ΣnA

for all n 6= 0 identify with ModA, by taking H to H(A). Thus, the

exact functors (Ab per A)op→ Ab annihilating S0 identify with ModA, by

Lemma 2.3. It remains to observe that an exact functor f : C→ D between

abelian categories is an equivalence if precomposition with f induces

an equivalence between the categories of exact functors Dop→ Ab and

Cop→ Ab.

We view an A-module X as a complex concentrated in degree zero,

and denote by HX the corresponding cohomological functor Hom(−, X) :

(per A)op→ Ab. It is convenient to identify HX with the exact functor

Hom(−, HX) : (Ab per A)op −→ Ab.

Proposition 4.2. The assignment X 7→ [HX ] induces an injective and

continuous map φ : ZspA→ Zsp per A; its image is a closed subset.

Proof. We apply Lemma 4.1. The composite

f : Ab per A� (Ab per A)/S0
∼−→ AbA

identifies ZspA with a closed subset of Zsp Ab per A, which we denote

by U. Viewing an A-module X as an exact functor (AbA)op→ Ab, we have
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X ◦ f =HX . It should be noted that the subsets ΣnU, n ∈ Z, are pairwise

disjoint. It follows that φ is injective.

Next, we observe that⋃
n∈Z

ΣnU = (Zsp Ab per A)

∖ ⋃
(r,s)

Ur,s,

where (r, s) runs through all pairs of integers r 6= s, and

Ur,s = {F ∈ Zsp Ab per A | F (ΣrA) 6= 0 6= F (ΣsA)}.

Thus, the image of φ is closed.

Now, let V ⊆ Zsp per A be a closed subset, which corresponds to a Serre

subcategory S⊆ Ab per A (see Lemma C.1). Thus, V consists of all functors

in Zsp per A that vanish on S. Then, φ−1(V) consists of all functors vanishing

on f(S). It follows that φ is continuous.

Hereditary rings. A complex of A-modules can be written as a direct sum of

stalk complexes when A is hereditary. This has some useful consequences,

which are collected in the following proposition.

Proposition 4.3. For a hereditary ring A, the following holds.

(1) The map φ : ZspA→ Zsp per A taking X to [HX ] is a homeomorphism.

(2) KGdim Ab per A= KGdim AbA.

Proof. (1) We apply Proposition 4.2. Each indecomposable complex of

A-modules is concentrated in a single degree since A is hereditary. This

observation yields a disjoint union

Zsp Ab per A=
⋃
n∈Z

Un with Un = {F ∈ Zsp Ab per A | F (ΣnA) 6= 0},

and each Un is homeomorphic to ZspA. An open subset V ⊆ ZspA identifies

with an open subset Vn ⊆ Un, and therefore with an open subset of Zsp per A

via φ. It follows that φ is open and therefore a homeomorphism by

Proposition 4.2.

(2) We apply Lemma C.4 and use the family of quotient functors

(Ab per A� (Ab per A)/Sn
∼−→ AbA)n∈Z

from Lemma 4.1, where Sn is by definition the Serre subcategory generated

by the representable functors Hom(−, ΣpA) with p 6= n.
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Commutative rings. Let A be a commutative ring, and let SpecA be the set

of prime ideals. We endow SpecA with the dual of the Zariski topology in

the sense of Hochster [18]. A prime ideal p with residue field k(p) yields an

irreducible cohomological function

χk(p) : Ob per A−→ N, X 7→ lengthk(p) Hom(X, k(p)).

As before, we identify χk(p) with k(p). In particular, χk(p) is irreducible since

k(p) is indecomposable.

Theorem 4.4. The map ρ : SpecA→ Sp per A sending p to [χk(p)] is

injective and closed with respect to the Hochster dual of the Zariski topology

on SpecA.

Proof. The injectivity is clear since different primes p, q yield non-

isomorphic functors Hom(−, k(p)) and Hom(−, k(q)).

To show that the image Im ρ is closed, observe first that

U = {[χ] ∈ Sp per A | χ(ΣnA) 6= 0 for at most one n ∈ Z}

is closed by Proposition 4.2. Moreover,

U1 = {[χ] ∈ Sp per A | χ(ΣnA)6 1 for all n ∈ Z}

is closed by Lemma B.6. The indecomposable A-modules X with

lengthEnd(X) X 6 1 are precisely the residue fields k(p) (see [5, Section 4.7]).

Thus, Im ρ= U ∩ U1 is closed.

Given a closed subset V ⊆ SpecA, we need to show that ρ(V) is closed.

It follows from Thomason’s classification of thick subcategories [30, The-

orem 3.15] that there is a thick subcategory C of per A with p ∈ V if and

only if Hom(X, k(p)) = 0 for all X ∈ C. Here, one uses that X∗ ⊗L
A k(p)∼=

RHomA(X, k(p)) when X is perfect.

The latter condition means that χk(p)(X) = 0 for all X ∈ C. Thus,

{[χk(p)] | p ∈ V} is Ziegler closed.

Remark 4.5. This result generalizes to schemes that are quasi-compact

and quasi-separated.

Krull–Gabriel dimension zero. Following [26], a triangulated category C is

locally finite if its abelianization Ab C is a length category, which means

that KGdim Ab C6 0. We set χX = χHom(−,X) for X ∈ C when Hom(−, X)

is endofinite.
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Proposition 4.6. Let C be a locally finite and idempotent com-

plete triangulated category. Suppose for each pair of objects X, Y that

Hom(X, ΣnY ) = 0 for some n ∈ Z. Then,

Sp C = {[χX ] |X ∈ C indecomposable}.

Proof. Let X be an object in C. Then, we have for each object C

lengthEnd(X) Hom(C, X)6 lengthAb C Hom(−, C)<∞

by [1, Theorem 2.12] (see also Remark B.4). Thus, Hom(−, X) is endofinite.

Let χ : Ob C→ N be an irreducible cohomological function, and let χ̂ :

Ob Ab C→ N be its extension to Ab C. Then, χ̂(S) 6= 0 for some simple object

S. There is an indecomposable object X in C with Hom(S, Hom(−, X)) 6= 0,

and it follows that Hom(−, X) is an injective envelope. Thus, χ= χX .

Example 4.7. Let k be a field, and let Γ be a quiver with underlying

diagram of Dynkin type. Denote by rep(Γ, k) the category of finite dimen-

sional k-linear representations of Γ. The indecomposable endofinite cohomo-

logical functors Db(rep(Γ, k))op→ Ab are precisely (up to isomorphism) the

representable functors Hom(−, ΣnX), with X an indecomposable object in

rep(Γ, k) (viewed as complex concentrated in degree zero) and n ∈ Z.

Examples of triangulated categories C with KGdim Ab C = 1 show that

the description of Sp C in Proposition 4.6 does not hold more generally.

Krull–Gabriel dimension one. Let k be a field. We give an example of a finite

dimensional k-algebra A such that the Krull–Gabriel dimension of Ab per A

equals 1. This gives some evidence for the following conjecture.

Conjecture 4.8. Let A be a finite dimensional k-algebra. Then, the

Krull–Gabriel dimension of Ab per A equals 0 or 1 if and only if per A is a

discrete derived category in the sense of [32].

Proposition 4.9. Let k[ε] be the algebra of dual numbers. Then,

KGdim Ab per k[ε] = 1.

Proof. Set C = per k[ε], and write HX = Hom(−, X) for each X in C.

The indecomposable objects are the complexes

Xn,r : · · · → 0→ k[ε]
ε−→ k[ε]

ε−→ · · · ε−→ k[ε]→ 0→ · · ·
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concentrated in degrees n, n+ 1, · · · , n+ r and parametrized by pairs

(n, r) in Z× N. We denote by ε̃ :Xn,r→Xn,r the endomorphism given by

k[ε]
ε−→ k[ε] in degree n, and zero in all other degrees. The Auslander–Reiten

triangles are of the form

Xn+1,r −→Xn+1,r−1 ⊕Xn,r+1 −→Xn,r
ε̃−→Xn,r,

with Xn,−1 = 0. Such a triangle induces in Ab C an exact sequence

(4.1) 0→ Sn+1,r→HXn+1,r →HXn+1,r−1 ⊕HXn,r+1 →HXn,r → Sn,r→ 0,

with simple end terms.

We fix n ∈ Z. We claim that the Hasse diagram of the lattice of subobjects

of HXn,0 has the following form:

•

•

•

...

•

•

•

To prove this, consider the sequence of morphisms

· · · −→Xn,2 −→Xn,1 −→Xn,0

given by the Auslander–Reiten triangles. For each t> 0, the composite

φn,t :Xn,t→Xn,0 induces a morphism Hφn,t in Ab C, and its image is the

unique subobject U ⊆HXn,0 such that HXn,0/U has length t. This explains

the upper half of the Hasse diagram. The form of the lower half then

follows by Serre duality. More precisely, Serre duality yields an equivalence

Cop ∼−→ C, which is the identity on objects. It extends to an equivalence

(Ab C)op
∼−→ Ab(Cop)

∼−→ Ab C, which induces a bijection between subobjects

and quotient objects of HXn,0 . It remains to show that HXn,0 has no further
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subobjects. To see this, let V ⊆HXn,0 be a subobject; it is the image of

some morphism Hφ :HX →HXn,0 . We may assume that φ 6= 0, and that

X is indecomposable. The property of the Auslander–Reiten triangle for

Xn,0 implies that the endomorphism ε̃ :Xn,0→Xn,0 factors through φ via

a morphism φ′ :Xn,0→X, since Xn,0→ cone φ factors through the left

almost split morphism Xn,0→Xn,1. Thus, φ and φ′ yield in degree n

endomorphisms of k[ε], and exactly one of them is an isomorphism. If φn

is an isomorphism, then HXn,0/V has finite length; otherwise V is of finite

length.

The form of the lattice of subobjects implies that HXn,0 is a simple object

in (Ab C)/(Ab C)0. Using induction on r, the sequence (4.1) shows thatHXn,r

has length r + 1. Thus, (Ab C)1 = Ab C.

Corollary 4.10. We have Sp per k[ε] = {[χX0,r ] | r ∈ N} ∪ {[χk]}.

Proof. Set C = per k[ε]. The Krull–Gabriel filtration of Ab C yields a

filtration of Zsp C by Proposition C.2. Thus, the points of Zsp C correspond

to the simple objects in Ab C and (Ab C)/(Ab C)0. These simple objects are

described in the proof of Proposition 4.9. The simples in Ab C correspond

to the indecomposable objects in C, and yield isolated points (see also

Proposition 3.3 and its proof). The simples in (Ab C)/(Ab C)0 correspond

to the complexes with k concentrated in a single degree. Thus, all points in

Zsp C are endofinite, and this yields the description of Sp C.

Remark 4.11. It should be noted that KGdim AbA 6= 1 for any Artin

algebra A (see [17, 21]).

Krull–Gabriel dimension two. Let k be a field, and consider the Kronecker

algebra A=
[
k k2
0 k

]
. Work of Geigle [13] shows that the Krull–Gabriel

dimension of AbA equals 2. Thus, KGdim Ab per A= 2 by Proposition 4.3,

since A is hereditary.

Now, let coh P1
k be the category of coherent sheaves on the projective line

over k. There is a well-known derived equivalence

RHom(T,−) : Db(coh P1
k)

∼−→ Db(modA)

given by T =O(0)⊕O(1), and we use this to establish the description of

the cohomological functions on coh P1
k stated in the introduction.

Proof of Proposition 1.8. We have

KGdim Ab Db(coh P1
k) = KGdim Ab per A= KGdim AbA= 2,
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by Proposition 4.3 and [13, Theorem 4.3]. This yields an explicit descrip-

tion of the points in Zsp Db(coh P1
k), which is parallel to that given in

Corollary 4.10. More explicitly, the indecomposable endofinite cohomolog-

ical functors Db(coh P1
k)

op→ Ab are precisely the representable functors

Hom(−, ΣnX), with X an indecomposable object in coh P1
k or X = k(t) the

function field, and n ∈ Z.

Added in proof. Further material on Conjecture 4.8 can be found in the

following subsequent publication: G. Bobiski and H. Krause, The Krull-

Gabriel dimension of discrete derived categories, Bull. Sci. Math. 139

(2015), 269–282.
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Appendix A. Schanuel’s lemma for triangulated categories

Let C be a triangulated category. An exact triangle A→B→ C→
induces a presentation of a functor F : Cop→ Ab provided that there exists

an exact sequence

Hom(−, B)−→ Hom(−, C)−→ F −→ 0.

Two exact triangles are called homotopy equivalent 5 if they induce presen-

tations of the same functor.

Lemma A.1. Let A→B→ C→ and A′→B′→ C ′→ be two homotopy

equivalent exact triangles. Then, A⊕B′ ⊕ C ∼=A′ ⊕B ⊕ C ′.

Proof. The triangles induce exact sequences

0→ Σ−1F → Hom(−, A)→ Hom(−, B)→ Hom(−, C)→ F → 0

and

0→ Σ−1F → Hom(−, A′)→ Hom(−, B′)→ Hom(−, C ′)→ F → 0,

5This notion is consistent with the homotopy relation introduced in [27, Section 1.3].
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which represent the same class in Ext3(F, Σ−1F ), since the presentations

induce a morphism between the two triangles. Now, we apply the variant of

Schanuel’s lemma, which is given below.

Lemma A.2. Let

0→M → Pr→ · · · → P1→ P0→N → 0

and

0→M →Qr→ · · · →Q1→Q0→N → 0

be exact sequences in some abelian category, which represent the same class

in Extr+1(N,M). If all Pi and Qi are projective, then⊕
i>0

(P2i ⊕Q2i+1)∼=
⊕
i>0

(P2i+1 ⊕Q2i).

Proof. We use induction on r. The case r = 0 is clear, and we suppose

that r > 0. The pullback of η : P0→N and θ :Q0→N induces an exact

sequence

ε : 0−→K −→ P0 ⊕Q0 −→N −→ 0

with Q0 ⊕ Ker η ∼=K ∼= P0 ⊕ Ker θ, by Schanuel’s lemma. Adding complexes

of the form Q0
id−→Q0 and P0

id−→ P0 yields two exact sequences

0→M → Pr→ · · · → P2→ P1 ⊕Q0→K→ 0

and

0→M →Qr→ · · · →Q2→Q1 ⊕ P0→K→ 0,

which represent the same class in Extr(K,M), since multiplication with

the class corresponding to ε induces an isomorphism Extr(K,M)
∼−→

Extr+1(N,M). Now, the assertion follows from the induction hypothesis.

Appendix B. Additive functions

Let A be an abelian category. A function χ : Ob A→ N is called additive

if χ(X) = χ(X ′) + χ(X ′′) for each exact sequence 0→X ′→X →X ′′→ 0.

We give a quick proof of the following result using the localization theory

for abelian categories [11].

Proposition B.1. (Crawley-Boevey [7]) Every additive function

Ob A→ N can be written uniquely as a locally finite sum of irreducible

additive functions.
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Proof. Fix an additive function χ : Ob A→ N. The objects X satisfying

χ(X) = 0 form a Serre subcategory of A, which we denote by Sχ. The

quotient category A/Sχ is an abelian length category since the length of

each object X is bounded by χ(X). Let Sp χ (the spectrum of χ) denote a

representative set of simple objects in A/Sχ. For each S in Sp χ, let SS denote

the Serre subcategory of A formed by all objects X such that a composition

series of X in A/Sχ has no factor isomorphic to S. Define χS : Ob A→ N
by sending X to the length of X in A/SS . From the construction, it follows

that

(B.1) χ=
∑

S∈Sp χ
χ(S)χS .

We claim that each χS is irreducible, and that the above expression is

unique. To see this, we write χ= χ′ + χ′′ as a sum of two additive functions.

This implies that Sχ ⊆ Sχ′ , and if χ′ 6= 0, then for some S ∈ Sp χ the object

S is non-zero in A/Sχ′ . In that case, χS arises as a summand of χ′ with

multiplicity χ′(S).

Now, suppose that A is essentially small. Thus, the isomorphism classes

of objects in A form a set. An exact functor F : Aop→ Ab is called endofinite

if F (X) has finite length as End(F )-module for each object X. An endofinite

exact functor F induces an additive function

χF : Ob A−→ N, X 7→ lengthEnd(F ) F (X).

Proposition B.2. The assignment F 7→ χF induces a bijection between

the isomorphism classes of indecomposable endofinite exact functors Aop→
Ab and the irreducible additive functions Ob A→ N.

Proof. We construct the inverse map. Let χ : Ob A→ N be an irreducible

additive function. Following the proof of Proposition B.1, we consider the

Serre subcategory Sχ of A consisting of the objects X satisfying χ(X) = 0.

The quotient category B = A/Sχ is an abelian length category, and χ(X)

equals the length of X in B for each object X, since χ is irreducible. Now,

consider the abelian category Lex(Bop, Ab) of left exact functors Bop→ Ab

(see [11] for details). The Yoneda functor

B−→ Lex(Bop, Ab), X 7→HX = Hom(−, X)

identifies B with the full subcategory of finite length objects. There is a

unique simple object in Lex(Bop, Ab) since χ is irreducible, and we denote
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by F its injective envelope. It follows that F is indecomposable, and the

injectivity implies that F is exact. For each X in B we have

lengthEnd(F ) F (X) = lengthEnd(F ) Hom(HX , F ) = lengthB X = χ(X),

since each finitely generated End(F )-submodule of Hom(HX , F ) is of the

form Hom(HX/HX′ , F ) for some subobject X ′ ⊆X. Let F ′ : Aop→ Ab be

the composite of F with the quotient functor A→ B, and observe that

End(F ′)∼= End(F ). Then F ′ has the desired properties: it is indecomposable

endofinite exact, and χF ′ = χ.

It remains to show for an indecomposable endofinite exact functor F :

Aop→ Ab that the function χF is irreducible. Set B = A/SχF , and view F as

an exact functor Bop→ Ab. It should be noted that Hom(HS , F ) = F (S) 6= 0

for each simple object S in B. The indecomposability of F implies that all

simple objects in B are isomorphic, and the equation (B.1) then implies that

χ is irreducible, since for each simple object S

χF (S) = lengthEnd(F ) F (S) = lengthEnd(F ) Hom(HS , F ) = lengthB S = 1.

Remark B.3. Let F : Aop→ Ab be an indecomposable endofinite exact

functor, and let S be the corresponding simple object in A/SχF . Then, the

endomorphism ring End(F ) is local, and

End(F )/rad End(F )∼= End(S),

since F identifies with an injective envelope of S. Here, radA denotes the

Jacobson radical of a ring A.

Remark B.4. Let F : Aop→ Ab be an exact functor, and let B = A/SF ,

where SF denotes the Serre subcategory of objects X satisfying F (X) = 0.

For each object X in A, we have

χF (X) = lengthEnd(F ) F (X) = lengthEnd(F ) Hom(HX , F ) = lengthB X,

and this can be used to compute
∑

i χFi for any decomposition F =
⊕

i Fi
into exact functors.

Let Sp A denote the set of irreducible additive functions Ob A→ N.

Following [20, Section 4], we define on Sp A the Ziegler topology. The basic

open sets are of the form

(X) = {χ ∈ Sp A | χ(X) 6= 0}, X ∈ Ob A.
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Proposition B.5. The set Sp A of irreducible additive functions

Ob A→ N forms a topological space which satisfies the T1-axiom; that is,

{χ} is closed for each χ ∈ Sp A.

Proof. We identify each irreducible additive function Ob A→ N with an

indecomposable injective object in Lex(Aop, Ab), as in Proposition B.2 and

its proof. Thus, [20, Lemma 4.1] applies, and the argument given there shows

that for two objects X1, X2 in A, the set (X1) ∩ (X2) can be written as a

union of basic open sets.

A singleton {χ} is closed since χ is the only irreducible function satisfying

χ(X) = 0 for all X ∈ Sχ.

The space Sp A of additive functions identifies via Proposition B.2 with

a subspace of Zsp A, which is discussed in the subsequent Appendix C.

Lemma B.6. Let X be an object in A, and let n> 0. Then,

UX,n = {χ ∈ Sp A | χ(X)6 n}

is a closed subset of Sp A.

Proof. For a chain of subobjects

φ : 0 =X0 ⊆X1 ⊆ · · · ⊆Xn+1 =X,

set

Uφ =

n⋃
i=0

{χ ∈ Sp A | χ(Xi+1/Xi) = 0},

and let U =
⋂
φ Uφ, where φ= (Xi)06i6n+1 runs through all such chains.

This set is closed by construction, and it follows from Remark B.4 that

U = UX,n.

Appendix C. The spectrum of an abelian category

Let A be an essentially small abelian category. We consider the category of

exact functors Aop→ Ab. This category inherits an exact structure from Ab,

and we denote by Zsp A the set of isomorphism classes of indecomposable

injective objects. It should be noted that Zsp A equals the spectrum of the

Grothendieck abelian category Lex(Aop, Ab) of left exact functors Aop→ Ab

in the sense of [11, Chapter IV]. Following [20, Section 4], we define on Zsp A

the Ziegler topology. The basic open sets are of the form

(X) = {F ∈ Zsp A | F (X) 6= 0}, X ∈ Ob A.
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Lemma C.1. The assignment

Zsp A⊇ U 7−→ {X ∈ A | F (X) = 0 for all F ∈ U}

induces an inclusion reversing bijection between the closed subsets of Zsp A

and the Serre subcategories of A. In particular, Zsp A is quasi-compact if

and only if A admits a generator; that is, an object not contained in any

proper Serre subcategory of A.

Proof. See [20, Theorem 4.2 and Corollary 4.5].

The construction of this space is functorial with respect to certain

functors. Let f : A→ B be an exact functor between abelian categories.

Given F in Zsp B, the composite F ◦ f is injective, since the left adjoint

of restriction along f is exact, and a right adjoint of an exact functor

preserves injectivity. However, F ◦ f need not be indecomposable. Thus, f

induces a continuous map Zsp B→ Zsp A provided that indecomposability

is preserved. For instance, a quotient functor A→ A/C with respect to a

Serre subcategory C⊆ A has this property; it induces a homeomorphism

Zsp A/C
∼−→ {F ∈ Zsp A | F (C) = 0}.

The Krull–Gabriel filtration. Following [11, Chapter IV] and [15, Section 6],

we define a filtration of A recursively as follows.

– A−1 is the full subcategory containing only the zero object.

– Aα is the full subcategory of objects of finite length in A/Aβ, if α= β + 1.

– Aα =
⋃
γ<α Aγ , if α is a limit ordinal.

If A =
⋃
α Aα, then the smallest ordinal α such that A = Aα is called the

Krull–Gabriel dimension, and is denoted KGdim A. In that case, we say that

KGdim A exists.

For each ordinal α, let Zspα A denote the set of functors F ∈ Zsp A such

that F (Aα) = 0 and F (X) 6= 0 for some object X that is simple in A/Aα.

This yields a bijection between the isomorphism classes of simple objects in

A/Aα and the elements in Zspα A.

Proposition C.2. Suppose that KGdim A = α. Then, Zsp A equals the

disjoint union
⋃
β<α Zspβ A.

Proof. See [22, Theorem 12.7].
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Removing successively from Zsp A the points in Zspβ A for β =

−1, 0, 1, . . . yields the Cantor–Bendixson filtration of Zsp A, provided that

KGdim A exists. This follows from the next lemma.

Lemma C.3. Let F ∈ Zsp A. If F (X) 6= 0 for some finite length object X,

then F is isolated; that is, {F} is open. The converse holds when KGdim A

exists.

Proof. If F (X) 6= 0 for some finite length object X, then we may assume

that X is simple. Thus, {F}= (X), since F is an injective envelope of

Hom(−, X) in Lex(Aop, Ab). For the converse, see [22, Lemma 12.11].

Lemma C.4. Let (fi : A→ Ai)i∈I be a family of quotient functors, and

set Ui = {F ∈ Zsp A | F factors through fi} for each i. Suppose that Zsp A =⋃
i Ui, and that each Ui is an open subset. If KGdim A exists, then KGdim A =

supi KGdim Ai.

Proof. The assumption on each Ui to be open implies that fi(Aα) = (Ai)α
for all i and each ordinal α, by Lemma C.3. On the other hand, (Ai)α =

Ai for all i implies Aα = A, since Zsp A =
⋃
i Ui. From this the assertion

follows.

Triangulated categories. Let G be a group of automorphisms acting on A.

Then, we denote by Zsp A/G the corresponding orbit space of Zsp A. Thus,

the points in Zsp A/G are the equivalence classes of the form [F ] = {F ◦ γ |
γ ∈G}. The closed subsets correspond to Serre subcategories of A that are

G-invariant.

Let C be an essentially small triangulated category with suspension

Σ : C
∼−→ C. We identify cohomological functors Cop→ Ab with exact functors

(Ab C)op→ Ab via Lemma 2.3, and denote by Zsp C the orbit space

(Zsp Ab C)/Σ with respect to the action of Σ.

Lemma C.5. The space Zsp C is quasi-compact if and only if C admits

a generator; that is, an object not contained in any proper thick subcategory

of C.

Proof. Suppose first that C has a generator, sayX. Then, any Σ-invariant

Serre subcategory of Ab C containing Hom(−, X) equals Ab C. Thus, Zsp C

is quasi-compact by Lemma C.1. To show the converse, consider for each

X ∈ C the closed subset

UX = {[F ] ∈ Zsp C | F (Y ) = 0 for all Y ∈ Thick(X)}.
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Then,
⋂
X∈C UX = ∅. If Zsp C is quasi-compact, then there are

finitely many objects such that UX1 ∩ · · · ∩ UXr = ∅. This implies C =

Thick(X1, . . . , Xr).
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