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The problem of diffraction of a Kelvin wave by a narrow opening in a barrier
separating two semi-infinite sheets of water is formulated as an integral equation.
An approximate solution is obtained on the hypothesis that the gap is small
compared with the length of the incident wave. The scattered disturbance comprises
both Kelvin and Poincaré waves, and asymptotic formulate for their amplitudes
are obtained. The results, which are relevant to tidal diffraction by a strait, reveal
that the phase shift in the diffracted Kelvin wave is much larger than the cor-
responding shift induced by either a narrow channel or an inland sea opening
into .a semi-infinite ocean.

1. Introduction

Tidal predictions at individual stations are based on harmonic analysis of
local observations, but surprisingly little is known about the actual nature of
the tides. Munk, Snodgrass and Wimbush [6] have shown that local features
are very important, and for this reason it is desirable to gather a collection of
solutions to theoretical problems concerned with the diffraction of Kelvin waves.
Closed solutions have been obtained by Crease [3] for a semi-infinite barrier, and
by Buchwald [1], and Packham and Williams [7] for corners.

Buchwald [2] and Miles [5] have investigated the effects of a narrow channel
and an inland sea opening into a semi-infinite ocean. In this paper we consider
the diffraction of a Kelvin wave by a narrow opening separating two semi-infinite
sheets of water.

Let { and {u, v} be the complex amplitudes of the vertical displacement and
horizontal particle velocity, such that the vertical displacement is given by

(1.1) z(x, y,1) = R{{(x, )™}
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and similarly for the velocity; R implies the real part of. The Euler and continuity
equations, in a reference frame rotating about a vertical axis with the angular
velocity % f, then reduce to (Lamb [4] §207)

(1.2) b2 {u, v} = i0{l., 0} + f{L, — L}
and

(1.3) Cae + &y + 63 =0,

where h is the mean depth,

1.4) k? = (0 — ) [c* =x*(1 - {?),
(1.5a,b,¢0) c=(gh}, x=wlc, and f=flo.
The boundary conditions are

(1.6a) u(0,y) =0 (|y|> b,
(1.6b) {0—,»n=t0+y (ly|<b,
and

(1.60) u0—,»)=u0+,y) (|y]<b)

together with appropriate finiteness and radiation cond.tions at infinity.
We seek the solution of (1.3) and (1.6) for a prescribed incident wave, say
{©(x, y), on the assumption that

.7 e=kb <Ll

For definiteness, we suppose {'” to be a Kelvin wave in x = 0,
(1.8) (P (x, y) = Aexp{(iwy — fx)/c}, (x 2 0).
Setting x = 0 and invoking (1.7), we obtain

(1.9) {90,y) = A{1 + iky + O(c)} (Jy|<b

for a point in the gap. Similar approximations to {‘®(0, y) hold for a prescribed
Poincaré wave or a prescribed tidal potential and differ from (1.9) only in the
coefficient of ky.

2. Integral equation for aperture velocity

We pose the solution of (1.3) and (1.6) in the form
b

(2.1) Ux,y) = {9 (x, H(x) + (@ /9) sgnxj . G[| x|, (v — m)sgnx]u(0, n)dn,

where H(x) is Heaviside’s step function and G(x, y), the Green’s function for a
point on the boundary of the half-space, satisfies (1.3),
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22 iG, + G, = (1 = §%)é(») (x =0),

and radiation and finiteness conditions at infinity. Substituting (2.1) into (1.6b),
we obtain the integral equation

b
2.3)(w/g) f_b{G(O,y — 1) + GO, 1 — P3u@,mdy = -0,y  (|y|<b).

The required approximation to G(0, y) is (Buchwald [2])
2.4)

2i i 1+ ,
6(0.5) =3[ 1 = 2ogdrk| v — T seny + Liog({T) - iy} + 0Gloga)|
where log y is Euler’s constant; if § > 1, the logarithms must be evaluated accord-
ing to
(2.5) log(1 —f) =log(f—1)—in f>1.

Substituting (1.9) and (2.4) into (2.3), we obtain

b .
@6 2 f [z ~Zrog2|y—1] /b)] w@mdn = — A{L +iky},  (|y]|<b),

where

Q.7 Z=1- %{ﬂn (3ykb) + fln GJ_L_;_) }

The integral equation (2.6) is closely related to one that arises in potential
theory and admits a solution of the form

2.8) u(0,y) = (g /w)(b* — y*) " {do + Asky + 0(*)}. .
Substituting (2.8) into (2.6) and introducing

(2.9a,b) y = bcos 8, n = bcos ¢,

and

log(2|y —n|/b) = =2 X n~'cosnbcosnd,
n=1
we obtain

(2.11a,b) Ag=—(nZ)"'4 and A4,=—3}A.

3. The diffracted field

We restrict explicit calculation of the diffracted field to those waves whose
total energy does not vanish as kr — oo, where r = /(x? + y?). It follows from
(2.1), (2.8) and (2.11) that
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G.1) Ux, y) ~ {9 (x, H(x) — (4/2)G(| x|, y sgnx) sgnx + O(e?),

where

3.2) G=G+0kr Y, kr — oo,

the asymptotic approximation to the Green’s function, is given by Buchwald
[2] as

3.3) G(|x|, ysgnx) = L, + L,.

In (3.3), L, represents Kelvin waves, in the form
(3.4) L, = jexp{(ioy — fx)sgnx [c}H( — 6 — 0,),
where 6 = tan~!(y/x), and

(3.52) 0, = cos™ 1§ 7 (f<1,x>0),
(3.5b) =cos f—n= (f<1,x>0),
(3.5¢) =0 (f> 1.

Diffracted Poincare waves are represented by L, in the form
(3.6a) L, =(1~— §2)@nkt)"#(1 ~ iftan 6) ™' exp{ — i(kr — }n)} (f<?b
(3.6b) = 0. (f>1

The diffracted Kelvin and Poincaré waves are illustrated in Figure 1.
The diffracted Kelvin wave along x = 0 + is given by

3.7 L0 +,») ~ {90, 0){1 - (§/2) + 0()} (ky = — o).

An interesting consequence of (3.7) is that, as.e — 0, the phase change in the Kelvin
wave across the opening is O[(loge)~'], compared with phase changes of O(g)
predicted in the cases where the opening leads to a narrow channel (Buchwald [2])
or an inland sea (Miles [5]). This difference is due to the fact that waves pro-
pagating through the gap convey energy away in two dimensions, as opposed to
either one dimension or none in the other two cases.

Consider, for example a gap in a western boundary at a latitude of 36°N
(which implies § = 0.6 for the diurnal tide). Choosing 2b = 1.6km and h = 3.6km,
we obtain a time delay of 13 min. for the Kelvin wave moving northward along
the boundary. The corresponding delay for an inland sea which has the same gap
width with an area of 1200 km?2, corresponding to San Francisco Bay, is 3 sec
(Miles [5]). (Munk, Snodgrass & Wimbush [6]) report an anomalous phase delay
of the order of an hour in the tide at Crescent City, north of San Francisco;
however, there appears to be little justification for regarding San Francisco Bay
and it tributaries as equivalent to a semi-infinite ocean, and we cite the example
primarily to illustrate expected orders of magnitude.)
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Figure 1. The diffracted Kelvin and Poincaré waves.
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