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We revisit the model problem of Squires & Brady (Phys. Fluids, vol. 17, 2005, 073101),
where a Brownian probe is dragged through a dilute dispersion of Brownian bath particles.
In this problem, the microrheology due to excluded-volume interactions is represented
by an effective viscosity, with the nonlinearity in the driving force entering via the
dependence of the viscosity increment (relative to the viscosity of a pure solvent) upon
the deformation of the dispersion microstructure. Our interest is in the limit of large Péclet
numbers, Pe � 1, where the microstructural deformation adopts the form of a boundary
layer about the upstream hemisphere of the probe. We show that the boundary-layer
solution breaks down at the equator of the probe and identify a transition region about
the equator, connecting the layer to a downstream wake. The microstructural deformation
in this region is governed by a universal boundary-value problem in a semi-bounded
two-dimensional domain. The equatorial region continues downstream as a transition
layer, which separates the wake of the probe from the undisturbed ambient; in that
layer, the microstructure is governed by a one-dimensional heat-like equation. Accounting
for the combined contributions from the respective asymptotic provinces we find the
approximation (1/2)[1 + (ln Pe + 1.046)/Pe] for the ratio of the large-Pe viscosity
increment to the corresponding linear-response increment. Our asymptotic approximation
is in excellent agreement with the increment predicted by a finite-difference numerical
calculation of the microstructure deformation, tailored to the large-Pe topology.
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1. Introduction
Active microrheology, describing the non-equilibrium mechanics of a probe motion in
a colloidal dispersion, is a vibrant research field (Squires & Mason 2010; Puertas &
Voigtmann 2014; Zia 2017). The pioneering theoretical paradigm for arbitrary magnitude
of the external force, motivated by early experiments (Furst 2003; Habdas et al. 2004), was
introduced by Squires & Brady (2005) (denoted hereafter by SB05). The model problem
considered by SB05 can be traced back to theoretical investigations of non-Brownian
dispersions (Davis & Hill 1992; Almog & Brenner 1997). It consists of Brownian bath
particles dispersed in a viscous liquid (the ‘solvent’), with a Brownian probe being dragged
through the dispersion. The probe experiences forces due to both the liquid and the
bath particles. Assuming hydrodynamic radii small compared with those representing
hard-sphere collisions, SB05 neglected hydrodynamic interactions. The particles therefore
interact only through excluded volumes.

Assuming a statistically homogeneous dispersion, SB05 employed an averaging
technique, considering both the case where the probe is dragged by a constant force and
that where it is dragged at a constant velocity. In the fixed-force problem, they obtained the
mean velocity of the probe, while in the fixed-velocity problem they calculated the mean
force on the probe. Both averages are functionals of the pair-distribution function g – the
conditional probability for finding a bath particle in the vicinity of the probe. By interpret-
ing these averaged relations in the dilute limit via a Stokes law template, SB05 defined
an effective viscosity. Its dependence upon the deformed bath-particle microstructure, as
expressed via g, introduces an implicit nonlinear dependence upon the external forcing. In
the dilute limit, the microstructure is governed by an advection–diffusion problem, where
the forcing is manifested in a uniform ‘probability advection’, and the excluded-volume
interactions are represented by a no-flux condition on an ‘exclusion sphere’, whose radius
is the sum of the probe radius and the radius of a bath particle.

In a dimensionless formulation, the microstructure problem is governed by a single
parameter, the Péclet number Pe, expressing the magnitude of the external forcing. SB05
solved the leading-order problem for both small and large Pe. For small Pe, they perturbed
about the uniform equilibrium distribution. For large Pe, they identified a boundary layer
about the upstream portion of the exclusion sphere, where g = O(Pe); outside that layer
g ≈ 1, except in a downstream wake where g ≈ 0. SB05 found that the viscosity increment,
relative to that of the solvent, approaches finite values in both limits, with the large-Pe limit
smaller by a factor of two. SB05 verified their ‘force-thinning’ prediction using a semi-
numerical solution of the advection–diffusion problem, constructed using eigenfunction
expansions.

The force thinning predicted by SB05 is in agreement with the Brownian simulations
of Carpen & Brady (2005) and is qualitatively supported by experiments (Meyer et al.
2006; Wilson et al. 2009; Sriram, Meyer & Furst 2010) carried out under conditions
where the hard-sphere model is applicable. The paradigm of SB05 was later generalised
to incorporate hydrodynamic interactions for both the fixed-force (Khair & Brady 2006)
and fixed-velocity (Swan & Zia 2013) models. The related calculation of probe diffusion
under an external force was carried out by Zia & Brady (2010).

Our interest is in illuminating the approach to the Newtonian plateau at large Pe. To
that end, we revisit the problem of SB05, focusing upon the asymptotic limit Pe → ∞.
Going beyond the leading-order calculation of SB05, we calculate the ord(1) correction
to the ord(Pe) approximation for g in the boundary layer, observing a divergence at
the equator. This breakdown indicates the formation of an equatorial transition region.
Continuing downstream, this region connects to a transition layer surrounding the wake.
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Following asymptotic analysis in the separate asymptotic regions, we obtain a refined
large-Pe approximation to the effective viscosity increment. It is corroborated by a
finite-difference numerical solution of the microstructure problem.

The paper is arranged as follows. In the next section we review the physical problem
addressed by SB05, their key approximations and the averaged expressions they derived
for the effective viscosity increment. The advective–diffusive problem governing the
deformed microstructure is discussed in § 3. In these two sections we generally follow
the notation of SB05, although certain deviations were found beneficial. Section 4
describes the force thinning discovered by SB05 and outlines the objective of the present
contribution in that context. The boundary-layer problem is analysed in § 5. The equatorial-
region scalings are identified in § 6, where an appropriate universal problem is formulated
and solved. The effective viscosity increment is calculated in § 7. The transition layer
surrounding the wake is discussed in § 8. In § 9 we describe a finite-difference scheme for
the solution of the microstructure problem, tailored to the boundary-layer structure at large
Pe. We conclude in § 10, proposing possible future extensions.

2. Background: effective viscosity
The system considered by SB05 consists of a colloidal ‘probe’ particle and colloidal ‘bath’
particles (average number density n), dispersed in a liquid bath of viscosity η. The self-
diffusivities of the probe and bath particles are denoted by Da and Db, respectively. The
interaction (e.g. electrostatic or steric) between the particles is modelled via excluded
volumes, with the hard-sphere radii of the probe and bath particles denoted by a and
b, respectively. These are assumed sufficiently larger than the hydrodynamic radii, so the
hydrodynamic interactions can be neglected. The hydrodynamic radii, which determine
the hydrodynamic mobilities, do not play an explicit role in the following description.

The probe is dragged by an external force F in a fixed direction in space, specified by
the unit vector k̂. By averaging over all possible configurations of the bath particles, it was
shown by SB05 that the average probe velocity 〈U〉 is given by

〈U〉 = Da

kB T

[
k̂F − nkB T

∮
|x|=a+b

n̂g(x/�) dS

]
. (2.1)

Here, kB T is the thermal energy and g(x/�) is the pair-distribution function – the
conditional probability density for finding a bath particle at position x relative to the probe
particle. The integration is carried out over an ‘exclusion sphere’, of radius a + b, centred
about the probe. The normalising length scale � is to be specified later. Note that the
pre-factor Da/kB T is the Stokes–Einstein mobility in free solution.

By symmetry 〈U〉 is in the direction of k̂. SB05 introduced a Stokes drag interpretation
for the probe motion,

k̂F = ηeff

η

kB T

Da
〈U〉, (2.2)

which serves to define an effective viscosity ηeff of the bath. Substitution into (2.1) yields,
upon forming the dot product with k̂,

η

ηeff
= 1 − nkB T

F
k̂ ·
∮

|x|=a+b
n̂g(x/�) dS. (2.3)

SB05 also considered the companion problem where the probe is dragged at a fixed
speed, say U , in a fixed direction specified by the unit vector k̂. Here they found that (2.1)
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is replaced by

k̂U = Da

kB T

[
〈F〉 − nkB T

∮
|x|=a+b

n̂g(x/�) dS

]
, (2.4)

wherein 〈F〉 is the average external force required to drag the probe, which by symmetry
is in the direction of k̂. The Stokes law interpretation used in this fixed-velocity case is

〈F〉 = ηeff

η

kB T

Da
U k̂. (2.5)

Substitution into (2.4) yields, upon forming the dot product with k̂,
ηeff

η
= 1 + nDa

U
k̂ ·
∮

|x|=a+b
n̂g(x/�) dS. (2.6)

The rheological quantity of interest is the viscosity increment ηeff − η. For a dilute
dispersion, the fractional increment for a fixed force is found from (2.3) as

ηeff − η

η
= nkB T

F
k̂ ·
∮

|x|=a+b
n̂g(x/�) dS. (2.7)

Similarly, the fractional increment for a fixed velocity is found from (2.6) as
ηeff − η

η
= nDa

U
k̂ ·
∮

|x|=a+b
n̂g(x/�) dS (2.8)

(which is not restricted to dilute systems). By defining the velocity scale

U
def= Da

kB T
F (2.9)

for the fixed-force problem, the fixed-force expression (2.7) coincides with the fixed-
velocity expression (2.8). We shall use the latter.

At this stage a dimensionless notation is beneficial, using the position vector r = x/�

and the differential areal element dA = dS/�2. The Péclet number is defined as

Pe = U�

D
, (2.10)

where D is the diffusivity of a bath particle relative to the probe. Upon choosing � as
dimensional radius of the exclusion sphere,

� = a + b, (2.11)

approximation (2.8) reads

ηeff − η

η
= 3φ

4π Pe

Da

D

(
a + b

b

)3

k̂ ·
∮

|r|=1
n̂g(r) dA. (2.12)

Here φ = (4πb3/3)n is the average volume fraction of the bath particles. With definition
(2.9), (2.12) applies for both the fixed-force and fixed-velocity scenarios. As explained
by SB05, D = Da + Db for the fixed-force problem and D = Db for the fixed-velocity
problem.

Defining

V = 3
2π Pe

k̂ ·
∮

|r|=1
n̂g(r) dA, (2.13)
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the fractional increment (2.12) is factored as

ηeff − η

η
= φ

2
Da

D

(
a + b

b

)3

V . (2.14)

The quantity V isolates the effect of external forcing upon the fractional viscosity
increment. Its pre-factor in (2.14) is independent of that forcing.

3. Microstructure
The evaluation of the viscosity increment using (2.13)–(2.14) amounts to the calculation
of the pair-distribution function g. Using a reference frame moving with the probe, SB05
derived the problem governing g in the dilute limit. It consists of the advection–diffusion
equation

∇ · (∇g + Pe k̂ g) = 0, (3.1)

the no-flux condition

n̂ · (∇g + Pe k̂ g) = 0 at |r| = 1 (3.2)

and the far-field condition

lim|r|→∞ g = 1. (3.3)

The above linear problem defines g(r) as a (nonlinear) function of the single parameter
Pe.

We employ here cylindrical coordinates (�, ϕ, z), with the z axis pointing in the
direction k̂ and the origin at r = 0, as well as spherical polar coordinates (r, θ, ϕ)

with the polar angle θ measured from the positive z axis. The exclusion sphere now
coincides with r = 1. By axial symmetry, g is independent of the azimuthal angle ϕ. The
advection–diffusion equation (3.1) is alternatively written

∇2g + Pe
∂g

∂z
= 0. (3.4)

Since the boundary condition (3.2) applies at r = 1, where n̂ = êr , it simplifies to

∂g

∂r
+ Pe g cos θ = 0 at r = 1. (3.5)

Also, condition (3.3) becomes

lim
r→∞ g = 1. (3.6)

When using spherical coordinates, we write (with a slight abuse of notation) g(r, θ; Pe)
instead of g(r). Equation (3.4) then reads

∂2g

∂r2 + 2
r

∂g

∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂g

∂θ

)
+ Pe

(
cos θ

∂g

∂r
− sin θ

r

∂g

∂θ

)
= 0. (3.7)

Equations (3.5)–(3.7) define a linear problem governing g. With dA = 2π sin θ dθ at r = 1,
expression (2.13) simplifies to

V (Pe) = 3
Pe

∫ π

0
g(1, θ; Pe) sin θ cos θ dθ. (3.8)
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For future reference, we also write the governing equations in the cylindrical
coordinates, where (with another abuse of notation) the pair-distribution function is
referred to as g(�, z; Pe). Equation (3.4) then reads

∂2g

∂� 2 + 1
�

∂g

∂�
+ ∂2g

∂z2 + Pe
∂g

∂z
= 0, (3.9)

while condition (3.5) becomes

�
∂g

∂�
+ z

∂g

∂z
+ Pe gz = 0 at � 2 + z2 = 1. (3.10)

4. From small to large Pe

SB05 considered both small and large Pe. For small Pe, perturbing upon a uniform
distribution of g, they obtained

g − 1 ≈ Pe

2
cos θ, (4.1)

from which they found that

lim
Pe→0

V (Pe) = 1. (4.2)

At the limit of large Pe, SB05 identified three asymptotic regions: a boundary layer of
O(Pe−1) width, where g = O(Pe), about the upstream portion of the exclusion sphere;
an advection-dominated region outside it, where g ≈ 1; and a wake downstream of the
sphere, where g ≈ 0, bounded by the cylindrical surface � = 1. Using the leading-order
boundary-layer solution, SB05 found that

lim
Pe→∞ V (Pe) = 1

2
. (4.3)

To illustrate the force thinning from (4.2) to (4.3), SB05 also addressed the problem
of arbitrary Pe. Thus, by transforming (3.4) to a modified Helmholtz equation, SB05
obtained a semi-numerical solution of g using an eigenfunction expansion.

Our interest is in the approach to the large-Pe Newtonian plateau (4.3). As a prelude
to our analysis, we illustrate in figure 1 the numerical solution of the problem (3.4)–(3.6)
for Pe = 100, using a finite-difference scheme. The scalings indicated in the figure hint
towards the asymptotic investigation in the next sections. The numerical scheme itself is
discussed in § 9.

5. The limit Pe � 1: boundary-layer analysis
Henceforth, we consider the limit

Pe � 1. (5.1)

At leading order, it follows from the governing equation (3.4) that g is uniform on
‘streamlines’ parallel to k̂, i.e.

g is a function of � alone. (5.2)

It then follows from the far-field condition (3.6) that

g ≈ 1. (5.3)
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1
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−1

−2 −1 0 1 2

=
 r 

si
n
 

z = r cos 

g = O (Pe1/2)

g = O (Pe2/3)

g = O (Pe)

g ≈ 1

g ≈ 0

r

Figure 1. Top: diagram of the microstructure problem (3.4)–(3.6) for the pair-distribution function g outside
the exclusion sphere r = 1, with arrows indicating the streaming flow in the probe-fixed reference frame. The g
contours (calculated numerically using the finite-difference method described in § 9 with Pe = 100) illustrate
the typical structure of the solution for large Pe, with the asymptotic estimates of g derived in §§ 5, 6 and 8.
Bottom: schematic illustrating the two-part non-uniform numerical grid. The dashed segment is the equator
θ = π/2.

This solution, however, cannot satisfy the no-flux condition (3.5) at leading order. A
boundary layer is therefore formed about the exclusion sphere r = 1. In the terminology of
matched asymptotic expansions (Hinch 1991) the solution (5.3) is regarded as an ‘outer’
one. We note that it is an exact solution of (3.4) and (3.6) at all algebraic orders. We
therefore conclude that

g = 1 + exp, (5.4)

wherein ‘exp’ stands for exponentially small terms – that is, terms that are asymptotically
smaller than any negative powers of Pe – which are triggered by asymptotic matching.

Following SB05, we examine a boundary layer of O(Pe−1) width where g is O(Pe).
We employ the rescaled radial coordinate

r = 1 + Pe−1ζ, (5.5)

and define

g(r, θ; Pe) = p(ζ, θ; Pe). (5.6)

Upon using (5.5)–(5.6), the advection–diffusion equation (3.7) becomes

∂2 p

∂ζ 2 + ∂p

∂ζ
cos θ + Pe−1

(
2
∂p

∂ζ
− ∂p

∂θ
sin θ

)

+ Pe−2
[
−2ζ

∂p

∂ζ
+ 1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+ ζ sin θ

∂p

∂θ

]
+ O(Pe−3 p) = 0, (5.7)

while the no-flux condition (3.5) reads

∂p

∂ζ
+ p cos θ = 0 at ζ = 0. (5.8)
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In addition, p must also satisfy

lim
ζ→∞ p = 1, (5.9)

representing asymptotic matching with (5.4).
The governing equation (5.7) is integrated once using condition (5.8) to yield

∂p

∂ζ
+ p cos θ =Pe−1

∫ ζ

0

(
−2

∂p

∂ζ
+ ∂p

∂θ
sin θ

)
dζ

+Pe−2
∫ ζ

0

[
2ζ

∂p

∂ζ
− 1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
− ζ sin θ

∂p

∂θ

]
dζ + O(Pe−3 p).

(5.10)

In what follows, we solve (5.10) subject to (5.9). Since p = O(Pe), we expand it as

p(ζ, θ; Pe) = Pe p−1(ζ, θ) + p0(ζ, θ) + Pe−1 p1(ζ, θ) + O(Pe−2), (5.11)

and solve order by order.

5.1. Evaluation of p−1

At ord(Pe) the problem posed by (5.10) and (5.9) reads

∂p−1

∂ζ
+ p−1 cos θ = 0, lim

ζ→∞ p−1 = 0. (5.12a,b)

The solution of (5.12a) is

p−1(ζ, θ) = f−1(θ)e−ζ cos θ . (5.13)

To satisfy condition (5.12b), the boundary layer must be restricted to the upstream
hemisphere:

0 < θ < π/2, (5.14)

whereby (5.12b) is trivially satisfied. We note that∫ ∞

0
p−1(ζ, θ) dζ = f−1(θ)

cos θ
. (5.15)

5.2. Wake
In the absence of a boundary layer at the ‘back’ hemisphere, the outer solution downstream
must satisfy the no-flux condition (3.10). The only possible solution of (5.2) which is
compatible with that condition at leading order is the trivial one. It therefore follows that
g must vanish in a wake downstream of the exclusion sphere. Since the trivial solution
satisfies (3.9) and (3.10) exactly, we conclude that (cf. (5.4))

g = exp for � < 1 ‘behind’ the exclusion sphere. (5.16)

5.3. Solvability
We determine f−1(θ) by a solvability condition which we derive at the next asymptotic
order. At ord(1), equation (5.10) and condition (5.9) give, respectively,

∂p0

∂ζ
+ p0 cos θ = −2 p−1|ζ0 + sin θ

∂

∂θ

∫ ζ

0
p−1 dζ, (5.17)
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lim
ζ→∞ p0 = 1. (5.18)

We can derive the requisite solvability condition by evaluating (5.17) at ζ = ∞ using
(5.13)–(5.15) and (5.18) to obtain the first-order ordinary differential equation

1 = 2
f−1(θ)

cos θ
+ tan θ

d
dθ

[
f−1(θ)

cos θ

]
, (5.19)

whose general solution is

f−1(θ)

cos θ
= 1

2
+ C−1

sin2 θ
. (5.20)

Requiring regularity at θ = 0 necessitates C−1 = 0. Thus, f−1(θ) = (1/2) cos θ .
Substitution into (5.13) gives

p−1(ζ, θ) = cos θ

2
e−ζ cos θ . (5.21)

We note that ∫ ζ

0
p−1(ζ, θ) dζ = 1 − e−ζ cos θ

2
(5.22)

and ∫ ∞

0
ζ p−1(ζ, θ) dζ = 1

2 cos θ
. (5.23)

Substitution into (3.8) of (5.11) and (5.21) reproduces (4.3), already obtained by SB05.
(SB05 did not employ a solvability approach; rather, they obtained the counterpart of the
present f−1 using an integral flux argument. Note that (4.3) was derived in Appendix D
of Khair & Brady (2006) using a solvability approach.) To go beyond this leading-order
result we need the ord(1) term p0.

5.4. Evaluation of p0

We can now actually solve for p0. Substituting (5.21)–(5.22) into (5.17) yields

∂p0

∂ζ
+ p0 cos θ = (1 − e−ζ cos θ ) cos θ − ζ

2
e−ζ cos θ sin2 θ. (5.24)

Using the integrating factor eζ cos θ we find that the general solution of this first-order
equation is

p0(ζ, θ) = f0(θ)e−ζ cos θ + 1 − ζe−ζ cos θ cos θ − ζ 2

4
e−ζ cos θ sin2 θ. (5.25)

Given (5.14), condition (5.18) is trivially satisfied.
To derive a solvability condition on f0, we continue to the next asymptotic order. At

ord(Pe−1), we find from (5.10) that
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∂p1

∂ζ
+ p1 cos θ = −2 p0|ζ0 + sin θ

∂

∂θ

∫ ζ

0
p0 dζ

+ 2
∫ ζ

0
ζ

∂p−1

∂ζ
dζ − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

∫ ζ

0
p−1dζ

)

− sin θ
∂

∂θ

∫ ζ

0
ζ p−1 dζ. (5.26)

This equation is subject to

lim
ζ→∞ p1 = 0, (5.27)

obtained from (5.9).
We now apply the limit ζ → ∞ to (5.26), where its left-hand side vanishes by virtue

of (5.27). The various terms on the right-hand side of (5.26) are evaluated in that limit
using (5.21)–(5.22) and (5.25). The first term is simply 2 f0(θ). In evaluating the second
term, interchanging the order of integration and differentiation requires some care. Making
use of ∫ ∞

0
[p0(ζ, θ) − 1] dζ = f0(θ)

cos θ
− 1

cos θ
− sin2 θ

2 cos3 θ
, (5.28)

this term is obtained as

sin θ
d

dθ

[
f0(θ)

cos θ
− 1

cos θ
− sin2 θ

2 cos3 θ

]
. (5.29)

Integration by parts of the third term gives −1. The fourth term vanishes, while the fifth,
using (5.23), is (1/2) tan2 θ . Adding these up we obtain the first-order ordinary differential
equation

sin θ
d

dθ

[
f0(θ)

cos θ

]
+ 2 f0(θ) = 1

cos2 θ
+ 3 sin2 θ

2 cos4 θ
, (5.30)

whose general solution is

f0(θ)

cos θ
= C0

sin2 θ
+ 1

2 cos3 θ
. (5.31)

Regularity at θ = 0 yields C0 = 0. Substitution back into (5.25) then furnishes the result

p0(ζ, θ) = 1 + e−ζ cos θ

(
1

2 cos2 θ
− ζ cos θ − ζ 2

4
sin2 θ

)
. (5.32)

Thus, the boundary-layer solution is

p(ζ, θ; Pe) = Pe
cos θ

2
e−ζ cos θ

+
{

1 + e−ζ cos θ

(
1

2 cos2 θ
− ζ cos θ − ζ 2

4
sin2 θ

)}
+ O(Pe−1).

(5.33)

In particular,

p(0, θ; Pe) = Pe
cos θ

2
+
(

1 + 1
2 cos2 θ

)
+ O(Pe−1). (5.34)
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5.5. Boundary-layer breakdown
The solution (30) proposed by SB05 for the boundary-layer problem, while not originally
posed as an asymptotic expansion, is eventually recast in (35) as the sum of an ord(Pe)
term and an ord(1) term. Ignoring slight typos, the first term agrees with the present
(5.21). (The exponent appearing in equation (30) of SB05 is dimensional; apparently,
the factor U/D there needs to be removed. The exponent appearing in equation (35) of
SB05, −U z cos θ/D, while dimensionless, does not agree with the correct one −ζ cos θ .
For it to agree, cos θ must be removed and z needs to be replaced with the projection
z − (a + b) cos θ . In any event, these typos do not affect equation (36) of SB05).

The uniform ord(1) term in equation (35) of SB05 is tantamount, in the present notation,
to p0 = 1. This term does not satisfy condition (5.8) at ord(1), and is therefore erroneous.
The error is carried to equation (36) of SB05 – the counterpart of the present (5.34). The
oversight of SB05 (propagated into the microrheology literature – see (26) of Puertas &
Voigtmann (2014)) may be traced to their original (30), which seems like an attempt to
superpose upon the boundary-layer solution a constant term that satisfies the approach to
the uniform outer solution.

The oversight did not affect the remaining analysis of SB05, who were only interested
in the leading-order viscosity increment. In going beyond that leading-order calculation,
however, the difference between equation (36) of SB05 and the present (5.34) is striking.
Indeed, a naive attempt to substitute (5.34) into (3.8) so as to obtain the asymptotic
correction to (4.3) would fail: due to the 1/ cos2 θ term in (5.34), the integral appearing in
(3.8) diverges logarithmically at ord(1). This failure indicates a breakdown of expansion
(5.11), and with it the very boundary-layer structure, as θ ↗ π/2. It suggests the asymptotic
formation of a transition region about the equator θ = π/2, which we address next.

6. Equatorial region
With the first term in the parentheses of (5.32) diverging as θ ↗ π/2, the boundary-layer
solution (5.11) breaks down near the equator. Introducing for convenience the latitude
angle

ϑ = π

2
− θ 
 1, (6.1)

we observe that the two asymptotic terms in (5.34) behave there as (1/2)Pe ϑ and
(1/2)ϑ−2, respectively. Hence, these terms become comparable at

ϑ = O(Pe−1/3), (6.2)

for which

g = O(Pe2/3). (6.3)

Considering now (5.21) and noting that ζ cos θ ∼ ζϑ near the equator, we see that the
boundary layer ‘expands’ in the radial direction to ζ = O(Pe1/3), or, equivalently (recall
(5.5)), to

r − 1 = O(Pe−2/3). (6.4)

We therefore investigate an equatorial region, of O(Pe−1/3) angular extent about the
equator and O(Pe−2/3) radial extent about r = 1, where the pair-distribution function is
O(Pe2/3) (see figure 1).
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6.1. Stretched cylindrical coordinates
In order to gain physical intuition for the transition region, we consider first stretched
cylindrical coordinates on the scales (6.2) and (6.4):

t = −Pe1/3z, y = Pe2/3(� − 1). (6.5)

Defining

g(�, z; Pe) = G(y, t; Pe), (6.6)

equation (3.9) becomes

∂G

∂t
= ∂2G

∂y2 + Pe−2/3
(

∂G

∂y
+ ∂2G

∂t2

)
+ O(Pe−4/3). (6.7)

We interpret this as a perturbed one-dimensional heat equation, with the downstream
coordinate being a time-like variable. With the surface � 2 + z2 = 1 becoming

y = − t2

2
− Pe−2/3 t4

8
+ O(Pe−4/3), (6.8)

condition (3.10) reads, on that surface,
∂G

∂y
− tG + Pe−2/3

(
y
∂G

∂y
+ t

∂G

∂t

)
= 0. (6.9)

We interpret this as a ‘parabolically’ moving no-flux boundary, with perturbations.
Equations (6.7)–(6.9) are subject to the condition

lim
y→∞ G = 1, (6.10)

representing asymptotic matching with (5.4).
Following (6.3), we pose the asymptotic expansion

G(y, t; Pe) = Pe2/3G−2(y, t) + O(1). (6.11)

At O(Pe2/3), we then find from (6.7)–(6.10) that

∂G−2

∂t
= ∂2G−2

∂y2 for y > − t2

2
, (6.12)

∂G−2

∂y
= tG−2 at y = − t2

2
, (6.13)

lim
t→∞ G−2 = 0. (6.14)

The partial differential equation (6.12) is parabolic with a time-like coordinate t . Hence,
we require an ‘initial condition’, which is obtained from matching with the boundary-
layer solution (5.11) in the limit t → −∞. Using the leading-order boundary-layer solution
(5.21) in conjunction with (6.26), this requirement yields the limiting behaviour

G−2 ∼ − t

2
et y+t3/2 as t → −∞ with t y + t3

2 fixed. (6.15)

Further, we can derive a conservation law for G−2 as follows. Integration of (6.12) from
y = −t2/2 to ∞ yields, upon making use of (6.13)–(6.14),∫ ∞

−t2/2

∂G−2

∂t
dy + tG−2(−t2/2, t) = 0, (6.16)

1008 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.164


Journal of Fluid Mechanics

or, making use of Leibniz’s rule,
d
dt

∫ ∞

−t2/2
G−2(y, t) dy = 0, (6.17)

so that
∫∞
−t2/2 G−2(y, t) dy is independent of t ; substitution of (6.15) then yields∫ ∞

−t2/2
G−2(y, t) dy = 1

2
for all t. (6.18)

The leading-order equatorial transport (6.12)–(6.13) can be interpreted as a one-
dimensional heat-like equation with a no-flux boundary that first (t < 0) moves in and
accumulates the pair-distribution probability in its way, and then (t > 0) moves out again,
leaving behind a diffusing peak. Thus, the ‘local’ behaviour of the transition-region
solution far downstream, unaffected by the boundary condition that has moved far away,
is that of the unbounded heat equation:

G−2(y, t) ∼ Q

(4π t)1/2 e−y2/4t as t → ∞ with y2/t fixed. (6.19a,b)

From (6.18) we then find

Q = 1
2
. (6.20)

6.2. Stretched spherical coordinates
With the differential equation (6.12) adopting a simple form, the formulation in terms
of the (y, t) coordinates is physically illuminating. For numerical and asymptotic
calculations, however, it is preferable for the exclusion-sphere boundary to coincide with
a coordinate surface. We therefore employ another local formulation in term of stretched
spherical coordinates (X, Y ), defined by

r = 1 + Pe−2/3Y, θ = π

2
− Pe−1/3 X, (6.21)

and replace (6.6) with

g(r, θ; Pe) = G̃(X, Y ; Pe). (6.22)

Introducing (6.21)–(6.22) into (3.7) and (3.5) gives

∂2G̃

∂Y 2 + X
∂G̃

∂Y
+ ∂G̃

∂ X
+ O(Pe−2/3G̃) = 0 for Y > 0, (6.23)

∂G̃

∂Y
+ XG̃ + O(Pe−2/3G̃) = 0 at Y = 0. (6.24)

These equations are subject to the condition

lim
Y→∞ G̃ = 1, (6.25)

representing asymptotic matching with (5.4).
Similarly to (6.11), we pose the asymptotic expansion

G̃(X, Y ; Pe) = Pe2/3G̃−2(X, Y ) + O(1). (6.26)
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At O(Pe2/3), we then find from (6.23)–(6.25) that

∂2G̃−2

∂Y 2 + X
∂G̃−2

∂Y
+ ∂G̃−2

∂ X
= 0 for Y > 0, (6.27)

∂G̃−2

∂Y
+ XG̃−2 = 0 at Y = 0, (6.28)

lim
Y→∞ G̃−2 = 0. (6.29)

As before, the ‘initial condition’ is obtained from matching with the boundary-layer
solution (5.11) in the limit X → ∞. This gives

G̃−2 ∼ X

2
e−XY as X → ∞ with XY fixed. (6.30)

We again derive a conservation law. Integration of (6.27) from Y = 0 to ∞ yields, upon
making use of (6.28)–(6.29), ∫ ∞

0

∂G̃−2

∂ X
dY = 0 for all X. (6.31)

Interchanging the order of integration and imposing the initial condition (6.30) reveals that

∫ ∞

0
G̃−2(X, Y ) dY = 1

2
for all X. (6.32)

We note that the problem (6.27)–(6.29) is recovered from (6.12)–(6.14) by the
transformation

t �→ −X, y �→ Y − X2

2
, G−2 �→ G̃−2. (6.33)

Thus, (6.30) and (6.32) directly follow from (6.15) and (6.18), respectively.
Performing a local analysis in the limit X → ∞ with XY fixed, we find using

(6.27)–(6.29) that (6.30) is refined to

G̃−2 =
[

X

2
+
(

1
2X2 − Y 2

4

)
+ o(X−2)

]
e−XY as X → ∞ with XY fixed. (6.34)

Note that the second term in the brackets matches the boundary-layer correction (5.32).
We solve the universal problem (6.27)–(6.30) numerically using a finite-difference

method. The Y direction is discretised using an exponentially stretched grid with relative
resolution 0.1 %, and the solution is evolved in the time-like coordinate X from the initial
condition (6.34) at X = 10 in steps of size 0.001 to X = −10. The resulting variation of
G̃−2 with Y at certain values of X in that range is displayed in figure 2.

In terms of the (X, Y ) coordinates, the local far-field solution (6.19)–(6.20) represents
a diffusing Gaussian at large negative X , centred about Y = X2/2 with peak value
(−16π X)−1/2. This explains the pulse-like behaviour observed in the inset of figure 2,
as illustrated there for X = −10.

Both the refined behaviour (6.34) and the numerical results for G̃−2 at Y = 0 are
required in the asymptotic evaluation of the effective viscosity, which is performed next.
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Figure 2. Variation of the leading-order equatorial deformation G̃−2 with Y for the indicated positive values
of X , as obtained from the numerical solution of the universal problem. The inset shows the comparable
variations for X � 0. The dotted curve depicts the far-field solution (6.19)–(6.20), transformed using (6.33) for
X = −10.

7. Evaluation of V

We can now evaluate V at large Pe, going beyond (4.3). Given (5.16), the integral in (3.8)
only needs to be taken up to a small angle past the equator θ = π/2. Recalling (see (6.2))
that the angular extent of the equatorial region is O(Pe−1/3), we may replace (3.8) by

V (Pe) = 3
Pe

∫ π
2 +Δ

0
g(1, θ; Pe) sin θ cos θ dθ, (7.1)

where the choice

Pe−1/3 
 Δ 
 1 (7.2)

ensures that the entire contribution of the equatorial region is covered.
On the upstream hemisphere 0 < θ < π/2, the boundary-layer solution is given by

(cf. (5.34))

g(1, θ; Pe) = Pe
cos θ

2
+
(

1 + 1
2 cos2 θ

)
+ O(Pe−1). (7.3)

Using (6.21)–(6.22) and the equatorial-region solution (6.26), we find that near the
equator

g(1, θ; Pe) = Pe2/3G̃−2

(
X = Pe1/3(π/2 − θ), Y = 0

)
+ O(1). (7.4)

Our goal is to evaluate the integral appearing in (7.1) using these two complementary
approximations. The ord(Pe) contribution to that integral is obtained as Pe/6 from
integrating the leading term in (7.3) over the upstream hemisphere (5.14). This
contribution reproduces the leading-order approximation (4.3).

In going beyond ord(Pe) we expect two ord(1) contributions to the integral. The first
originates in the ord(1) correction in (7.3), integrated over the upstream hemisphere. The
second arises from the leading ord(Pe2/3) term in the equatorial-region expansion (7.4):
indeed, we note that cos θ = ord(Pe−1/3) there, as is the extent of the integration domain.
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Due to the diverging term in the ord(1) correction in (7.3), the associated hemispherical
integral diverges towards the equator; this divergence is cut off by the equatorial-
region solution: see indeed (6.34). We therefore anticipate (Hinch 1991) that the ord(1)

contribution incorporates logarithms of Pe.
Employing the cutoff-like parameter (cf. (7.2))

Pe−1/3 
 χ 
 1, (7.5)

we split the integral appearing in (7.1) at θ = π/2 − χ . Thus, we write it as(∫ π
2 −χ

0
+
∫ π

2 +Δ

π
2 −χ

)
g(1, θ; Pe) sin θ cos θ dθ

def= Ihemisphere + Iequator. (7.6)

We now proceed to evaluate the integral to ord(1) in the limit Pe � 1. The result must be
independent of both Δ and χ .

Using the boundary-layer approximation (7.3) we readily find the ‘hemispherical’
contribution:

Ihemisphere ∼ Pe
1 − sin3 χ

6
+ cos2 χ − ln sin χ

2
, (7.7)

which becomes, upon making use of (7.5),

Ihemisphere ∼ Pe
1 − χ3

6
+ 1 − ln χ

2
. (7.8)

The asymptotic error in (7.8) is algebraically small, i.e. smaller than some negative
power of Pe. We identify the above-mentioned Pe/6 term, which reproduces (4.3). It is
accompanied by the ord(1) term 1/2, as well as intermediate terms (note that Pe χ3 � 1)
that depend upon χ . These must be cancelled out by the ‘equatorial’ contribution.

Using (6.21), the equatorial contribution is

Iequator ∼
∫ Pe1/3χ

− Pe1/3Δ
G̃−2(X, 0)X dX. (7.9)

Since the attenuation towards the wake is attained exponentially fast (recall (6.19)), we
simply replace Pe1/3Δ by ∞. The upper integration limit, on the other hand, must be
handled with care. Since G̃−2(X, 0) actually diverges as X/2 at large X (see (6.30)),
it is clearly forbidden to replace Pe1/3χ by ∞. We accordingly subtract the asymptotic
behaviour X/2. But this is insufficient, since the ord(X−2) correction to X/2 (see (6.34))
would result in a logarithmically divergent integral. We therefore need to subtract the
two-term far-field behaviour (cf. (6.34)):

G̃−2(X, 0) ∼ X

2
+ 1

2X2 as X → ∞. (7.10)

To avoid a spurious singularity at X = 0 we subtract (7.10) only for X > 1. We therefore
obtain

Iequator ∼
∫ Pe1/3χ

−∞

[
G̃−2(X, 0) −

(
X

2
+ 1

2X2

)
H(X − 1)

]
X dX

+
∫ Pe1/3χ

1

(
X2

2
+ 1

2X

)
dX, (7.11)

wherein H is the Heaviside step function.
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With the above form, the integrand of the first integral decays faster than 1/X as
X → ∞. It is therefore legitimate to replace the endpoint Pe1/3χ of that integral by ∞.
Evaluating the second integral explicitly we obtain

Iequator ∼J + Pe χ3 − 1
6

+ 1
2

ln (Pe1/3χ), (7.12)

wherein

J =
∫ ∞

−∞

[
G̃−2(X, 0) −

(
X

2
+ 1

2X2

)
H(X − 1)

]
X dX (7.13)

is a pure number which is defined by the universal problem governing G̃−2. Making use
of the numerical solution of that problem yields J = −0.1591.

Adding up (7.8) and (7.12), we conclude that

Ihemisphere + Iequator ∼ Pe + ln Pe + 6J + 2
6

. (7.14)

where, as required, the dependence upon χ has cancelled out. Substitution into (7.1) yields

V (Pe) ∼ 1
2

+ ln Pe + 6J + 2
2Pe

as Pe → ∞. (7.15)

8. Transition layer
The jump at � = 1 between (5.4) and (5.16) necessitates a transition layer which emerges
at the equatorial region and propagates downstream to z < 0. Since the transition layer is
detached from the sphere r = 1, it does not directly affect the microrheology – recall (3.8).
Nonetheless, its analysis is provided here for completeness.

The transition layer widens by diffusion, so on an O(1) axial length scale we expect the
layer to reach an O(Pe−1/2) thickness. We accordingly employ the stretched coordinate ρ,
defined by

� = 1 + Pe−1/2ρ. (8.1)

For convenience we also employ τ = −z which is positive downstream of the exclusion
sphere. Defining

g(�, z; Pe) = h(ρ, τ ; Pe), (8.2)

equation (3.9) becomes

∂h

∂τ
= ∂2h

∂ρ2 + Pe−1/2 ∂h

∂ρ
+ O(Pe−1h). (8.3)

In addition to (8.3), h needs to satisfy the matching conditions

lim
ρ→∞ h = 1, lim

ρ→−∞ h = 0, (8.4a,b)

representing the approach to (5.4) and (5.16), respectively.
Like in the equatorial region, the governing equation (8.3) is parabolic and requires

an initial condition. This comes from matching upstream to the large-t behaviour of
the equatorial region, but some progress can also be made by instead considering the
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integral balance:∫ ∞

−∞

[
h − H(ρ) − Pe−1 ∂h

∂τ

] (
1 + Pe−1/2ρ

)
dρ = 1

2
Pe1/2 ∀τ > 0, (8.5)

which we derive in Appendix A. It is evident from (8.5) that h = ord(Pe1/2). We therefore
write

h(ρ, t; Pe) ∼ Pe1/2 h−1(ρ, τ ). (8.6)

At leading order, ord(Pe1/2), we find from (8.3)–(8.5) that

∂h−1

∂τ
= ∂2h−1

∂ρ2 , lim
ρ→±∞ h−1 = 0,

∫ ∞

−∞
h−1(ρ, τ ) dρ = 1

2
, (8.7a,b,c)

for all τ > 0. Note that the normalisation condition (8.7c) constitutes a continuation
of (6.18).

A solution of (8.7), proportional to the Green’s function of the one-dimensional heat
equation, is

h−1 = e−(ρ−Φ)2/4τ

2(4πτ)1/2 , (8.8)

where Φ is an arbitrary constant. Asymptotic matching of (8.6) and (8.8) with the
equatorial-region expansion (6.11) using (6.19)–(6.20) yields Φ = 0.

While (8.3) and (8.5) appear to suggest that the leading-order correction to (8.6)
is ord(1), matching with the equatorial region actually triggers asymptotically larger
homogeneous ‘eigensolutions’. Indeed, a detailed analysis (not shown here) reveals an
ord(Pe1/3) leading-order correction, which can be interpreted as an asymptotically small
shift Φ = O(Pe−1/6) of the Green’s function (8.8); this, in turn, originates from an ord(1)

shift of y in (6.19) – recall indeed the slight mismatch in the inset of figure 2.
The analysis in this section revolved around the interaction between transport on the

O(1) axial length scale – corresponding to the size of that sphere – and on the equatorial
length O(Pe−1/3). In addition, the solution (8.8) introduces the much longer O(Pe)
restoration length where the transition layer has grown to O(1) thickness thus filling the
wake and reinstating the outer solution (5.4).

9. Comparison with a finite-difference solution
For the purpose of verification, we have constructed a numerical solution of the full
equations (3.4)–(3.6) for various values of Pe using a finite-difference scheme. In order
to resolve the boundary-layer structures at large Pe, we use a combination of two non-
uniform grids as shown in figure 1 (bottom). A spherical grid is used upstream and
in a small downstream region, with radial refinement near the surface of the exclusion
sphere and azimuthal refinement near the poles and equator. A cylindrical grid is used
downstream away from the exclusion sphere, with axial refinement near the equator and
radial refinement near � = 1. Interpolation is used across the interface between the two
grids. The resulting equations are solved in Matlab using the built-in linear solver.

The numerical scheme is second order in the spatial resolution; with 1 % relative
resolution (i.e. 20 times finer than the sample grid in figure 1) we have verified (by
comparison with a finer grid) that the relative error is less than 10−4 for Pe up to 106.
With that relative error, the ord(1) corrections to the ord(Pe) leading-order g values are
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Figure 3. Rescaled viscosity increment as a function of Pe. Solid: numerical calculation. Dashed: two-term
approximation (7.15). Dotted: crude approximation, obtained by overlooking the ord(1) constant in (7.14).

accurately reproduced for Pe � 104. In the subsequent comparison, we did not need to go
beyond Pe = 100.

Using the numerically generated solution, V (Pe) is calculated using (3.8). The results
are plotted in figure 3. They are in excellent agreement with the large-Pe asymptotic
approximation (7.15).

10. Concluding remarks
In classical macrorheology, there is an interest in understanding the nonlinear dependence
upon the shear magnitude, and in particular the dependence of the effective viscosity upon
the Péclet number under strong shear (Brady & Morris 1997; Morris & Katyal 2002). Our
interest is in the analogous limit in the comparable microrheological problem. Using a
detailed analysis of the microstructure at large Péclet numbers, we have derived a closed-
form approximation for the variation of the viscosity increment with the Péclet number.

In our asymptotic analysis, we have employed throughout the Fraenkel interpretation of
matched asymptotic expansions (Fraenkel 1969), where terms that differ by a logarithm of
the expansion parameter are considered to be of the same asymptotic order. With that inter-
pretation, our key result (7.15) constitutes a two-term approximation. With the asymptotic
error being algebraically small, the excellent agreement between (7.15) and the viscosity
increment predicted by the numerical scheme, as depicted in figure 3, is hardly surprising.

Beyond the direct contribution to microrheology, the present analysis may be of
fundamental interest in boundary-layer theory – in particular, the structure of boundary
layers about spherical surfaces. For ‘conventional’ hydrodynamic advection, associated
with an imposed uniform flow, such layers typically break down at the rear stagnation
point, morphing into a narrow wake. This is the case for the problem of solute transport
at large Péclet numbers (Levich 1962) and vorticity transport about bubbles at large
Reynolds numbers (Moore 1963; Harper 1972). The present problem is somewhat
non-conventional, as the boundary layer breaks down at the equator, resulting in a
broad wake. While there are known examples in the literature of equatorial breakdown
(Stewartson 1958; Schnitzer, Frankel & Yariv 2013), they are associated with certain
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fore–aft symmetries that are absent in uniform-flow advection. In the present problem,
the ‘early’ breakdown may be traced back to the neglect of hydrodynamic interactions.
With an advection term which is uniform throughout, the equatorial breakdown is a
consequence of the blunt violation of the no-flux condition.

There are two natural follow-ups of the present contribution. The first involves the
calculation of the velocity fluctuations – a tensor that was calculated by SB05 at leading
order. The second is concerned with the calculation of the longitudinal and transverse
force-induced diffusivities. In their analysis of that problem, Zia & Brady (2010) employed
the physical model of SB05, as used here, where hydrodynamic interactions are neglected.
Based upon the leading-order boundary-layer solution for a vectorial ‘displacement’ field,
Zia & Brady (2010) obtained the leading-order diffusivities at small and large Pe. In the
latter limit, both the longitudinal and transverse diffusivities are proportional to Pe. An
analysis in the spirit of the present one could provide the (presumably ord(1)) corrections
in that asymptotic limit.

Other future directions, which have to do with the interactions between the probe and the
bath particles, appear more challenging. The first involves extending the present work to
incorporate hydrodynamic interactions (Khair & Brady 2006). The second has to do with
the validity of the underlying hard-sphere approximation. That approximation implicitly
assumes that the range d of colloidal interaction is small compared with the size of the
exclusion sphere, d 
 �, whereby the interaction only appears as a no-flux boundary
condition (preventing colloids from effectively passing through each other). In large-Pe
investigations (both in SB05 and the present contribution) the restriction is stricter, as d
must be small compared with the boundary-layer thickness �/Pe. If this is not the case,
the boundary-layer analysis must be revised.

Declaration of interests. The authors report no conflict of interest.

Funding. G.G.P. was supported by the Leverhulme Trust through Research Project Grant RPG-2021-161.

Appendix A. Normalisation condition for the transition layer
Motivated by (5.4), we rewrite the conservative version (3.1) of the advection–diffusion
equation in terms of g − 1:

∇ · [∇(g − 1) + Pe k̂ (g − 1)] = 0. (A1)

Interpreting the quantity in the brackets as a flux density, we consider the flux through an
arbitrary closed surface S encapsulating the excluding sphere r = 1:∮

S
dA n̂ · [∇(g − 1) + Pe k̂ (g − 1)], (A2)

where, consistently with the notation of § 2, n̂ is an outward-pointing unit vector normal
to S . Due to (A1) and Gauss’s theorem, the flux (A2) is an invariant of the problem,
independent of S . On the boundary r = 1, where (3.2) applies, this flux becomes

−Pe k̂ ·
∮

r=1
dA n̂, (A3)

which vanishes by Gauss’s theorem. It follows that∮
S

dA n̂ · [∇(g − 1) + Pe k̂ (g − 1)] = 0 (A4)

for any S encapsulating the sphere r = 1.
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We take S as a finite cylinder of arbitrary radius � = R > 1, with an axis that
coincides with � = 0, one end cap at z > 1 (‘upstream’) and the other end cap at z < −1
(‘downstream’). Since (5.4) is approached exponentially fast, the contributions to (A4)
from the upstream cap and the lateral surface � = R vanish, and we are only left with the
downstream-cap contribution. Since the location of that cap is arbitrary, it follows that∫ ∞

0

[
∂g

∂z
+ Pe(g − 1)

]
� d� = 0 ∀z < −1. (A5)

The integral in (A5) spans the transition layer about � = 1, whose thickness is
ord(Pe−1/2). We introduce the cutoff-like parameter

Pe−1/2 
 Λ 
 1 (A6)

and split the integral in (A5) as∫ ∞

0
=
∫ 1−Λ

0︸ ︷︷ ︸
wake

+
∫ 1+Λ

1−Λ︸ ︷︷ ︸
transition layer

+
∫ ∞

1+Λ︸ ︷︷ ︸
outer

, (A7)

where, consistently with (A6), the first integral is interpreted as a wake contribution, the
second as a transition-layer contribution and the third as an outer contribution. Given (5.4),
the latter is exponentially small. Using (5.16), the wake contribution is −Pe

∫ 1−Λ

0 � d� ,
that is,

− Pe

2
(1 − 2Λ + Λ2). (A8)

All that remains is to calculate the transition-layer contribution. It is expressed using
(8.1)–(8.2) as

Pe−1/2
∫ Λ Pe1/2

−Λ Pe1/2

[
Pe(h − 1) − ∂h

∂τ

]
(1 + Pe−1/2ρ) dρ. (A9)

Before making use of ΛPe1/2 � 1, we rewrite (A9) as

Pe−1/2

{∫ Λ Pe1/2

−Λ Pe1/2

[
Pe(h − H(ρ)) − ∂h

∂τ

]
(1 + Pe−1/2ρ) dρ

−Pe
∫ 0

−Λ Pe1/2
(1 + Pe−1/2ρ) dρ

}
, (A10)

wherein H is the Heaviside step function. In that form, the integrand of the first integral
decays as ρ → ±∞ (see (8.4)). Since we expect that (8.4) are attained exponentially fast
when leaving the transition layer, we may now replace ΛPe1/2 by ∞ in that integral. By
explicitly evaluating the second integral, the transition-layer contribution becomes

Pe−1/2
{∫ ∞

−∞

[
Pe(h − H(ρ)) − ∂h

∂τ

]
(1 + Pe−1/2ρ) dρ + Pe3/2 Λ2 − 2Λ

2

}
. (A11)

Addition of (A8) and (A11) yields

− Pe

2
+ Pe−1/2

∫ ∞

−∞

[
Pe(h − H(ρ)) − ∂h

∂τ

]
(1 + Pe−1/2ρ) dρ, (A12)
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where the dependence upon Λ disappeared, as it should. From (A5) we then find∫ ∞

−∞

[
h − H(ρ) − Pe−1 ∂h

∂τ

]
(1 + Pe−1/2ρ) dρ = 1

2
Pe1/2 ∀τ > 1. (A13)

The integral balance (A13) provides a normalisation condition for h. In fact, we can easily
relax the restriction on τ , showing that the condition equally applies for all τ > 0. (This
was to be expected, since the transition layer does not undergo any change at τ = 1.) The
resulting modification provides the requite condition (8.5).
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