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Zero-free fortifying homomorphisms
and semigroups of relations

Kenneth D. Magill, Jr

In this paper, the concept of a fitted semigroup of binary

relations is introduced. The binary operation for these semigroups

is ordinary composition of relations. A particular type of

homomorphism is investigated which maps a certain kind of

subsemigroup of one fitted semigroup into another. The main result

states that these homomorphisms are injective and gives a

representation for them. This and several related results are

then applied to the semigroup of all binary relations on a

topological space which have a certain prescribed type of

topological property. Compactness is one of these properties and

the semigroup S^t^] of all compact binary relations on a
K

Hausdorff k-space X is given special attention. It is shown

that X and Y are homeomorphic if and only if a number of

statements are true which relate the semigroups Sv[x] and Sj,[j] .

For example, in order that X and Y be homeomorphic it is both

necessary and sufficient that some n

isomorphic to some nonzero ideal of

necessary and sufficient that some nonzero ideal of SV[X] be
A

1. Introduction

Throughout this paper, ideal means two-sided ideal and we regard any

semigroup as an ideal of itself. The kernel of a semigroup is defined to

be the intersection of all its ideals if this intersection is not empty

[7, p. 67]. The semigroups that we investigate in this paper have zero
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elements, so in these cases we cannot expect the kernel to give us much

information about the semigroup since it is simply the set consisting of

the zero element. The smallest nonzero ideal, however, does have some

structure and plays an important role in our investigations here.

Consequently, we find it worthwhile to extend the notion of a kernel in the

following manner:

DEFINITION 1.1. The base of a semigroup T is defined to be the

intersection of all ideals of T if 2* does not have a zero. In the event

T does have a zero and more than one element, the base of T is defined

to be the intersection of all ideals which properly contain the zero. The

base of the one-element semigroup is defined to be the semigroup itself.

If T has a zero, it can happen that the base consists of the zero and

if T has no zero, it is quite possible that the base may be empty. If T

has no zero and the base is not empty, then the base coincides with the

kernel.

DEFINITION 1.2. A subsemigroup of a semigroup T is referred to as

a supported subsemigroup if it contains the base of T .

DEFINITION 1.3. A homomorphism from a semigroup S into a semigroup

T is a fortifying homomorphism if the image of S is a supported

subsemigroup of T .

DEFINITION 1.4. A homomorphism from a semigroup S into a semigroup

T is a zero-free homomorphism if nonzero elements of S are mapped into

nonzero elements of T .

We note that any monomorphism from any semigroup S into any semigroup

T is zero-free and if T does not happen to contain a zero, then every

homomorphism from S into T is zero-free.

In this paper, we continue the study which was begun in [7] by

introducing the concept of a fitted semigroup of binary relations. We

investigate the zero-free fortifying homomorphisms which map a supported

subsemigroup of one fitted semigroup into another. Theorem 2.3 is the main

result. It states that such homomorphisms are injective and gives a

representation for them. This result and several others which follow from

it are applied to the semigroup of all binary relations on a topological

space which have a certain prescribed type of topological property.
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Semigroups of relations 215

Compactness is such a property and the semigroup, under composition, of all

compact binary relations on a topological space is studied in more detail.

We exhibit a rather extensive class of spaces with the property that any

two spaces of the class are homeomorphic if and only if the corresponding

semigroups generated by the compact idempotent relations are isomorphic.

The analogous problem for semigroups of continuous functions and also

semigroups of closed functions was previously treated in [6].

2. Fitted semigroups and fortifying homomorphisms

DEFINITION 2.1. A fitted triform is a triple (X,f,S[x]) where X
A

is a nonempty set, F is a nonempty family of subsets of X , S[X] is a
A

family of subsets of X x X , and the following conditions are satisfied:

(2.1.1) H x {x} and {a;} x H belong to S[X] for each H 6 F^ and

x e X .

(2.1.2) A x B e S[X] implies that both A and B belong to F^ .

(2.1.3) a , 3 e S{X] implies that a o g e S[X] where a o g is

defined by

a o g = {(x3y) e X x X : (x}z) e £ and (z3y) e a for some z e X) .

One easily verifies that a fitted triform is a triform as defined in

[7, Definition (l.l)] and, furthermore, one does not find it difficult to

produce examples of triforms which are not fitted. The family of relations

S[X] of a fitted triform is a semigroup under composition as defined in

(2.1.3) and will be referred to as a fitted semigroup of relations or more

often simply as a fitted semigroup. We recall from [7] the following

DEFINITION 2.2. Let (X^F^SiX]) and (%FyJS[y]; be two triforms.

A bijection h from X onto Y is a trimorphism if h[A] e F for each

A e Fy and, similarly, h~ [A] 6 F for each /I g F_ .

We are now in a position to state the main result of this paper. It

gives a representation for a zero-free fortifying homomorphism from a

supported subsemigroup of one fitted semigroup into another.

THEOREM 2.3. Let T be a supported subsemigroup of the fitted

semigroup S[X] and let $ be a zero-free fortifying homomorphism from T
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into a fitted semigroup S[Y] . Then <f> is injective and there exists a

unique trimorphism h from X onto Y such that the following two

equivalent conditions are satisfied:

(2.3.1) $(a) = h o a o h'1 for each a e T .

(2.3.2) $(a) = {(h(x),h(y)) : (x,y) e a) for each a e T .

A good portion of the proof of this result will be accomplished

through a sequence of lemmas. The first lemma gives information about the

base of S[X] . Before proving it, we establish some notation and

terminology. First of all, it follows from (2.1.1), (2.2.2) and the fact

that F» is nonempty that {(x3x)} e S[X] for each x e X . This

particular relation plays an important role in the proof of Theorem 2.3

and will be denoted by (x) . Secondly, if X has more than one point,

then the empty relation must belong to S[X] . This relation will be

denoted by £ . We note that £ is the zero of S[X] and that any

fortifying homomorphism from a supported subsemigroup of S[X] into S[X]

must take £ into £ . The domain V(a) and the range R(a) of a

relation a are defined by

V(a) = {x e X : (x,y) e a for some y e X) ,

R(a) = {y e X : (x,y) 6 a for some x B X) .

A relation a is said to be rectangular if a = V(a) x R(a) . Now, we

determine the base of a fitted semigroup S[X] .

LEMMA 2.4. The base of a fitted semigroup S[X] consists of all

elements of S[X] which are rectangular.

Proof. Let 8 denote the family consisting of all those elements of

S[X] which are rectangular. There is only one case where the empty relation

does not belong to S[X] and that is when X = {x} , F = {{x}} and

S[X] = {<x>} . In this particular case, the base of S[X] is S[X] itself

which coincides with 8 .

We now consider the remaining case where the empty relation does belong

to S[X) . Let a be any element of B - {£} . Then a = A * B for some

A j B C X and for any Q € S[X] , one shows that
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a o g = C x B where C = {x e V(8) : (x,y) € g for some y G A) and

8 ° a = A * D where D = {y e R(8) : (x,y) e g for some x e B} .

This establishes the fact that B is a two-sided ideal of S[X] . Now

suppose that J is any two-sided ideal of S[X] which properly contains

the zero element £ . Choose any a 6 J - {£} and choose any (a3b) e a ,

then any nonzero element 3 6 B is of the form A * B for some A , B C X

and we note that

[{2>} x B] ° a ° [4 x {a}] = 4 x B = g .

It follows from (2.1.2) that both A and B belong to F . Thus,
A.

(2 .1 .1 ) impl ies t h a t both {b} x B and 4 x {a} a re elements of S[X] and

we conclude t h a t g e J . Therefore , B c J and i t follows t h a t B i s t h e

base of S[X] .

LEMMA 2.5. Let a and g be two elements of the supported

subsemigroup 1 of S[x] . Then V(a) c V($) if and only if for each

Y e T , a ° Y + £ implies g <> y 4 £, .

Proof. Suppose DCeU c V(&) and a o y | ^ . Then (x,y) e a » y

for some (x,y) and there exists a point z & X such that (x,z) e y an<i

Cs^yj e a . Thus 2 e Pfa; C V(&) and hence, CzjUJ 6 g for some w G X .

I t follows that (x,w) e g ° Y •

On the other hand, i f V(a) (J V(&) , there exists a point

p £ flfot,) - V($) . By Lemma 2.it, <p> e 2" and we obtain the desired

contradiction by noting that a ° <p> 4 £ while g ° (p> = £ .

In much the same way, one ver i f ies

LEMMA 2 .6 . RCct; c RCg; i f a«d onZ# if for each y e T , y a ^

implies y ° g 4 £ •

LEMMA 2 . 7 . PCaJ c R(g; i / and onZi/ if for each y e T - {£} ̂

implies y ° g + £ .

Proof. Suppose Pfa; c Rfg; , Y e T - {£} and DfY'1 C Via.) . Since

y f £ , there exists a pair (x,y) e y . Then x e V(y) c DCaJ C RCg; and

it follows that (w3x) € g for some w 6 X • Therefore, (w>y) e y •> g •

If, on the other hand, V(a) <£ RCgj , then p £ DCcU - RCg; for some

p € X . Again, Lemma 2.1+ implies that <p> € T - {£} and we see that

V«p>) C PfaJ but <p> ° g = £ .
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Similarly, we have

LEMMA 2.8. R(a) c V(&) if and only if for each y e T - {£} ,

R(y) c RfaJ implies 8 ° Y + £ •

LEMMA 2.9. V(a) consists of one point if and only if there exists

precisely one element g e T - {£} such that Q(&) c V(a) and

c V(a) .

Proof. It is immediate that if V(a) consists of one point p , then

<p> is the element described in the statement of the lemma.

To establish the sufficiency portion of the proof, suppose that V(a)

does not consist of one point. A contradiction is reached immediately by

assuming that a = £ . If a =f £ , then there exist two distinct points p

and q in V(a) . It follows that < p >,<<?>€ T - {£} , V« p)) ,

V((q)) C V(a.) and R((p)) , R«q)) C V(a) . This is a contradiction since

p and <7 are distinct.

The next lemma is easily verified.

LEMMA 2.10. (x,y) & a if and only if <y) « a ° <x> ^ £ .

Now let <J> denote the zero-free fortifying homomorphism in the

statement of Theorem 2.3. We eventually want to verify that for each

x e' X , i)Kx> = (y) for some y € Y • As a first approximation, we prove

LEMMA 2.11. For any x e X , we have V(<kx» = R($.x)) .

Proof. Since <$>[T] is a supported subsemigroup of S[Y] , we are

able to use Lemma 2.7 to show that V($(x)) C R(ty,x}) . Suppose that

Y S <(>[T] - {£} and V(y) C Vfftx)) . We must show that y ° # x) ^ E, . Let

a be any element in T such that <$>(a) = y and suppose that

V(a) (j: V((x)) . Then according to Lemma 2.5, there exists an element 3 e 2"

such that a ° 6 ^ C but <x> ° 6 = £ • Since only the zero of T is

mapped into the zero of S[Y] , it follows that Y ° <KSJ t € while

<J><x> » <J>(B-> = £ . But this is a contradiction since V(y) C Pr^x),) .

Consequently, we must conclude that V(a) C V((x)) , i.e., V(a) = {x} . It

follows that a ° <x> =f £ and, hence, that tf>(a) ° $(x) = y ° fcx) ^ E, .

According to Lemma 2.7, we have shown that V($(x)) c R($(x)) . Using

Lemmas 2.6 and 2.8, one verifies in much the same way that

R(cf<x>; C
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LEMMA 2.12. V(ty>x)) consists of one point.

Proof. According to Lemma 2.9, it is sufficient to show that there

exists precisely one element 6 € $[T] - {£,} such that V(&) C V(ty.x)) and

RC3/1 C V(<$<x)) . Lemma 2.11 guarantees, us the existence of one element which

satisfies these conditions, namely ty.x) itself. The proof will be complete

when we show that if $ satisfies these conditions, then 3 = fax) . Let

a be any element in T such that <j>(a,J = (3 . We want to show that

a = <x> . Suppose that V(a) <£ V((x)) . Then by Lemma 2.5, there exists an

element y G T such that a ° y ^ while < x) ° Y = £ • Again we recall

that <j> maps only the zero of T into the zero of S[Y] and we conclude

that 0 ° $(y) + € but <$<x) o <k(y) =£ • This contradicts the fact that

V(&) C V(tyx)) . Thus, we conclude that V(a) C V«x)) . Using Lemma 2.6

and similar techniques, one also shows that R(a) C R((x)) . Therefore,

a = < x > and 6 = <j>(aj = (j<x) .

LEMMA 2.13. For each x € X , there exists a unique y € Y suah

that <Hx> = <j/> .

Proof. Uniqueness is immediate and existence is a consequence of

Lemmas 2.11 and 2.12.

LEMMA 2.14. For eaoh y e Y 3 there exists an x e X suah that

4K x > = < y > .

Proof. Since <j> is a fortifying homomorphism, 4>[T] contains the

base of S[Y] . Consequently, <t>(a) = (y) for some a e T . Furthermore,

a =f ? since <$>(a) ^ £ . Choose any (a,b) G a . Then by Lemma 2.13, there

are elements u , v G Y such that i^^) = <u> and <{< fc > = < V) . Since

(b) ° a ° <a> + £ , it follows that

< u > ° < £ / > » < u) = tyb) ° $ +

But this implies that v = y = u and it follows that $(a) = (y) .

Lemmas 2.10, 2.13 and 2.1U give us the facts we need in order to

complete the proof of Theorem 2.3. According to Lemma 2.13, there exists,

for each x G X , a unique y G Y such that <j><a: > = (y) . We define a

mapping h from. X into Y by h(x) = y and we note that

for each x G X . On the other hand, Lemma 2.lU assures us that there
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exists, for each y e Y , at least one x € X such that 4><a;> = (y) .

Choose any such x with this property and define a mapping k from Y into

X by k(y) = x . We note that

(2.1U.2) $(k(y)) = (y)

for each y € Y . Now we show that

(2.14.3) 4>lU> = h ° a ° k

for each a € T .

First, suppose that (u,v) € §(a) . By Lemma 2.14, there exists at

least one x e X such that <j><x> = <u> . Then because of Lemma 2.10 and

(2.14.2), we have

This implies that <x> ° a ° (k(u)) 4 £ an<^ using Lemma 2.10 once again, it

follows that (k(u)jX) e a . Since <j><#> = <u) , it follows from (2.1U.1)

that h(x) = V . All this implies that (u,v) e h ° a ° k .

On the other hand, suppose that (u,v) e h ° 0t ° k . Then there

exist elements w , x e X such that (u,w) € fc , (w,x) e a and

CXjUyl e ?! . Since feTu^ = w and (̂'aj = v , it follows from (2.ll*.l) and

(2.1U.2) that ij)<x> = <U> and ij)<w> = <u> . Since ('UjX; € a , Lemma 2.10

implies that <x> ° a ° <u> ^ £ an<^ since (J) maps only the zero of T

into the zero of S[Y] , we have

£ 4 <K<s:> ° a o (w)) = <f(x) ° <\>(a) » <(><u> = (u> ° (fiCaJ ° (u) .

By appealing once again to Lemma 2.10, we are able to conclude that

(u3v) e $(a) .

Using both (2.1U.1) and (2.1U.2) we see that for any y e Y ,

<h(k(y))) = ^k(y)) = <y) .

This implies that h(k(y}) = y , i.e., h ° k is the identity map on Y .

It also happens that k ° h is the identity map on X . We verify this by

assuming otherwise and deriving a contradiction. Suppose there exists a

point p e X such that k(h(p)) . We then choose any y G Y and note that

(2.14.U) <f)<p> ° ${(k(y),p)} = fc •> <p> ° k ° h ° {(k(y),p)} . fe = £

and
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(2.11*.5) <j>f<P> ° i(k(y),p)}) = h

The former follows from the fact that k(h(p)) £ V((p)) and the latter is a

consequence of the fact that

(y,h(p))'eh ° <p> ° {(k(y),p)} <> k .

Statements (2.14.4) and (2.14.5) together imply that

which is the contradiction we seek. Thus, k ° h must be the identity map

on X . It follows

rewrite (2.14.3) as

on X . It follows that h is bijective and k = h~ . Therefore, we may

(2.14.6) . <S>(a) = h ° a ° h'1

for each a e T . It follows immediately from this.that <|> is injective.

Now let A be any subset of X which belongs to F . Then for any
A

p e X , A x {p} belongs to 5[X] by (2.1.1) and it follows from (2.14.6)

that

= h o (A x 7

Hence, h[A] x {^rp^} belongs to S[y] and it follows from (2.1.2) that

h[A] € Fy .

On the other hand, suppose A E F . Then for any q £ Y ,

A x {q} g S[J] and since <|> is a fortifying homomorphism, Lemma 2.4 implies

that A x {q} e ̂ [y] . Then

^ ^ J o (A x {̂ y}; . I, = J,"1^] x ih'^q)}

belongs to T and it then follows from (2.1.2) that h~ [A] e F . This
A

proves that the mapping h is a trimorphism.

To prove that h is unique, suppose that t is any bisection from X

onto Y with the property that fy(a) = t ° a ° t for each a e T . Then,

in particular,

= t o (x) " t'1 = U(x)>

for each x e X . Since we also have
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<$><x) = h o (x) ° h = (h(x)) j 

it follows that t(x) = h(x) for each x e X . Thus t and h are 
identical. The only thing which remains is to show that 

h o a " h'1 = {(h(x),h(y)) : (x,y) e a } . 

The verification is straightforward and will be omitted. 

In the proof of Theorem 2.3, the fact that the homomorphism was 
zero-free played a very essential role. The following example shows that we 
cannot dispense with this condition and hope to prove the resulting 
statement. 

EXAMPLE 2 .15 . Let X denote the semigroup, under composition, of all 
binary relations on a nonempty set Y and let F(X) denote the semigroup, 
under composition, of all functions which map X into X . We define a 
mapping from X into F(X) by 

(Ti>(a))(&) = a ° B , 

that is, for each a e X , \l>(a) is the function in F(X) which maps g 
into a ° (3 . It is easily verified that the mapping Is a monomorphism. 
Now let 

T = ty[X] U A 

where A denotes the base of B(X) , the semigroup of all binary relations 
on X . We define a mapping <j> from T into X by 

$(a) = 4i~1(a) for each a e \ji[X] , 

<j>faj = 5 f ° r each a e A . 

One easily checks that <f> is a homomorphism from T onto X . Furthermore, 
T is a supported subsemigroup of B(X) and since the image of T , under 
4> , is all of X , the mapping (j) is a fortifying homomorphism which is not 
zero-free. Since <(> is not injective, it cannot have a representation as 
in (2.3.1) or (2.3.2). 

The next result is a consequence of Theorem 2.3 and the fact that any 
semigroup is a supported subsemigroup of itself. 

COROLLARY 2 .16 . Let S[X] and S[Y] be two fitted semigroups and 

let $ be a zero-free homomorphism from S[X] onto S[Y] . Then (j) is an 
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isomorphism and there exists a unique trimorphism h from X onto Y such 

that the following two equivalent conditions are satisfied: 

( 2 . 1 6 . 1 ) <K<X> = h o a ° h'1 for each a G S[X] , 

( 2 . 1 6 . 2 ) <J>(a; = {(h(x),h(y)) : (x,y) e a} for each a € S[X] . 

COROLLARY 2 .17 . Let S[X] be a fitted semigroup. Then the 

automorphism group of any supported subsemigroup of S[X] is isomorphic to 

a subgroup of the group, under composition, of all trimorphisms which map X 

onto X . 

Proof. Let T be a supported subsemigroup of S[x] and let <j> be 
an automorphism of T . According to Theorem 2 . 3 , there exists a unique 

trimorphism h mapping X onto X such that <J>(a) = h ° a 0 h ^ for each 
a G T . One can show that the mapping $ defined by = h is a 
monomorphism from the automorphism group of T into the group of all 
trimorphisms on X . 

DEFINITION 2 .18 . The symbol l[X] is used to denote the subsemigroup 
of the fitted semigroup S[X] which is generated by the idempotent elements 
of S[X] . 

LEMMA 2 .19 . Let (X,F^StX}) be a fitted triform with the 

additional property that all two-element subsets of X belong to . Then 

l[X~\ is a supported subsemigroup of S[X] . 

Proof. It is immediate that if £ e S[X] , then C G 1[X] , so let a 

be any element of the base of S[X] which is different from £ . By Lemma 
2.k, a = A x B for two nonempty subsets A and B of X . Choose a e A 
and b G B . Since A x B G S[X] , condition ( 2 . 1 . 2 ) implies that both A 

and B belong to F^ . It then follows from condition ( 2 . 1 . 1 ) that 

3 = ( M x B and p = A x {a} both belong to S[X] . Furthermore, ia,b) 

belongs to F^. by hypothesis and another appeal to ( 2 . 1 . 1 ) allows us to 

conclude that 

Y = ia,b} x {b} = {(a,b),(b,b)} 

belongs to S[X] . One easily verifies that 3 , Y and P are a i l 

idempotent and it follows that a G 1[X] since a = 3 ° Y ° P • 
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Now suppose that (X3FX,S[X]) and (Y,lr ,S[Y]) are fitted triforms

such that F contains all two-element subsets of X and Fy contains all

two-element subsets of Y . Then by Lemma 2.19, any homomorphism from l[X]

onto l[Y] may be regarded as a fortifying homomorphism from a supported

subsemigroup of S[X] into S[Y] . These observations, together with

Theorem 2.3 yield

THEOREM 2.20. Let (X3Fx3S[x]) and (YJrS[Y]) be two fitted

triforms such that F« contains all two-element subsets of X and F.,

contains all two-elements of Y . Furthermore, let § be a zero-free

homomorphism from l[X] onto l[Y] . Then (j> is, in faat3 an isomorphism

and there exists a unique trimorphism h from X onto Y such that each

of the following two equivalent conditions are satisfied:

(2.20.1) <$>(a.) = h ° a ° h1 for each a e l[X] ,

(2.20.2) 4>(a) = {(h(x)jh(y)) : (x,y) & a) for each a e l[x] .

3. Semigroups of relations on topological spaces

Here, we apply the results of the previous section to various

semigroups of relations on topological spaces. We make the blanket

assumption that all topological spaces discussed in this paper are Hausdorff.

Let us agree (as in [S]) to regard a topological property Q as a class

of spaces such that if X e Q and Y is homeomorphic to X , then Y € Q .

Let us agree further that the statement "X has property Q" is

equivalent to the statement "X € Q" .

DEFINITION 3.1. A bijection h from a topological space X onto a

topological space Y is a Q-morphism if h[A] C Y has property Q

whenever A CX has property Q and similarly, h [A] C X has property Q

whenever A C Y has property Q .

DEFINITION 3.2. A topological property Q is said to be composable

if all points have property Q and for any space # , i f a , $ C X x . S f

both have property Q , then a ° 3 has property Q .

DEFINITION 3.3. A topological property Q is said to be factorable

J.f for any two spaces X and Y , both X and Y have property Q
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whenever X x Y has property Q .

The notion of a composable topological property was introduced in [£].

Among other things, it was shown there that compactness and a-compactness

are composable topological properties while normality and connectedness are

not.

Suppose Q is a topological property which is both factorable and

composable and let X be any topological space. In keeping with the

notation in [S], we let Q denote the family of all subsets of X which
A

have property Q and we let denote the semigroup, under composition,

of all binary relations on X which have property Q . For any subset H

of X and any point x 6 X , both H x {x} and {a;} x H are homeomorphic

to H and consequently, both belong to •$ [X] if H belongs to Qy .

Furthermore, since Q is factorable, both A and B must belong to Q
A.

if A x B € SJX] . Therefore, the triple (X,Q SQ[X]) is a fitted

triform whenever the property Q is both factorable and composable. An

application of Theorem 2.3 now yields

THEOREM 3.4. Let Q be a topological property which is both

factorable and composable and let -S-M and Sg[Y] denote the semigroups,

under composition, of all those binary relations on the spaces X and Y

respectively which have property Q . Let <$> be a zero-free fortifying

homomorphism from a supported subsemigroup T of SQ[X] into SJY] .

Then <|> is injeative and there exists a unique Q-morphism h mapping X

onto Y such that the following two equivalent conditions are satisfied:

h'1= h ° a ° h'1 for each a e T ,

(3.it.2) cj>ra; = {(h(x),h(y)) : (x,y) € a} for each a e T .

COROLLARY 3.5. Let Q be a topological property which is both

factorable and composable, let X and Y be any two topological spaces,

and let $ be a zero-free homomorphism from S [/] onto S [Y] . Then

((> is an isomorphism and there exists a unique Q-morphism h mapping X

onto Y such that the following two equivalent conditions are satisfied:

H
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(3.5.1)

(3.5.2)

= h o a ,-1 for each a e SJX] ,

= {(h(x),h(y)) : (x,y) e a} for each a E SQ[X] .

An application of Corollary 2.17 immediately results in

COROLLARY 3.6. Let Q be a topological property which is both

factorable and composable and let X be any topological space. Then the

automorphism group of any supported subsemigroup of S_[Jf] is isomorphic

to a subgroup of the group of all Q-morphisms on X .

DEFINITION 3.7. For any composable topological property Q and any

topological space X, IQ[X] denotes the semigroup, under composition, which

is generated by the idempotent relations on X which have property Q .

With respect to the semigroup IalX] , Theorem 2.20 translates into

THEOREM 3.8. Let Q be a topological property which is both

factorable and composable and, furthermore, is such that the two-element

space has property Q . Then for any two spaces X and Y , any zero-free

homomorphism <}> from I ^ W onto l o W is, in fact, an isomorphism and

there exists a unique Q-morphism h from X onto Y such that the

following two equivalent conditions are satisfied:

(3.8.1) <(iCo; = h ° a ° h'1 for each a e 1 [x] ,

(3.8.2) <|>Ca; = {(h(x),h(y)) : (x,y) e a} for each a e J [x] .

Now we consider the special case where the topological property is

compactness. As we mentioned previously, compactness is composable

IS, Theorem (2.6)]. Since, in addition, compactness is factorable and the

two-element space is compact, all the results obtained thus far in this

section can be applied. We denote the compactness property by K . For any

space X , we let S^X] denote the semigroup, under composition, of all
A

compact binary relations on X and we let denote the semigroup which

is generated by the idempotent compact binary relations on X . We are able

to get sharper results without sacrificing a great deal if we restrict

ourselves to k-spaces [Z, p. 230-2311. A space is defined to be a fe-space

if it has the property that any subset which intersects each compact subset
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in a closed subset must, itself, be closed. The class of all fc-spaces is

fairly extensive in that it includes all locally compact spaces as well as

all first countable spaces [2, p. 231, Theorem 13]. An important fact about

the class of k-spaces is that any X-morphism between two such spaces must

actually be a homeomorphism. Thus, in Theorems 3-k and 3.8, the Q-morphism

h is a homeomorphism if Q happens to be compactness and X and Y are

k-spaces.

THEOREM 3.9. Let X and Y be two nonempty k-spaces. Then the

following statements about a zero-free homomorphism $ from S [X] into
A

Sj,[y] are equivalent:
A

(3-9-1) The image of -S^[^] contains a nonzero ideal of •Ŝ [i'] .

(3.9.2) <f> is a fortifying homomorphism.

(3-9.3) § is a homomorphism from S[x] onto 5^[y] .

(3.9-*+) $ is an isomorphism from $KiX] onto S
K[X) •

(3 • 9 • 5) There exists a unique homeomorphism h from X onto Y such

that §(u) = h ° a ° h for each a e ^ [ A ] or, equivalently/

<H<X) = {(h(x),h(y)) : (x,y) € a} for each a € SR[x\ .

Proof. It is immediate that (3-9-1*) implies (3-9-3) and (3.9-3) implies

(3-9-1)- Furthermore, since any subsemigroup of Ŝ fi"] which contains a
A

nonzero ideal of SV[Y] is a supported subsemigroup, we see that (3-9-1)
A

implies (3-9-2). As we mentioned previously, any X-morphism between

k-spaces is a homeomorphism and thus, it follows from Theorem 3-^ that

(3.9-2) implies (3.9.5). It remains for us to observe that (3.9-5) implies

(3-9-*O- But it follows quite easily that any homomorphism from 5 [j]
A

into •ST('[-̂ ] which has a representation as in (3.9-5) must actually be an

isomorphism onto SV[J] .

A

THEOREM 3.10. For any two nonempty k-spaces X and Y 3 the

following statements are equivalent:
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(3.10.1) X and Y are homeomorphie.

(3.10.2) S
K[X]

 ana" SK^Y^ are

(3.10.3) ^v^] ^s ^e image of S [x] under a zero-free homomorphism.

(3.10.it) Some nonzero ideal of S [Y] is isomorphia to an ideal of

A

sK[x] .

(3.10.5) Some nonzero ideal of S [Y] is the image of an ideal of

•Sy[X] under a zero-free homomorphism.

(3.10.6) * # M ana" ^IA^ are isomorphia.

(3.10.7) !„[-!'] is the image of TJx] under a zero-free homomorphism.
A A

Proof. It follows from the previous theorem that (3.10.1), (3.10.2)

and (3.10.3) are all equivalent and it follows from Theorem 3.8 that

(3.10.6) and (3.10.7) are equivalent. Furthermore, since any nonzero ideal

of Sj,[Y] is a supported subsemigroup of Sj,[Y] , it follows from Theorem
A A

3.1+ that (3-10.it) and (3.10.5) are equivalent. Because of all this, the

proof will be complete when we show that (3.10.2), (3.10.U) and (3-10.6)

are equivalent. It is immediate that (3.10.2) implies both (3.10.it) and

(3.10.6) and it follows from Theorem 3-^ and Theorem 3-8 respectively that

(3.10.U) and (3.10.6) both imply (3.10.1) (we recall again that between

k-spaces, a X-morphism is a homeomorphism). Since, for any homeomorphism

h from X onto Y , the mapping which takes o e SJX] into
A

h o a ° h~ € S^tr] is an isomorphism from SV[X] onto 5 [J] ,
A A A

it follows that (3.10.1) implies (3-10.2).

4. Some concluding remarks

In [6], we treated the problem of finding a nontrivial class C of

spaces with the property that any two spaces of the class are homeomorphie

if and only if the two corresponding semigroups generated by the idempotent

continuous selfmaps are isomorphic. It was shown there that the class

consisting of all 0-dimensional (Hausdorff) spaces and all normal

(Hausdorff) spaces which contain an arc is such a class. It was also shown
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that the class of all Tj spaces played the same role for the semigroups

generated by the idempotent closed selfmaps. Theorem 3.10 provides a

solution to the analogous problem for the semigroups I v M which are

generated by the idempotent compact relations on X for, among other

things, this result implies that any two fe-spaces are homeomorphic if and

only if the two corresponding semigroups which are generated by the

idempotent compact relations are isomorphic. As we mentioned previously,

the class of fe-spaces is fairly extensive as it contains all locally

compact spaces and all first countable spaces.

Finally, we wish to note that the class K of semigroups of compact

relations on fe-spaees has an interesting property which is not shared by

the class 1/ of semigroups of continuous selfmaps on S*-spaces [5] or the

class It! of closed selfmaps on a Tj space [4]. The property is simply

this: the algebraic structure of any semigroup in the class K is

completely determined within that class by the algebraic structure of any

one of its nonzero ideals. That is, if any two of the semigroups in K

have isomorphic nonzero ideals, then the semigroups themselves must be

isomorphic. This fact follows from Theorem 3.10. However, the base (which

in this case coincides with the kernel) of any semigroup in f consists of

all the constant functions and is therefore a left zero semigroup. Thus,

the bases of any two such semigroups are isomorphic if the two corresponding

topological spaces have the same cardinality. But the semigroups themselves

will not be isomorphic unless the spaces are homeomorphic [5, p. 295,

Theorem 1]. See also [9]. Similar remarks are valid for semigroups from

the class W .
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